• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of biochemjBJ Latest papers and much more!
Biochem J. May 15, 2004; 380(Pt 1): 1–17.
PMCID: PMC1224166

Signalling to actin assembly via the WASP (Wiskott-Aldrich syndrome protein)-family proteins and the Arp2/3 complex.

Abstract

The assembly of a branched network of actin filaments provides the mechanical propulsion that drives a range of dynamic cellular processes, including cell motility. The Arp2/3 complex is a crucial component of such filament networks. Arp2/3 nucleates new actin filaments while bound to existing filaments, thus creating a branched network. In recent years, a number of proteins that activate the filament nucleation activity of Arp2/3 have been identified, most notably the WASP (Wiskott-Aldrich syndrome protein) family. WASP-family proteins activate the Arp2/3 complex, and consequently stimulate actin assembly, in response to extracellular signals. Structural studies have provided a significant refinement in our understanding of the molecular detail of how the Arp2/3 complex nucleates actin filaments. There has also been much progress towards an understanding of the complicated signalling processes that regulate WASP-family proteins. In addition, the use of gene disruption in a number of organisms has led to new insights into the specific functions of individual WASP-family members. The present review will discuss the Arp2/3 complex and its regulators, in particular the WASP-family proteins. Emphasis will be placed on recent developments in the field that have furthered our understanding of actin dynamics and cell motility.

Full Text

The Full Text of this article is available as a PDF (1.0M).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Machesky LM, Atkinson SJ, Ampe C, Vandekerckhove J, Pollard TD. Purification of a cortical complex containing two unconventional actins from Acanthamoeba by affinity chromatography on profilin-agarose. J Cell Biol. 1994 Oct;127(1):107–115. [PMC free article] [PubMed]
  • Welch MD, Iwamatsu A, Mitchison TJ. Actin polymerization is induced by Arp2/3 protein complex at the surface of Listeria monocytogenes. Nature. 1997 Jan 16;385(6613):265–269. [PubMed]
  • Mullins RD, Heuser JA, Pollard TD. The interaction of Arp2/3 complex with actin: nucleation, high affinity pointed end capping, and formation of branching networks of filaments. Proc Natl Acad Sci U S A. 1998 May 26;95(11):6181–6186. [PMC free article] [PubMed]
  • Machesky LM, Mullins RD, Higgs HN, Kaiser DA, Blanchoin L, May RC, Hall ME, Pollard TD. Scar, a WASp-related protein, activates nucleation of actin filaments by the Arp2/3 complex. Proc Natl Acad Sci U S A. 1999 Mar 30;96(7):3739–3744. [PMC free article] [PubMed]
  • Chan AY, Bailly M, Zebda N, Segall JE, Condeelis JS. Role of cofilin in epidermal growth factor-stimulated actin polymerization and lamellipod protrusion. J Cell Biol. 2000 Feb 7;148(3):531–542. [PMC free article] [PubMed]
  • Ichetovkin Ilia, Grant Wayne, Condeelis John. Cofilin produces newly polymerized actin filaments that are preferred for dendritic nucleation by the Arp2/3 complex. Curr Biol. 2002 Jan 8;12(1):79–84. [PubMed]
  • Mullins RD, Stafford WF, Pollard TD. Structure, subunit topology, and actin-binding activity of the Arp2/3 complex from Acanthamoeba. J Cell Biol. 1997 Jan 27;136(2):331–343. [PMC free article] [PubMed]
  • Machesky LM, Reeves E, Wientjes F, Mattheyse FJ, Grogan A, Totty NF, Burlingame AL, Hsuan JJ, Segal AW. Mammalian actin-related protein 2/3 complex localizes to regions of lamellipodial protrusion and is composed of evolutionarily conserved proteins. Biochem J. 1997 Nov 15;328(Pt 1):105–112. [PMC free article] [PubMed]
  • Winter D, Podtelejnikov AV, Mann M, Li R. The complex containing actin-related proteins Arp2 and Arp3 is required for the motility and integrity of yeast actin patches. Curr Biol. 1997 Jul 1;7(7):519–529. [PubMed]
  • Balasubramanian MK, Feoktistova A, McCollum D, Gould KL. Fission yeast Sop2p: a novel and evolutionarily conserved protein that interacts with Arp3p and modulates profilin function. EMBO J. 1996 Dec 2;15(23):6426–6437. [PMC free article] [PubMed]
  • Jay P, Bergé-Lefranc JL, Massacrier A, Roessler E, Wallis D, Muenke M, Gastaldi M, Taviaux S, Cau P, Berta P. ARP3beta, the gene encoding a new human actin-related protein, is alternatively spliced and predominantly expressed in brain neuronal cells. Eur J Biochem. 2000 May;267(10):2921–2928. [PubMed]
  • Millard Thomas H, Behrendt Barbara, Launay Sophie, Fütterer Klaus, Machesky Laura M. Identification and characterisation of a novel human isoform of Arp2/3 complex subunit p16-ARC/ARPC5. Cell Motil Cytoskeleton. 2003 Jan;54(1):81–90. [PubMed]
  • Winter DC, Choe EY, Li R. Genetic dissection of the budding yeast Arp2/3 complex: a comparison of the in vivo and structural roles of individual subunits. Proc Natl Acad Sci U S A. 1999 Jun 22;96(13):7288–7293. [PMC free article] [PubMed]
  • Harborth J, Elbashir SM, Bechert K, Tuschl T, Weber K. Identification of essential genes in cultured mammalian cells using small interfering RNAs. J Cell Sci. 2001 Dec;114(Pt 24):4557–4565. [PubMed]
