• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of biochemjBJ Latest papers and much more!
Biochem J. Feb 15, 2004; 378(Pt 1): 53–62.
PMCID: PMC1223932

p38 MAP kinase signalling is required for hypertrophic chondrocyte differentiation.

Abstract

Longitudinal growth of endochondral bones is accomplished through the co-ordinated proliferation and hypertrophic differentiation of growth plate chondrocytes. The molecular mechanisms and signalling cascades controlling these processes are not well understood. To analyse the expression and roles of p38 mitogen-activated protein kinases in this process, we have established a micromass system for the reproducible hypertrophic differentiation of mouse mesenchymal limb bud cells. Our results show that all four mammalian p38 kinase genes are expressed during the chondrogenic programme, as well as their upstream regulators MKK3 (mitogen-activated protein kinase kinase 3) and MKK6. Treatment of micromass cultures with pharmacological inhibitors of p38 results in a marked delay in hypertrophic differentiation in micromass cultures, indicating a requirement for p38 signalling in chondrocyte differentiation. Inhibition of p38 kinase activity leads to reduced and delayed induction of alkaline phosphatase activity and matrix mineralization. In addition, p38 inhibition causes reduced expression of hypertrophic marker genes such as collagen X, matrix metalloproteinase 13 and bone sialoprotein. The function of p38 in hypertrophic differentiation appears to be mediated, at least in part, by the transcription factor myocyte enhancer factor 2C. In summary, we have demonstrated a novel requirement for p38 signalling in hypertrophic differentiation of chondrocytes and identified myocyte enhancer factor 2C as an important regulator of chondrocyte gene expression.

Full Text

The Full Text of this article is available as a PDF (392K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Price JS, Oyajobi BO, Russell RG. The cell biology of bone growth. Eur J Clin Nutr. 1994 Feb;48 (Suppl 1):S131–S149. [PubMed]
  • Hunziker EB. Mechanism of longitudinal bone growth and its regulation by growth plate chondrocytes. Microsc Res Tech. 1994 Aug 15;28(6):505–519. [PubMed]
  • Kronenberg Henry M. Developmental regulation of the growth plate. Nature. 2003 May 15;423(6937):332–336. [PubMed]
  • Mundlos S, Olsen BR. Heritable diseases of the skeleton. Part II: Molecular insights into skeletal development-matrix components and their homeostasis. FASEB J. 1997 Mar;11(4):227–233. [PubMed]
  • Mundlos S, Olsen BR. Heritable diseases of the skeleton. Part I: Molecular insights into skeletal development-transcription factors and signaling pathways. FASEB J. 1997 Feb;11(2):125–132. [PubMed]
  • Ohlsson C, Isgaard J, Törnell J, Nilsson A, Isaksson OG, Lindahl A. Endocrine regulation of longitudinal bone growth. Acta Paediatr Suppl. 1993 Sep;82 (Suppl 391):33–41. [PubMed]
  • Nilsson A, Ohlsson C, Isaksson OG, Lindahl A, Isgaard J. Hormonal regulation of longitudinal bone growth. Eur J Clin Nutr. 1994 Feb;48 (Suppl 1):S150–S160. [PubMed]
  • Sandell LJ, Aigner T. Articular cartilage and changes in arthritis. An introduction: cell biology of osteoarthritis. Arthritis Res. 2001;3(2):107–113. [PMC free article] [PubMed]
