Logo of geneticsGeneticsCurrent IssueInformation for AuthorsEditorial BoardSubscribeSubmit a Manuscript
Genetics. Mar 1984; 106(3): 365–385.
PMCID: PMC1224244

Mutants of S. CEREVISIAE Defective in the Maintenance of Minichromosomes


We have isolated yeast mutants that are defective in the maintenance of circular minichromosomes. The minichromosomes are mitotically stable plasmids, each of which contains a different ARS (autonomously replicating sequence), a centrometeric sequence, CEN5, and two yeast genes, LEU2 and URA3. Forty minichromosome maintenance-defective (Mcm -) mutants were characterized. They constitute 16 complementation groups. These mutants can be divided into two classes, specific and nonspecific, by their differential ability to maintain minichromosomes with different ARSs. The specific class of mutants is defective only in the maintenance of minichromosomes that carry a particular group of ARSs irrespective of the centromeric sequence present. The nonspecific class of mutants is defective in the maintenance of all minichromosomes tested irrespective of the ARS or centromeric sequence present. The specific class may include mutants that do not initiate DNA replication effectively at specific ARSs present on the minichromosomes; the nonspecific class may include mutants that are affected in the segregation and/or replication of circular plasmids in general.

Full Text

The Full Text of this article is available as a PDF (1.1M).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Beach D, Piper M, Shall S. Isolation of chromosomal origins of replication in yeast. Nature. 1980 Mar 13;284(5752):185–187. [PubMed]
  • Birnboim HC, Doly J. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res. 1979 Nov 24;7(6):1513–1523. [PMC free article] [PubMed]
  • Blumenthal AB, Kriegstein HJ, Hogness DS. The units of DNA replication in Drosophila melanogaster chromosomes. Cold Spring Harb Symp Quant Biol. 1974;38:205–223. [PubMed]
  • Braun R, Wili H. Time sequence of DNA replication in Physarum. Biochim Biophys Acta. 1969 Jan 21;174(1):246–252. [PubMed]
  • Hand R. Eucaryotic DNA: organization of the genome for replication. Cell. 1978 Oct;15(2):317–325. [PubMed]
  • Hartwell LH. Sequential function of gene products relative to DNA synthesis in the yeast cell cycle. J Mol Biol. 1976 Jul 15;104(4):803–817. [PubMed]
  • Hinnen A, Hicks JB, Fink GR. Transformation of yeast. Proc Natl Acad Sci U S A. 1978 Apr;75(4):1929–1933. [PMC free article] [PubMed]
  • Johnston LH, Game JC. Mutants of yeast with depressed DNA synthesis. Mol Gen Genet. 1978 May 3;161(2):205–214. [PubMed]
  • Scherer S, Davis RW. Replacement of chromosome segments with altered DNA sequences constructed in vitro. Proc Natl Acad Sci U S A. 1979 Oct;76(10):4951–4955. [PMC free article] [PubMed]
  • Stinchcomb DT, Mann C, Davis RW. Centromeric DNA from Saccharomyces cerevisiae. J Mol Biol. 1982 Jun 25;158(2):157–190. [PubMed]
  • Sundin O, Varshavsky A. Arrest of segregation leads to accumulation of highly intertwined catenated dimers: dissection of the final stages of SV40 DNA replication. Cell. 1981 Sep;25(3):659–669. [PubMed]
  • Szostak JW, Wu R. Insertion of a genetic marker into the ribosomal DNA of yeast. Plasmid. 1979 Oct;2(4):536–554. [PubMed]
  • Tschumper G, Carbon J. Copy number control by a yeast centromere. Gene. 1983 Aug;23(2):221–232. [PubMed]

Articles from Genetics are provided here courtesy of Genetics Society of America


Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...


  • MedGen
    Related information in MedGen
  • PubMed
    PubMed citations for these articles
  • Substance
    PubChem Substance links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...