  • May RC, Caron E, Hall A, Machesky LM. Involvement of the Arp2/3 complex in phagocytosis mediated by FcgammaR or CR3. Nat Cell Biol. 2000 Apr;2(4):246–248. [PubMed]
  • Insall R, Müller-Taubenberger A, Machesky L, Köhler J, Simmeth E, Atkinson SJ, Weber I, Gerisch G. Dynamics of the Dictyostelium Arp2/3 complex in endocytosis, cytokinesis, and chemotaxis. Cell Motil Cytoskeleton. 2001 Nov;50(3):115–128. [PubMed]
  • Warren Derek T, Andrews Paul D, Gourlay Campbell W, Ayscough Kathryn R. Sla1p couples the yeast endocytic machinery to proteins regulating actin dynamics. J Cell Sci. 2002 Apr 15;115(Pt 8):1703–1715. [PubMed]
  • Magdalena Juana, Millard Thomas H, Machesky Laura M. Microtubule involvement in NIH 3T3 Golgi and MTOC polarity establishment. J Cell Sci. 2003 Feb 15;116(Pt 4):743–756. [PubMed]
  • Magdalena Juana, Millard Thomas H, Etienne-Manneville Sandrine, Launay Sophie, Warwick Helen K, Machesky Laura M. Involvement of the Arp2/3 complex and Scar2 in Golgi polarity in scratch wound models. Mol Biol Cell. 2003 Feb;14(2):670–684. [PMC free article] [PubMed]
  • Hudson Andrew M, Cooley Lynn. A subset of dynamic actin rearrangements in Drosophila requires the Arp2/3 complex. J Cell Biol. 2002 Feb 18;156(4):677–687. [PMC free article] [PubMed]
  • Stevenson Victoria, Hudson Andrew, Cooley Lynn, Theurkauf William E. Arp2/3-dependent pseudocleavage [correction of psuedocleavage] furrow assembly in syncytial Drosophila embryos. Curr Biol. 2002 Apr 30;12(9):705–711. [PubMed]
  • Sawa Mariko, Suetsugu Shiro, Sugimoto Asako, Miki Hiroaki, Yamamoto Masayuki, Takenawa Tadaomi. Essential role of the C. elegans Arp2/3 complex in cell migration during ventral enclosure. J Cell Sci. 2003 Apr 15;116(Pt 8):1505–1518. [PubMed]
  • DeMali Kris A, Barlow Christy A, Burridge Keith. Recruitment of the Arp2/3 complex to vinculin: coupling membrane protrusion to matrix adhesion. J Cell Biol. 2002 Dec 9;159(5):881–891. [PMC free article] [PubMed]
  • Li Zhi, Kim Eric S, Bearer Elaine L. Arp2/3 complex is required for actin polymerization during platelet shape change. Blood. 2002 Jun 15;99(12):4466–4474. [PMC free article] [PubMed]
  • Falet Hervé, Hoffmeister Karin M, Neujahr Ralph, Italiano Joseph E, Jr, Stossel Thomas P, Southwick Frederick S, Hartwig John H. Importance of free actin filament barbed ends for Arp2/3 complex function in platelets and fibroblasts. Proc Natl Acad Sci U S A. 2002 Dec 24;99(26):16782–16787. [PMC free article] [PubMed]
  • Azuma T, Witke W, Stossel TP, Hartwig JH, Kwiatkowski DJ. Gelsolin is a downstream effector of rac for fibroblast motility. EMBO J. 1998 Mar 2;17(5):1362–1370. [PMC free article] [PubMed]
  • Witke W, Sharpe AH, Hartwig JH, Azuma T, Stossel TP, Kwiatkowski DJ. Hemostatic, inflammatory, and fibroblast responses are blunted in mice lacking gelsolin. Cell. 1995 Apr 7;81(1):41–51. [PubMed]
  • Falet H, Barkalow KL, Pivniouk VI, Barnes MJ, Geha RS, Hartwig JH. Roles of SLP-76, phosphoinositide 3-kinase, and gelsolin in the platelet shape changes initiated by the collagen receptor GPVI/FcR gamma-chain complex. Blood. 2000 Dec 1;96(12):3786–3792. [PubMed]
  • Kawasaki H, Springett GM, Toki S, Canales JJ, Harlan P, Blumenstiel JP, Chen EJ, Bany IA, Mochizuki N, Ashbacher A, et al. A Rap guanine nucleotide exchange factor enriched highly in the basal ganglia. Proc Natl Acad Sci U S A. 1998 Oct 27;95(22):13278–13283. [PMC free article] [PubMed]
  • Kost B, Mathur J, Chua NH. Cytoskeleton in plant development. Curr Opin Plant Biol. 1999 Dec;2(6):462–470. [PubMed]
  • Kost Benedikt, Chua Nam-Hai. The plant cytoskeleton: vacuoles and cell walls make the difference. Cell. 2002 Jan 11;108(1):9–12. [PubMed]
  • McKinney Elizabeth Cohen, Kandasamy Muthugapatti K, Meagher Richard B. Arabidopsis contains ancient classes of differentially expressed actin-related protein genes. Plant Physiol. 2002 Mar;128(3):997–1007. [PMC free article] [PubMed]
  • Klahre U, Chua NH. The Arabidopsis actin-related protein 2 (AtARP2) promoter directs expression in xylem precursor cells and pollen. Plant Mol Biol. 1999 Sep;41(1):65–73. [PubMed]
  • Mathur Jaideep, Mathur Neeta, Kernebeck Birgit, Hülskamp Martin. Mutations in actin-related proteins 2 and 3 affect cell shape development in Arabidopsis. Plant Cell. 2003 Jul;15(7):1632–1645. [PMC free article] [PubMed]
  • Li Shundai, Blanchoin Laurent, Yang Zhenbiao, Lord Elizabeth M. The putative Arabidopsis arp2/3 complex controls leaf cell morphogenesis. Plant Physiol. 2003 Aug;132(4):2034–2044. [PMC free article] [PubMed]
  • Le Jie, El-Assal Salah El-Din, Basu Dipanwita, Saad Mohamed E, Szymanski Daniel B. Requirements for Arabidopsis ATARP2 and ATARP3 during epidermal development. Curr Biol. 2003 Aug 5;13(15):1341–1347. [PubMed]
  • Mathur Jaideep, Mathur Neeta, Kirik Victor, Kernebeck Birgit, Srinivas Bhylahalli Purushottam, Hülskamp Martin. Arabidopsis CROOKED encodes for the smallest subunit of the ARP2/3 complex and controls cell shape by region specific fine F-actin formation. Development. 2003 Jul;130(14):3137–3146. [PubMed]