  • Aigner T, McKenna L. Molecular pathology and pathobiology of osteoarthritic cartilage. Cell Mol Life Sci. 2002 Jan;59(1):5–18. [PubMed]
  • Aigner T, Reichenberger E, Bertling W, Kirsch T, Stöss H, von der Mark K. Type X collagen expression in osteoarthritic and rheumatoid articular cartilage. Virchows Arch B Cell Pathol Incl Mol Pathol. 1993;63(4):205–211. [PubMed]
  • Aigner T. Towards a new understanding and classification of chondrogenic neoplasias of the skeleton--biochemistry and cell biology of chondrosarcoma and its variants. Virchows Arch. 2002 Sep;441(3):219–230. [PubMed]
  • Cancedda R, Descalzi Cancedda F, Castagnola P. Chondrocyte differentiation. Int Rev Cytol. 1995;159:265–358. [PubMed]
  • Karsenty G. Genetic control of skeletal development. Novartis Found Symp. 2001;232:6–22. [PubMed]
  • Kronenberg HM, Chung U. The parathyroid hormone-related protein and Indian hedgehog feedback loop in the growth plate. Novartis Found Symp. 2001;232:144–157. [PubMed]
  • Pearson G, Robinson F, Beers Gibson T, Xu BE, Karandikar M, Berman K, Cobb MH. Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr Rev. 2001 Apr;22(2):153–183. [PubMed]
  • Cobb MH. MAP kinase pathways. Prog Biophys Mol Biol. 1999;71(3-4):479–500. [PubMed]
  • Nebreda AR, Porras A. p38 MAP kinases: beyond the stress response. Trends Biochem Sci. 2000 Jun;25(6):257–260. [PubMed]
  • Reimold AM, Grusby MJ, Kosaras B, Fries JW, Mori R, Maniwa S, Clauss IM, Collins T, Sidman RL, Glimcher MJ, et al. Chondrodysplasia and neurological abnormalities in ATF-2-deficient mice. Nature. 1996 Jan 18;379(6562):262–265. [PubMed]
  • Beier F, Lee RJ, Taylor AC, Pestell RG, LuValle P. Identification of the cyclin D1 gene as a target of activating transcription factor 2 in chondrocytes. Proc Natl Acad Sci U S A. 1999 Feb 16;96(4):1433–1438. [PMC free article] [PubMed]
  • Beier F, Taylor AC, LuValle P. Activating transcription factor 2 is necessary for maximal activity and serum induction of the cyclin A promoter in chondrocytes. J Biol Chem. 2000 Apr 28;275(17):12948–12953. [PubMed]
  • Beier F, Ali Z, Mok D, Taylor AC, Leask T, Albanese C, Pestell RG, LuValle P. TGFbeta and PTHrP control chondrocyte proliferation by activating cyclin D1 expression. Mol Biol Cell. 2001 Dec;12(12):3852–3863. [PMC free article] [PubMed]
  • Cuenda A, Cohen P. Stress-activated protein kinase-2/p38 and a rapamycin-sensitive pathway are required for C2C12 myogenesis. J Biol Chem. 1999 Feb 12;274(7):4341–4346. [PubMed]
  • Zetser A, Gredinger E, Bengal E. p38 mitogen-activated protein kinase pathway promotes skeletal muscle differentiation. Participation of the Mef2c transcription factor. J Biol Chem. 1999 Feb 19;274(8):5193–5200. [PubMed]
  • Galbiati F, Volonte D, Engelman JA, Scherer PE, Lisanti MP. Targeted down-regulation of caveolin-3 is sufficient to inhibit myotube formation in differentiating C2C12 myoblasts. Transient activation of p38 mitogen-activated protein kinase is required for induction of caveolin-3 expression and subsequent myotube formation. J Biol Chem. 1999 Oct 15;274(42):30315–30321. [PubMed]
  • Suzuki A, Palmer G, Bonjour JP, Caverzasio J. Regulation of alkaline phosphatase activity by p38 MAP kinase in response to activation of Gi protein-coupled receptors by epinephrine in osteoblast-like cells. Endocrinology. 1999 Jul;140(7):3177–3182. [PubMed]
  • Matsuda N, Morita N, Matsuda K, Watanabe M. Proliferation and differentiation of human osteoblastic cells associated with differential activation of MAP kinases in response to epidermal growth factor, hypoxia, and mechanical stress in vitro. Biochem Biophys Res Commun. 1998 Aug 19;249(2):350–354. [PubMed]
  • Kozawa O, Tokuda H, Matsuno H, Uematsu T. Involvement of p38 mitogen-activated protein kinase in basic fibroblast growth factor-induced interleukin-6 synthesis in osteoblasts. J Cell Biochem. 1999 Sep 1;74(3):479–485. [PubMed]
  • Yamaguchi T, Chattopadhyay N, Kifor O, Sanders JL, Brown EM. Activation of p42/44 and p38 mitogen-activated protein kinases by extracellular calcium-sensing receptor agonists induces mitogenic responses in the mouse osteoblastic MC3T3-E1 cell line. Biochem Biophys Res Commun. 2000 Dec 20;279(2):363–368. [PubMed]
  • Lee SE, Woo KM, Kim SY, Kim HM, Kwack K, Lee ZH, Kim HH. The phosphatidylinositol 3-kinase, p38, and extracellular signal-regulated kinase pathways are involved in osteoclast differentiation. Bone. 2002 Jan;30(1):71–77. [PubMed]
  • Li Xiaotong, Udagawa Nobuyuki, Itoh Kanami, Suda Koji, Murase Yoshiyuki, Nishihara Tatsuji, Suda Tatsuo, Takahashi Naoyuki. p38 MAPK-mediated signals are required for inducing osteoclast differentiation but not for osteoclast function. Endocrinology. 2002 Aug;143(8):3105–3113. [PubMed]
  • Karsdal MA, Fjording MS, Foged NT, Delaissé JM, Lochter A. Transforming growth factor-beta-induced osteoblast elongation regulates osteoclastic bone resorption through a p38 mitogen-activated protein kinase- and matrix metalloproteinase-dependent pathway. J Biol Chem. 2001 Oct 19;276(42):39350–39358. [PubMed]
  • Weston Andrea D, Chandraratna Roshantha A S, Torchia Joseph, Underhill T Michael. Requirement for RAR-mediated gene repression in skeletal progenitor differentiation. J Cell Biol. 2002 Jul 8;158(1):39–51. [PMC free article] [PubMed]
  • Oh CD, Chang SH, Yoon YM, Lee SJ, Lee YS, Kang SS, Chun JS. Opposing role of mitogen-activated protein kinase subtypes, erk-1/2 and p38, in the regulation of chondrogenesis of mesenchymes. J Biol Chem. 2000 Feb 25;275(8):5613–5619. [PubMed]
  • Nakamura K, Shirai T, Morishita S, Uchida S, Saeki-Miura K, Makishima F. p38 mitogen-activated protein kinase functionally contributes to chondrogenesis induced by growth/differentiation factor-5 in ATDC5 cells. Exp Cell Res. 1999 Aug 1;250(2):351–363. [PubMed]
  • Stanton Lee-Anne, Underhill T Michael, Beier Frank. MAP kinases in chondrocyte differentiation. Dev Biol. 2003 Nov 15;263(2):165–175. [PubMed]
  • Watanabe H, de Caestecker MP, Yamada Y. Transcriptional cross-talk between Smad, ERK1/2, and p38 mitogen-activated protein kinase pathways regulates transforming growth factor-beta-induced aggrecan gene expression in chondrogenic ATDC5 cells. J Biol Chem. 2001 Apr 27;276(17):14466–14473. [PubMed]
  • Beier F, LuValle P. Serum induction of the collagen X promoter requires the Raf/MEK/ERK and p38 pathways. Biochem Biophys Res Commun. 1999 Aug 19;262(1):50–54. [PubMed]