  • Volkmann N, Amann KJ, Stoilova-McPhie S, Egile C, Winter DC, Hazelwood L, Heuser JE, Li R, Pollard TD, Hanein D. Structure of Arp2/3 complex in its activated state and in actin filament branch junctions. Science. 2001 Sep 28;293(5539):2456–2459. [PubMed]
  • Svitkina TM, Borisy GG. Arp2/3 complex and actin depolymerizing factor/cofilin in dendritic organization and treadmilling of actin filament array in lamellipodia. J Cell Biol. 1999 May 31;145(5):1009–1026. [PMC free article] [PubMed]
  • Blanchoin L, Amann KJ, Higgs HN, Marchand JB, Kaiser DA, Pollard TD. Direct observation of dendritic actin filament networks nucleated by Arp2/3 complex and WASP/Scar proteins. Nature. 2000 Apr 27;404(6781):1007–1011. [PubMed]
  • Gournier H, Goley ED, Niederstrasser H, Trinh T, Welch MD. Reconstitution of human Arp2/3 complex reveals critical roles of individual subunits in complex structure and activity. Mol Cell. 2001 Nov;8(5):1041–1052. [PubMed]
  • Bailly M, Ichetovkin I, Grant W, Zebda N, Machesky LM, Segall JE, Condeelis J. The F-actin side binding activity of the Arp2/3 complex is essential for actin nucleation and lamellipod extension. Curr Biol. 2001 Apr 17;11(8):620–625. [PubMed]
  • Pantaloni D, Boujemaa R, Didry D, Gounon P, Carlier MF. The Arp2/3 complex branches filament barbed ends: functional antagonism with capping proteins. Nat Cell Biol. 2000 Jul;2(7):385–391. [PubMed]
  • Cameron LA, Svitkina TM, Vignjevic D, Theriot JA, Borisy GG. Dendritic organization of actin comet tails. Curr Biol. 2001 Jan 23;11(2):130–135. [PubMed]
  • Amann KJ, Pollard TD. The Arp2/3 complex nucleates actin filament branches from the sides of pre-existing filaments. Nat Cell Biol. 2001 Mar;3(3):306–310. [PubMed]
  • Carlsson AE, Wear MA, Cooper JA. End versus side branching by Arp2/3 complex. Biophys J. 2004 Feb;86(2):1074–1081. [PMC free article] [PubMed]
  • Robinson RC, Turbedsky K, Kaiser DA, Marchand JB, Higgs HN, Choe S, Pollard TD. Crystal structure of Arp2/3 complex. Science. 2001 Nov 23;294(5547):1679–1684. [PubMed]
  • Dayel MJ, Holleran EA, Mullins RD. Arp2/3 complex requires hydrolyzable ATP for nucleation of new actin filaments. Proc Natl Acad Sci U S A. 2001 Dec 18;98(26):14871–14876. [PMC free article] [PubMed]
  • Machesky LM, Insall RH. Scar1 and the related Wiskott-Aldrich syndrome protein, WASP, regulate the actin cytoskeleton through the Arp2/3 complex. Curr Biol. 1998 Dec 17;8(25):1347–1356. [PubMed]
  • Marchand JB, Kaiser DA, Pollard TD, Higgs HN. Interaction of WASP/Scar proteins with actin and vertebrate Arp2/3 complex. Nat Cell Biol. 2001 Jan;3(1):76–82. [PubMed]
  • Beltzner Christopher C, Pollard Thomas D. Identification of functionally important residues of Arp2/3 complex by analysis of homology models from diverse species. J Mol Biol. 2004 Feb 13;336(2):551–565. [PubMed]
  • Le Clainche C, Didry D, Carlier MF, Pantaloni D. Activation of Arp2/3 complex by Wiskott-Aldrich Syndrome protein is linked to enhanced binding of ATP to Arp2. J Biol Chem. 2001 Dec 14;276(50):46689–46692. [PubMed]
  • Le Clainche Christophe, Pantaloni Dominique, Carlier Marie-France. ATP hydrolysis on actin-related protein 2/3 complex causes debranching of dendritic actin arrays. Proc Natl Acad Sci U S A. 2003 May 27;100(11):6337–6342. [PMC free article] [PubMed]
  • Blanchoin L, Pollard TD. Mechanism of interaction of Acanthamoeba actophorin (ADF/Cofilin) with actin filaments. J Biol Chem. 1999 May 28;274(22):15538–15546. [PubMed]
  • Blanchoin Laurent, Pollard Thomas D. Hydrolysis of ATP by polymerized actin depends on the bound divalent cation but not profilin. Biochemistry. 2002 Jan 15;41(2):597–602. [PubMed]
  • Blanchoin L, Pollard TD, Mullins RD. Interactions of ADF/cofilin, Arp2/3 complex, capping protein and profilin in remodeling of branched actin filament networks. Curr Biol. 2000 Oct 19;10(20):1273–1282. [PubMed]
  • Derry JM, Ochs HD, Francke U. Isolation of a novel gene mutated in Wiskott-Aldrich syndrome. Cell. 1994 Aug 26;78(4):635–644. [PubMed]
  • Miki H, Miura K, Takenawa T. N-WASP, a novel actin-depolymerizing protein, regulates the cortical cytoskeletal rearrangement in a PIP2-dependent manner downstream of tyrosine kinases. EMBO J. 1996 Oct 1;15(19):5326–5335. [PMC free article] [PubMed]
  • Bear JE, Rawls JF, Saxe CL., 3rd SCAR, a WASP-related protein, isolated as a suppressor of receptor defects in late Dictyostelium development. J Cell Biol. 1998 Sep 7;142(5):1325–1335. [PMC free article] [PubMed]
  • Machesky LM, Insall RH. Scar1 and the related Wiskott-Aldrich syndrome protein, WASP, regulate the actin cytoskeleton through the Arp2/3 complex. Curr Biol. 1998 Dec 17;8(25):1347–1356. [PubMed]
  • Miki H, Suetsugu S, Takenawa T. WAVE, a novel WASP-family protein involved in actin reorganization induced by Rac. EMBO J. 1998 Dec 1;17(23):6932–6941. [PMC free article] [PubMed]
  • Suetsugu S, Miki H, Takenawa T. Identification of two human WAVE/SCAR homologues as general actin regulatory molecules which associate with the Arp2/3 complex. Biochem Biophys Res Commun. 1999 Jun 24;260(1):296–302. [PubMed]