  • Zhen X, Wei L, Wu Q, Zhang Y, Chen Q. Mitogen-activated protein kinase p38 mediates regulation of chondrocyte differentiation by parathyroid hormone. J Biol Chem. 2001 Feb 16;276(7):4879–4885. [PubMed]
  • Katagiri T, Yamaguchi A, Komaki M, Abe E, Takahashi N, Ikeda T, Rosen V, Wozney JM, Fujisawa-Sehara A, Suda T. Bone morphogenetic protein-2 converts the differentiation pathway of C2C12 myoblasts into the osteoblast lineage. J Cell Biol. 1994 Dec;127(6 Pt 1):1755–1766. [PMC free article] [PubMed]
  • Wu LN, Ishikawa Y, Genge BR, Sampath TK, Wuthier RE. Effect of osteogenic protein-1 on the development and mineralization of primary cultures of avian growth plate chondrocytes: modulation by retinoic acid. J Cell Biochem. 1997 Dec 15;67(4):498–513. [PubMed]
  • Wang Wei, Kirsch Thorsten. Retinoic acid stimulates annexin-mediated growth plate chondrocyte mineralization. J Cell Biol. 2002 Jun 10;157(6):1061–1069. [PMC free article] [PubMed]
  • Cash DE, Bock CB, Schughart K, Linney E, Underhill TM. Retinoic acid receptor alpha function in vertebrate limb skeletogenesis: a modulator of chondrogenesis. J Cell Biol. 1997 Jan 27;136(2):445–457. [PMC free article] [PubMed]
  • Negishi Y, Kudo A, Obinata A, Kawashima K, Hirano H, Yanai N, Obinata M, Endo H. Multipotency of a bone marrow stromal cell line, TBR31-2, established from ts-SV40 T antigen gene transgenic mice. Biochem Biophys Res Commun. 2000 Feb 16;268(2):450–455. [PubMed]
  • Stricker Sigmar, Fundele Reinald, Vortkamp Andrea, Mundlos Stefan. Role of Runx genes in chondrocyte differentiation. Dev Biol. 2002 May 1;245(1):95–108. [PubMed]
  • Morin S, Charron F, Robitaille L, Nemer M. GATA-dependent recruitment of MEF2 proteins to target promoters. EMBO J. 2000 May 2;19(9):2046–2055. [PMC free article] [PubMed]
  • Raingeaud J, Gupta S, Rogers JS, Dickens M, Han J, Ulevitch RJ, Davis RJ. Pro-inflammatory cytokines and environmental stress cause p38 mitogen-activated protein kinase activation by dual phosphorylation on tyrosine and threonine. J Biol Chem. 1995 Mar 31;270(13):7420–7426. [PubMed]
  • Beier F, Vornehm S, Pöschl E, von der Mark K, Lammi MJ. Localization of silencer and enhancer elements in the human type X collagen gene. J Cell Biochem. 1997 Aug 1;66(2):210–218. [PubMed]
  • Mello MA, Tuan RS. High density micromass cultures of embryonic limb bud mesenchymal cells: an in vitro model of endochondral skeletal development. In Vitro Cell Dev Biol Anim. 1999 May;35(5):262–269. [PubMed]
  • Weston AD, Rosen V, Chandraratna RA, Underhill TM. Regulation of skeletal progenitor differentiation by the BMP and retinoid signaling pathways. J Cell Biol. 2000 Feb 21;148(4):679–690. [PMC free article] [PubMed]
  • Franzen A, Heinegard D, Solursh M. Evidence for sequential appearance of cartilage matrix proteins in developing mouse limbs and in cultures of mouse mesenchymal cells. Differentiation. 1987;36(3):199–210. [PubMed]
  • Kielty CM, Kwan AP, Holmes DF, Schor SL, Grant ME. Type X collagen, a product of hypertrophic chondrocytes. Biochem J. 1985 Apr 15;227(2):545–554. [PMC free article] [PubMed]
  • Reichenberger E, Aigner T, von der Mark K, Stöss H, Bertling W. In situ hybridization studies on the expression of type X collagen in fetal human cartilage. Dev Biol. 1991 Dec;148(2):562–572. [PubMed]