  • Zallen Jennifer A, Cohen Yehudit, Hudson Andrew M, Cooley Lynn, Wieschaus Eric, Schejter Eyal D. SCAR is a primary regulator of Arp2/3-dependent morphological events in Drosophila. J Cell Biol. 2002 Feb 18;156(4):689–701. [PMC free article] [PubMed]
  • Li R. Bee1, a yeast protein with homology to Wiscott-Aldrich syndrome protein, is critical for the assembly of cortical actin cytoskeleton. J Cell Biol. 1997 Feb 10;136(3):649–658. [PMC free article] [PubMed]
  • Ben-Yaacov S, Le Borgne R, Abramson I, Schweisguth F, Schejter ED. Wasp, the Drosophila Wiskott-Aldrich syndrome gene homologue, is required for cell fate decisions mediated by Notch signaling. J Cell Biol. 2001 Jan 8;152(1):1–13. [PMC free article] [PubMed]
  • Symons M, Derry JM, Karlak B, Jiang S, Lemahieu V, Mccormick F, Francke U, Abo A. Wiskott-Aldrich syndrome protein, a novel effector for the GTPase CDC42Hs, is implicated in actin polymerization. Cell. 1996 Mar 8;84(5):723–734. [PubMed]
  • Rohatgi R, Ma L, Miki H, Lopez M, Kirchhausen T, Takenawa T, Kirschner MW. The interaction between N-WASP and the Arp2/3 complex links Cdc42-dependent signals to actin assembly. Cell. 1999 Apr 16;97(2):221–231. [PubMed]
  • Paunola Eija, Mattila Pieta K, Lappalainen Pekka. WH2 domain: a small, versatile adapter for actin monomers. FEBS Lett. 2002 Feb 20;513(1):92–97. [PubMed]
  • Ramesh N, Antón IM, Hartwig JH, Geha RS. WIP, a protein associated with wiskott-aldrich syndrome protein, induces actin polymerization and redistribution in lymphoid cells. Proc Natl Acad Sci U S A. 1997 Dec 23;94(26):14671–14676. [PMC free article] [PubMed]
  • Higgs HN, Pollard TD. Activation by Cdc42 and PIP(2) of Wiskott-Aldrich syndrome protein (WASp) stimulates actin nucleation by Arp2/3 complex. J Cell Biol. 2000 Sep 18;150(6):1311–1320. [PMC free article] [PubMed]
  • Rohatgi R, Ho HY, Kirschner MW. Mechanism of N-WASP activation by CDC42 and phosphatidylinositol 4, 5-bisphosphate. J Cell Biol. 2000 Sep 18;150(6):1299–1310. [PMC free article] [PubMed]
  • Prehoda KE, Scott JA, Mullins RD, Lim WA. Integration of multiple signals through cooperative regulation of the N-WASP-Arp2/3 complex. Science. 2000 Oct 27;290(5492):801–806. [PubMed]
  • Zalevsky J, Lempert L, Kranitz H, Mullins RD. Different WASP family proteins stimulate different Arp2/3 complex-dependent actin-nucleating activities. Curr Biol. 2001 Dec 11;11(24):1903–1913. [PubMed]
  • Panchal Sanjay C, Kaiser Donald A, Torres Eduardo, Pollard Thomas D, Rosen Michael K. A conserved amphipathic helix in WASP/Scar proteins is essential for activation of Arp2/3 complex. Nat Struct Biol. 2003 Aug;10(8):591–598. [PubMed]
  • Miki H, Sasaki T, Takai Y, Takenawa T. Induction of filopodium formation by a WASP-related actin-depolymerizing protein N-WASP. Nature. 1998 Jan 1;391(6662):93–96. [PubMed]
  • Kim AS, Kakalis LT, Abdul-Manan N, Liu GA, Rosen MK. Autoinhibition and activation mechanisms of the Wiskott-Aldrich syndrome protein. Nature. 2000 Mar 9;404(6774):151–158. [PubMed]
  • Rohatgi R, Nollau P, Ho HY, Kirschner MW, Mayer BJ. Nck and phosphatidylinositol 4,5-bisphosphate synergistically activate actin polymerization through the N-WASP-Arp2/3 pathway. J Biol Chem. 2001 Jul 13;276(28):26448–26452. [PubMed]
  • Yamaguchi Hideki, Miki Hiroaki, Takenawa Tadaomi. Two verprolin homology domains increase the Arp2/3 complex-mediated actin polymerization activities of N-WASP and WAVE1 C-terminal regions. Biochem Biophys Res Commun. 2002 Sep 20;297(2):214–219. [PubMed]
  • Yamaguchi H, Miki H, Suetsugu S, Ma L, Kirschner MW, Takenawa T. Two tandem verprolin homology domains are necessary for a strong activation of Arp2/3 complex-induced actin polymerization and induction of microspike formation by N-WASP. Proc Natl Acad Sci U S A. 2000 Nov 7;97(23):12631–12636. [PMC free article] [PubMed]
  • Aspenström P, Lindberg U, Hall A. Two GTPases, Cdc42 and Rac, bind directly to a protein implicated in the immunodeficiency disorder Wiskott-Aldrich syndrome. Curr Biol. 1996 Jan 1;6(1):70–75. [PubMed]
  • Bishop AL, Hall A. Rho GTPases and their effector proteins. Biochem J. 2000 Jun 1;348(Pt 2):241–255. [PMC free article] [PubMed]
  • Nobes CD, Hall A. Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell. 1995 Apr 7;81(1):53–62. [PubMed]
  • Schmidt Anja, Hall Alan. Guanine nucleotide exchange factors for Rho GTPases: turning on the switch. Genes Dev. 2002 Jul 1;16(13):1587–1609. [PubMed]
  • Abe Tomoyuki, Kato Masayoshi, Miki Hiroaki, Takenawa Tadaomi, Endo Takeshi. Small GTPase Tc10 and its homologue RhoT induce N-WASP-mediated long process formation and neurite outgrowth. J Cell Sci. 2003 Jan 1;116(Pt 1):155–168. [PubMed]
  • Carlier MF, Nioche P, Broutin-L'Hermite I, Boujemaa R, Le Clainche C, Egile C, Garbay C, Ducruix A, Sansonetti P, Pantaloni D. GRB2 links signaling to actin assembly by enhancing interaction of neural Wiskott-Aldrich syndrome protein (N-WASp) with actin-related protein (ARP2/3) complex. J Biol Chem. 2000 Jul 21;275(29):21946–21952. [PubMed]
  • Buday L. Membrane-targeting of signalling molecules by SH2/SH3 domain-containing adaptor proteins. Biochim Biophys Acta. 1999 Jul 6;1422(2):187–204. [PubMed]
  • She HY, Rockow S, Tang J, Nishimura R, Skolnik EY, Chen M, Margolis B, Li W. Wiskott-Aldrich syndrome protein is associated with the adapter protein Grb2 and the epidermal growth factor receptor in living cells. Mol Biol Cell. 1997 Sep;8(9):1709–1721. [PMC free article] [PubMed]
  • Frischknecht F, Moreau V, Röttger S, Gonfloni S, Reckmann I, Superti-Furga G, Way M. Actin-based motility of vaccinia virus mimics receptor tyrosine kinase signalling. Nature. 1999 Oct 28;401(6756):926–929. [PubMed]
  • Tian L, Nelson DL, Stewart DM. Cdc42-interacting protein 4 mediates binding of the Wiskott-Aldrich syndrome protein to microtubules. J Biol Chem. 2000 Mar 17;275(11):7854–7861. [PubMed]
  • Banin S, Truong O, Katz DR, Waterfield MD, Brickell PM, Gout I. Wiskott-Aldrich syndrome protein (WASp) is a binding partner for c-Src family protein-tyrosine kinases. Curr Biol. 1996 Aug 1;6(8):981–988. [PubMed]
  • Fukuoka M, Suetsugu S, Miki H, Fukami K, Endo T, Takenawa T. A novel neural Wiskott-Aldrich syndrome protein (N-WASP) binding protein, WISH, induces Arp2/3 complex activation independent of Cdc42. J Cell Biol. 2001 Feb 5;152(3):471–482. [PMC free article] [PubMed]
  • Morrogh LM, Hinshelwood S, Costello P, Cory GO, Kinnon C. The SH3 domain of Bruton's tyrosine kinase displays altered ligand binding properties when auto-phosphorylated in vitro. Eur J Immunol. 1999 Jul;29(7):2269–2279. [PubMed]
  • Wu Y, Spencer SD, Lasky LA. Tyrosine phosphorylation regulates the SH3-mediated binding of the Wiskott-Aldrich syndrome protein to PSTPIP, a cytoskeletal-associated protein. J Biol Chem. 1998 Mar 6;273(10):5765–5770. [PubMed]
  • Qualmann B, Roos J, DiGregorio PJ, Kelly RB. Syndapin I, a synaptic dynamin-binding protein that associates with the neural Wiskott-Aldrich syndrome protein. Mol Biol Cell. 1999 Feb;10(2):501–513. [PMC free article] [PubMed]
  • Cory GO, MacCarthy-Morrogh L, Banin S, Gout I, Brickell PM, Levinsky RJ, Kinnon C, Lovering RC. Evidence that the Wiskott-Aldrich syndrome protein may be involved in lymphoid cell signaling pathways. J Immunol. 1996 Nov 1;157(9):3791–3795. [PubMed]
  • Otsuki Makiko, Itoh Toshiki, Takenawa Tadaomi. Neural Wiskott-Aldrich syndrome protein is recruited to rafts and associates with endophilin A in response to epidermal growth factor. J Biol Chem. 2003 Feb 21;278(8):6461–6469. [PubMed]
  • Hussain NK, Jenna S, Glogauer M, Quinn CC, Wasiak S, Guipponi M, Antonarakis SE, Kay BK, Stossel TP, Lamarche-Vane N, et al. Endocytic protein intersectin-l regulates actin assembly via Cdc42 and N-WASP. Nat Cell Biol. 2001 Oct;3(10):927–932. [PubMed]
  • Yang C, Huang M, DeBiasio J, Pring M, Joyce M, Miki H, Takenawa T, Zigmond SH. Profilin enhances Cdc42-induced nucleation of actin polymerization. J Cell Biol. 2000 Sep 4;150(5):1001–1012. [PMC free article] [PubMed]
  • Castellano F, Le Clainche C, Patin D, Carlier MF, Chavrier P. A WASp-VASP complex regulates actin polymerization at the plasma membrane. EMBO J. 2001 Oct 15;20(20):5603–5614. [PMC free article] [PubMed]
  • Yarar Defne, D'Alessio Joseph A, Jeng Robert L, Welch Matthew D. Motility determinants in WASP family proteins. Mol Biol Cell. 2002 Nov;13(11):4045–4059. [PMC free article] [PubMed]
  • Baba Y, Nonoyama S, Matsushita M, Yamadori T, Hashimoto S, Imai K, Arai S, Kunikata T, Kurimoto M, Kurosaki T, et al. Involvement of wiskott-aldrich syndrome protein in B-cell cytoplasmic tyrosine kinase pathway. Blood. 1999 Mar 15;93(6):2003–2012. [PubMed]
  • Cory Giles O C, Garg Ritu, Cramer Rainer, Ridley Anne J. Phosphorylation of tyrosine 291 enhances the ability of WASp to stimulate actin polymerization and filopodium formation. Wiskott-Aldrich Syndrome protein. J Biol Chem. 2002 Nov 22;277(47):45115–45121. [PubMed]
  • Torres Eduardo, Rosen Michael K. Contingent phosphorylation/dephosphorylation provides a mechanism of molecular memory in WASP. Mol Cell. 2003 May;11(5):1215–1227. [PubMed]
  • Guinamard R, Aspenström P, Fougereau M, Chavrier P, Guillemot JC. Tyrosine phosphorylation of the Wiskott-Aldrich syndrome protein by Lyn and Btk is regulated by CDC42. FEBS Lett. 1998 Sep 4;434(3):431–436. [PubMed]
  • Suetsugu Shiro, Hattori Mitsuharu, Miki Hiroaki, Tezuka Tohru, Yamamoto Tadashi, Mikoshiba Katsuhiko, Takenawa Tadaomi. Sustained activation of N-WASP through phosphorylation is essential for neurite extension. Dev Cell. 2002 Nov;3(5):645–658. [PubMed]
  • Cory Giles O C, Cramer Rainer, Blanchoin Laurent, Ridley Anne J. Phosphorylation of the WASP-VCA domain increases its affinity for the Arp2/3 complex and enhances actin polymerization by WASP. Mol Cell. 2003 May;11(5):1229–1239. [PubMed]
  • Ho HY, Rohatgi R, Ma L, Kirschner MW. CR16 forms a complex with N-WASP in brain and is a novel member of a conserved proline-rich actin-binding protein family. Proc Natl Acad Sci U S A. 2001 Sep 25;98(20):11306–11311. [PMC free article] [PubMed]
  • Kato Masayoshi, Miki Hiroaki, Kurita Souichi, Endo Takeshi, Nakagawa Hiroyuki, Miyamoto Shigeaki, Takenawa Tadaomi. WICH, a novel verprolin homology domain-containing protein that functions cooperatively with N-WASP in actin-microspike formation. Biochem Biophys Res Commun. 2002 Feb 15;291(1):41–47. [PubMed]