  • Gack S, Vallon R, Schmidt J, Grigoriadis A, Tuckermann J, Schenkel J, Weiher H, Wagner EF, Angel P. Expression of interstitial collagenase during skeletal development of the mouse is restricted to osteoblast-like cells and hypertrophic chondrocytes. Cell Growth Differ. 1995 Jun;6(6):759–767. [PubMed]
  • Ganiatsas S, Kwee L, Fujiwara Y, Perkins A, Ikeda T, Labow MA, Zon LI. SEK1 deficiency reveals mitogen-activated protein kinase cascade crossregulation and leads to abnormal hepatogenesis. Proc Natl Acad Sci U S A. 1998 Jun 9;95(12):6881–6886. [PMC free article] [PubMed]
  • Kummer JL, Rao PK, Heidenreich KA. Apoptosis induced by withdrawal of trophic factors is mediated by p38 mitogen-activated protein kinase. J Biol Chem. 1997 Aug 15;272(33):20490–20494. [PubMed]
  • Sweeney G, Somwar R, Ramlal T, Volchuk A, Ueyama A, Klip A. An inhibitor of p38 mitogen-activated protein kinase prevents insulin-stimulated glucose transport but not glucose transporter translocation in 3T3-L1 adipocytes and L6 myotubes. J Biol Chem. 1999 Apr 9;274(15):10071–10078. [PubMed]
  • Lefebvre V, de Crombrugghe B. Toward understanding SOX9 function in chondrocyte differentiation. Matrix Biol. 1998 Mar;16(9):529–540. [PubMed]
  • Zhao M, New L, Kravchenko VV, Kato Y, Gram H, di Padova F, Olson EN, Ulevitch RJ, Han J. Regulation of the MEF2 family of transcription factors by p38. Mol Cell Biol. 1999 Jan;19(1):21–30. [PMC free article] [PubMed]
  • Han J, Jiang Y, Li Z, Kravchenko VV, Ulevitch RJ. Activation of the transcription factor MEF2C by the MAP kinase p38 in inflammation. Nature. 1997 Mar 20;386(6622):296–299. [PubMed]
  • Harada S, Sampath TK, Aubin JE, Rodan GA. Osteogenic protein-1 up-regulation of the collagen X promoter activity is mediated by a MEF-2-like sequence and requires an adjacent AP-1 sequence. Mol Endocrinol. 1997 Nov;11(12):1832–1845. [PubMed]
  • Yang SH, Galanis A, Sharrocks AD. Targeting of p38 mitogen-activated protein kinases to MEF2 transcription factors. Mol Cell Biol. 1999 Jun;19(6):4028–4038. [PMC free article] [PubMed]
  • Inada M, Yasui T, Nomura S, Miyake S, Deguchi K, Himeno M, Sato M, Yamagiwa H, Kimura T, Yasui N, et al. Maturational disturbance of chondrocytes in Cbfa1-deficient mice. Dev Dyn. 1999 Apr;214(4):279–290. [PubMed]
  • Kim IS, Otto F, Zabel B, Mundlos S. Regulation of chondrocyte differentiation by Cbfa1. Mech Dev. 1999 Feb;80(2):159–170. [PubMed]
  • Takeda S, Bonnamy JP, Owen MJ, Ducy P, Karsenty G. Continuous expression of Cbfa1 in nonhypertrophic chondrocytes uncovers its ability to induce hypertrophic chondrocyte differentiation and partially rescues Cbfa1-deficient mice. Genes Dev. 2001 Feb 15;15(4):467–481. [PMC free article] [PubMed]
  • Tamura K, Sudo T, Senftleben U, Dadak AM, Johnson R, Karin M. Requirement for p38alpha in erythropoietin expression: a role for stress kinases in erythropoiesis. Cell. 2000 Jul 21;102(2):221–231. [PubMed]
  • Adams RH, Porras A, Alonso G, Jones M, Vintersten K, Panelli S, Valladares A, Perez L, Klein R, Nebreda AR. Essential role of p38alpha MAP kinase in placental but not embryonic cardiovascular development. Mol Cell. 2000 Jul;6(1):109–116. [PubMed]