  • Aspenström Pontus. The WASP-binding protein WIRE has a role in the regulation of the actin filament system downstream of the platelet-derived growth factor receptor. Exp Cell Res. 2002 Sep 10;279(1):21–33. [PubMed]
  • Naqvi SN, Zahn R, Mitchell DA, Stevenson BJ, Munn AL. The WASp homologue Las17p functions with the WIP homologue End5p/verprolin and is essential for endocytosis in yeast. Curr Biol. 1998 Aug 27;8(17):959–962. [PubMed]
  • Martinez-Quiles N, Rohatgi R, Antón IM, Medina M, Saville SP, Miki H, Yamaguchi H, Takenawa T, Hartwig JH, Geha RS, et al. WIP regulates N-WASP-mediated actin polymerization and filopodium formation. Nat Cell Biol. 2001 May;3(5):484–491. [PubMed]
  • Moreau V, Frischknecht F, Reckmann I, Vincentelli R, Rabut G, Stewart D, Way M. A complex of N-WASP and WIP integrates signalling cascades that lead to actin polymerization. Nat Cell Biol. 2000 Jul;2(7):441–448. [PubMed]
  • Lechler T, Jonsdottir GA, Klee SK, Pellman D, Li R. A two-tiered mechanism by which Cdc42 controls the localization and activation of an Arp2/3-activating motor complex in yeast. J Cell Biol. 2001 Oct 15;155(2):261–270. [PMC free article] [PubMed]
  • Rodal Avital A, Manning Amity L, Goode Bruce L, Drubin David G. Negative regulation of yeast WASp by two SH3 domain-containing proteins. Curr Biol. 2003 Jun 17;13(12):1000–1008. [PubMed]
  • Ridley AJ, Paterson HF, Johnston CL, Diekmann D, Hall A. The small GTP-binding protein rac regulates growth factor-induced membrane ruffling. Cell. 1992 Aug 7;70(3):401–410. [PubMed]
  • Svitkina TM, Borisy GG. Arp2/3 complex and actin depolymerizing factor/cofilin in dendritic organization and treadmilling of actin filament array in lamellipodia. J Cell Biol. 1999 May 31;145(5):1009–1026. [PMC free article] [PubMed]
  • Miki H, Yamaguchi H, Suetsugu S, Takenawa T. IRSp53 is an essential intermediate between Rac and WAVE in the regulation of membrane ruffling. Nature. 2000 Dec 7;408(6813):732–735. [PubMed]
  • Eden Sharon, Rohatgi Rajat, Podtelejnikov Alexandre V, Mann Matthias, Kirschner Marc W. Mechanism of regulation of WAVE1-induced actin nucleation by Rac1 and Nck. Nature. 2002 Aug 15;418(6899):790–793. [PubMed]
  • Bogdan Sven, Klämbt Christian. Kette regulates actin dynamics and genetically interacts with Wave and Wasp. Development. 2003 Sep;130(18):4427–4437. [PubMed]
  • Blagg Simone L, Stewart Michael, Sambles Christine, Insall Robert H. PIR121 regulates pseudopod dynamics and SCAR activity in Dictyostelium. Curr Biol. 2003 Sep 2;13(17):1480–1487. [PubMed]
  • Rogers Stephen L, Wiedemann Ursula, Stuurman Nico, Vale Ronald D. Molecular requirements for actin-based lamella formation in Drosophila S2 cells. J Cell Biol. 2003 Sep 15;162(6):1079–1088. [PMC free article] [PubMed]
  • Soderling Scott H, Binns Kathleen L, Wayman Gary A, Davee Stephen M, Ong Siew Hwa, Pawson Tony, Scott John D. The WRP component of the WAVE-1 complex attenuates Rac-mediated signalling. Nat Cell Biol. 2002 Dec;4(12):970–975. [PubMed]
  • Miki H, Fukuda M, Nishida E, Takenawa T. Phosphorylation of WAVE downstream of mitogen-activated protein kinase signaling. J Biol Chem. 1999 Sep 24;274(39):27605–27609. [PubMed]
  • Westphal RS, Soderling SH, Alto NM, Langeberg LK, Scott JD. Scar/WAVE-1, a Wiskott-Aldrich syndrome protein, assembles an actin-associated multi-kinase scaffold. EMBO J. 2000 Sep 1;19(17):4589–4600. [PMC free article] [PubMed]
  • Tal Tamar, Vaizel-Ohayon Dalit, Schejter Eyal D. Conserved interactions with cytoskeletal but not signaling elements are an essential aspect of Drosophila WASp function. Dev Biol. 2002 Mar 15;243(2):260–271. [PubMed]
  • Hudson Andrew M, Cooley Lynn. A subset of dynamic actin rearrangements in Drosophila requires the Arp2/3 complex. J Cell Biol. 2002 Feb 18;156(4):677–687. [PMC free article] [PubMed]
  • Sossey-Alaoui Khalid, Head Karen, Nowak Norma, Cowell John K. Genomic organization and expression profile of the human and mouse WAVE gene family. Mamm Genome. 2003 May;14(5):314–322. [PubMed]
  • Launay Sophie, Brown Geoffrey, Machesky Laura M. Expression of WASP and Scar1/WAVE1 actin-associated proteins is differentially modulated during differentiation of HL-60 cells. Cell Motil Cytoskeleton. 2003 Apr;54(4):274–285. [PubMed]
  • Soderling Scott H, Langeberg Lorene K, Soderling Jacquelyn A, Davee Stephen M, Simerly Richard, Raber Jacob, Scott John D. Loss of WAVE-1 causes sensorimotor retardation and reduced learning and memory in mice. Proc Natl Acad Sci U S A. 2003 Feb 18;100(4):1723–1728. [PMC free article] [PubMed]
  • Dahl John P, Wang-Dunlop Jeanne, Gonzales Cathleen, Goad Mary E P, Mark Robert J, Kwak Seung P. Characterization of the WAVE1 knock-out mouse: implications for CNS development. J Neurosci. 2003 Apr 15;23(8):3343–3352. [PubMed]
  • Yan Catherine, Martinez-Quiles Narcisa, Eden Sharon, Shibata Tomoyuki, Takeshima Fuminao, Shinkura Reiko, Fujiwara Yuko, Bronson Roderick, Snapper Scott B, Kirschner Marc W, et al. WAVE2 deficiency reveals distinct roles in embryogenesis and Rac-mediated actin-based motility. EMBO J. 2003 Jul 15;22(14):3602–3612. [PMC free article] [PubMed]
  • Yamazaki Daisuke, Suetsugu Shiro, Miki Hiroaki, Kataoka Yuki, Nishikawa Shin-Ichi, Fujiwara Takashi, Yoshida Nobuaki, Takenawa Tadaomi. WAVE2 is required for directed cell migration and cardiovascular development. Nature. 2003 Jul 24;424(6947):452–456. [PubMed]
  • Snapper SB, Takeshima F, Antón I, Liu CH, Thomas SM, Nguyen D, Dudley D, Fraser H, Purich D, Lopez-Ilasaca M, et al. N-WASP deficiency reveals distinct pathways for cell surface projections and microbial actin-based motility. Nat Cell Biol. 2001 Oct;3(10):897–904. [PubMed]
  • Lommel S, Benesch S, Rottner K, Franz T, Wehland J, Kühn R. Actin pedestal formation by enteropathogenic Escherichia coli and intracellular motility of Shigella flexneri are abolished in N-WASP-defective cells. EMBO Rep. 2001 Sep;2(9):850–857. [PMC free article] [PubMed]
  • Zhang J, Shehabeldin A, da Cruz LA, Butler J, Somani AK, McGavin M, Kozieradzki I, dos Santos AO, Nagy A, Grinstein S, et al. Antigen receptor-induced activation and cytoskeletal rearrangement are impaired in Wiskott-Aldrich syndrome protein-deficient lymphocytes. J Exp Med. 1999 Nov 1;190(9):1329–1342. [PMC free article] [PubMed]
  • Kozma R, Ahmed S, Best A, Lim L. The Ras-related protein Cdc42Hs and bradykinin promote formation of peripheral actin microspikes and filopodia in Swiss 3T3 fibroblasts. Mol Cell Biol. 1995 Apr;15(4):1942–1952. [PMC free article] [PubMed]
  • Svitkina Tatyana M, Bulanova Elena A, Chaga Oleg Y, Vignjevic Danijela M, Kojima Shin-ichiro, Vasiliev Jury M, Borisy Gary G. Mechanism of filopodia initiation by reorganization of a dendritic network. J Cell Biol. 2003 Feb 3;160(3):409–421. [PMC free article] [PubMed]
  • Suetsugu Shiro, Yamazaki Daisuke, Kurisu Shusaku, Takenawa Tadaomi. Differential roles of WAVE1 and WAVE2 in dorsal and peripheral ruffle formation for fibroblast cell migration. Dev Cell. 2003 Oct;5(4):595–609. [PubMed]
  • Biyasheva Assel, Svitkina Tatyana, Kunda Patricia, Baum Buzz, Borisy Gary. Cascade pathway of filopodia formation downstream of SCAR. J Cell Sci. 2004 Feb 29;117(Pt 6):837–848. [PubMed]
  • Lamarche N, Tapon N, Stowers L, Burbelo PD, Aspenström P, Bridges T, Chant J, Hall A. Rac and Cdc42 induce actin polymerization and G1 cell cycle progression independently of p65PAK and the JNK/SAPK MAP kinase cascade. Cell. 1996 Nov 1;87(3):519–529. [PubMed]
  • Rozelle AL, Machesky LM, Yamamoto M, Driessens MH, Insall RH, Roth MG, Luby-Phelps K, Marriott G, Hall A, Yin HL. Phosphatidylinositol 4,5-bisphosphate induces actin-based movement of raft-enriched vesicles through WASP-Arp2/3. Curr Biol. 2000 Mar 23;10(6):311–320. [PubMed]
  • Benesch Stefanie, Lommel Silvia, Steffen Anika, Stradal Theresia E B, Scaplehorn Niki, Way Michael, Wehland Juergen, Rottner Klemens. Phosphatidylinositol 4,5-biphosphate (PIP2)-induced vesicle movement depends on N-WASP and involves Nck, WIP, and Grb2. J Biol Chem. 2002 Oct 4;277(40):37771–37776. [PubMed]
  • Brodsky FM, Chen CY, Knuehl C, Towler MC, Wakeham DE. Biological basket weaving: formation and function of clathrin-coated vesicles. Annu Rev Cell Dev Biol. 2001;17:517–568. [PubMed]
  • Merrifield Christien J, Feldman Morris E, Wan Lei, Almers Wolfhard. Imaging actin and dynamin recruitment during invagination of single clathrin-coated pits. Nat Cell Biol. 2002 Sep;4(9):691–698. [PubMed]
  • Chang Fanny S, Stefan Christopher J, Blumer Kendall J. A WASp homolog powers actin polymerization-dependent motility of endosomes in vivo. Curr Biol. 2003 Mar 18;13(6):455–463. [PubMed]
  • Munn AL. Molecular requirements for the internalisation step of endocytosis: insights from yeast. Biochim Biophys Acta. 2001 Mar 26;1535(3):236–257. [PubMed]
  • Kaksonen Marko, Sun Yidi, Drubin David G. A pathway for association of receptors, adaptors, and actin during endocytic internalization. Cell. 2003 Nov 14;115(4):475–487. [PubMed]
  • Jung G, Remmert K, Wu X, Volosky JM, Hammer JA., 3rd The Dictyostelium CARMIL protein links capping protein and the Arp2/3 complex to type I myosins through their SH3 domains. J Cell Biol. 2001 Jun 25;153(7):1479–1497. [PMC free article] [PubMed]
  • Welch MD, Rosenblatt J, Skoble J, Portnoy DA, Mitchison TJ. Interaction of human Arp2/3 complex and the Listeria monocytogenes ActA protein in actin filament nucleation. Science. 1998 Jul 3;281(5373):105–108. [PubMed]
  • Zalevsky J, Grigorova I, Mullins RD. Activation of the Arp2/3 complex by the Listeria acta protein. Acta binds two actin monomers and three subunits of the Arp2/3 complex. J Biol Chem. 2001 Feb 2;276(5):3468–3475. [PubMed]
  • Skoble J, Portnoy DA, Welch MD. Three regions within ActA promote Arp2/3 complex-mediated actin nucleation and Listeria monocytogenes motility. J Cell Biol. 2000 Aug 7;150(3):527–538. [PMC free article] [PubMed]
  • Loisel TP, Boujemaa R, Pantaloni D, Carlier MF. Reconstitution of actin-based motility of Listeria and Shigella using pure proteins. Nature. 1999 Oct 7;401(6753):613–616. [PubMed]
  • Lechler T, Shevchenko A, Li R. Direct involvement of yeast type I myosins in Cdc42-dependent actin polymerization. J Cell Biol. 2000 Jan 24;148(2):363–373. [PMC free article] [PubMed]