  • Shimoaka Takashi, Ogasawara Toru, Yonamine Akiko, Chikazu Daichi, Kawano Hirotaka, Nakamura Kozo, Itoh Nobuyuki, Kawaguchi Hiroshi. Regulation of osteoblast, chondrocyte, and osteoclast functions by fibroblast growth factor (FGF)-18 in comparison with FGF-2 and FGF-10. J Biol Chem. 2002 Mar 1;277(9):7493–7500. [PubMed]
  • Jiménez MJ, Balbín M, Alvarez J, Komori T, Bianco P, Holmbeck K, Birkedal-Hansen H, López JM, López-Otín C. A regulatory cascade involving retinoic acid, Cbfa1, and matrix metalloproteinases is coupled to the development of a process of perichondrial invasion and osteogenic differentiation during bone formation. J Cell Biol. 2001 Dec 24;155(7):1333–1344. [PMC free article] [PubMed]
  • Yosimichi G, Nakanishi T, Nishida T, Hattori T, Takano-Yamamoto T, Takigawa M. CTGF/Hcs24 induces chondrocyte differentiation through a p38 mitogen-activated protein kinase (p38MAPK), and proliferation through a p44/42 MAPK/extracellular-signal regulated kinase (ERK). Eur J Biochem. 2001 Dec;268(23):6058–6065. [PubMed]
  • Segat Daniela, Comai Riccardo, Di Marco Eddi, Strangio Antonella, Cancedda Ranieri, Franzi Adriano T, Tacchetti Carlo. Integrins alpha(6A)beta 1 and alpha(6B)beta 1 promote different stages of chondrogenic cell differentiation. J Biol Chem. 2002 Aug 30;277(35):31612–31622. [PubMed]
  • Deng C, Wynshaw-Boris A, Zhou F, Kuo A, Leder P. Fibroblast growth factor receptor 3 is a negative regulator of bone growth. Cell. 1996 Mar 22;84(6):911–921. [PubMed]
  • Guo Jun, Chung Ung-Il, Kondo Hisatomo, Bringhurst F Richard, Kronenberg Henry M. The PTH/PTHrP receptor can delay chondrocyte hypertrophy in vivo without activating phospholipase C. Dev Cell. 2002 Aug;3(2):183–194. [PubMed]
  • Long F, Schipani E, Asahara H, Kronenberg H, Montminy M. The CREB family of activators is required for endochondral bone development. Development. 2001 Feb;128(4):541–550. [PubMed]
  • Wysk M, Yang DD, Lu HT, Flavell RA, Davis RJ. Requirement of mitogen-activated protein kinase kinase 3 (MKK3) for tumor necrosis factor-induced cytokine expression. Proc Natl Acad Sci U S A. 1999 Mar 30;96(7):3763–3768. [PMC free article] [PubMed]
  • Tanaka Nobuyuki, Kamanaka Masahito, Enslen Hervé, Dong Chen, Wysk Mark, Davis Roger J, Flavell Richard A. Differential involvement of p38 mitogen-activated protein kinase kinases MKK3 and MKK6 in T-cell apoptosis. EMBO Rep. 2002 Aug;3(8):785–791. [PMC free article] [PubMed]
  • Nishina H, Vaz C, Billia P, Nghiem M, Sasaki T, De la Pompa JL, Furlonger K, Paige C, Hui C, Fischer KD, et al. Defective liver formation and liver cell apoptosis in mice lacking the stress signaling kinase SEK1/MKK4. Development. 1999 Feb;126(3):505–516. [PubMed]
  • Yang D, Tournier C, Wysk M, Lu HT, Xu J, Davis RJ, Flavell RA. Targeted disruption of the MKK4 gene causes embryonic death, inhibition of c-Jun NH2-terminal kinase activation, and defects in AP-1 transcriptional activity. Proc Natl Acad Sci U S A. 1997 Apr 1;94(7):3004–3009. [PMC free article] [PubMed]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

  • Compound
    Compound
    PubChem Compound links
  • MedGen
    MedGen
    Related information in MedGen
  • PubMed
    PubMed
    PubMed citations for these articles
  • Substance
    Substance
    PubChem Substance links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...