  • Evangelista M, Klebl BM, Tong AH, Webb BA, Leeuw T, Leberer E, Whiteway M, Thomas DY, Boone C. A role for myosin-I in actin assembly through interactions with Vrp1p, Bee1p, and the Arp2/3 complex. J Cell Biol. 2000 Jan 24;148(2):353–362. [PMC free article] [PubMed]
  • Lee WL, Bezanilla M, Pollard TD. Fission yeast myosin-I, Myo1p, stimulates actin assembly by Arp2/3 complex and shares functions with WASp. J Cell Biol. 2000 Nov 13;151(4):789–800. [PMC free article] [PubMed]
  • Duncan MC, Cope MJ, Goode BL, Wendland B, Drubin DG. Yeast Eps15-like endocytic protein, Pan1p, activates the Arp2/3 complex. Nat Cell Biol. 2001 Jul;3(7):687–690. [PubMed]
  • Goode BL, Rodal AA, Barnes G, Drubin DG. Activation of the Arp2/3 complex by the actin filament binding protein Abp1p. J Cell Biol. 2001 Apr 30;153(3):627–634. [PMC free article] [PubMed]
  • Wendland B, McCaffery JM, Xiao Q, Emr SD. A novel fluorescence-activated cell sorter-based screen for yeast endocytosis mutants identifies a yeast homologue of mammalian eps15. J Cell Biol. 1996 Dec;135(6 Pt 1):1485–1500. [PMC free article] [PubMed]
  • Tang HY, Xu J, Cai M. Pan1p, End3p, and S1a1p, three yeast proteins required for normal cortical actin cytoskeleton organization, associate with each other and play essential roles in cell wall morphogenesis. Mol Cell Biol. 2000 Jan;20(1):12–25. [PMC free article] [PubMed]
  • Wu H, Reynolds AB, Kanner SB, Vines RR, Parsons JT. Identification and characterization of a novel cytoskeleton-associated pp60src substrate. Mol Cell Biol. 1991 Oct;11(10):5113–5124. [PMC free article] [PubMed]
  • Kaksonen M, Peng HB, Rauvala H. Association of cortactin with dynamic actin in lamellipodia and on endosomal vesicles. J Cell Sci. 2000 Dec;113(Pt 24):4421–4426. [PubMed]
  • Uruno T, Liu J, Zhang P, Fan Yx, Egile C, Li R, Mueller SC, Zhan X. Activation of Arp2/3 complex-mediated actin polymerization by cortactin. Nat Cell Biol. 2001 Mar;3(3):259–266. [PubMed]
  • Weaver AM, Karginov AV, Kinley AW, Weed SA, Li Y, Parsons JT, Cooper JA. Cortactin promotes and stabilizes Arp2/3-induced actin filament network formation. Curr Biol. 2001 Mar 6;11(5):370–374. [PubMed]
  • Kinley Andrew W, Weed Scott A, Weaver Alissa M, Karginov Andrei V, Bissonette Eric, Cooper John A, Parsons J Thomas. Cortactin interacts with WIP in regulating Arp2/3 activation and membrane protrusion. Curr Biol. 2003 Mar 4;13(5):384–393. [PubMed]
  • Uruno Takehito, Liu Jiali, Li Yansong, Smith Nicole, Zhan Xi. Sequential interaction of actin-related proteins 2 and 3 (Arp2/3) complex with neural Wiscott-Aldrich syndrome protein (N-WASP) and cortactin during branched actin filament network formation. J Biol Chem. 2003 Jul 11;278(28):26086–26093. [PubMed]
  • Weaver Alissa M, Heuser John E, Karginov Andrei V, Lee Wei-lih, Parsons J Thomas, Cooper John A. Interaction of cortactin and N-WASp with Arp2/3 complex. Curr Biol. 2002 Aug 6;12(15):1270–1278. [PubMed]
  • McNiven MA, Kim L, Krueger EW, Orth JD, Cao H, Wong TW. Regulated interactions between dynamin and the actin-binding protein cortactin modulate cell shape. J Cell Biol. 2000 Oct 2;151(1):187–198. [PMC free article] [PubMed]
  • Krueger Eugene W, Orth James D, Cao Hong, McNiven Mark A. A dynamin-cortactin-Arp2/3 complex mediates actin reorganization in growth factor-stimulated cells. Mol Biol Cell. 2003 Mar;14(3):1085–1096. [PMC free article] [PubMed]
  • Schafer Dorothy A, Weed Scott A, Binns Derk, Karginov Andrei V, Parsons J Thomas, Cooper John A. Dynamin2 and cortactin regulate actin assembly and filament organization. Curr Biol. 2002 Oct 29;12(21):1852–1857. [PubMed]
  • Small JV, Herzog M, Anderson K. Actin filament organization in the fish keratocyte lamellipodium. J Cell Biol. 1995 Jun;129(5):1275–1286. [PMC free article] [PubMed]
  • Blanchoin L, Pollard TD, Hitchcock-DeGregori SE. Inhibition of the Arp2/3 complex-nucleated actin polymerization and branch formation by tropomyosin. Curr Biol. 2001 Aug 21;11(16):1300–1304. [PubMed]
  • DesMarais Vera, Ichetovkin Ilia, Condeelis John, Hitchcock-DeGregori Sarah E. Spatial regulation of actin dynamics: a tropomyosin-free, actin-rich compartment at the leading edge. J Cell Sci. 2002 Dec 1;115(Pt 23):4649–4660. [PubMed]
  • Humphries Christine L, Balcer Heath I, D'Agostino Jessica L, Winsor Barbara, Drubin David G, Barnes Georjana, Andrews Brenda J, Goode Bruce L. Direct regulation of Arp2/3 complex activity and function by the actin binding protein coronin. J Cell Biol. 2002 Dec 23;159(6):993–1004. [PMC free article] [PubMed]
  • Yamakita Yoshihiko, Oosawa Fumio, Yamashiro Shigeko, Matsumura Fumio. Caldesmon inhibits Arp2/3-mediated actin nucleation. J Biol Chem. 2003 May 16;278(20):17937–17944. [PubMed]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

  • Compound
    Compound
    PubChem Compound links
  • MedGen
    MedGen
    Related information in MedGen
  • PubMed
    PubMed
    PubMed citations for these articles
  • Substance
    Substance
    PubChem Substance links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...