• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of biochemjBJ Latest papers and much more!
Biochem J. Nov 15, 2003; 376(Pt 1): 15–33.
PMCID: PMC1223765

Polyester synthases: natural catalysts for plastics.

Abstract

Polyhydroxyalkanoates (PHAs) are biopolyesters composed of hydroxy fatty acids, which represent a complex class of storage polyesters. They are synthesized by a wide range of different Gram-positive and Gram-negative bacteria, as well as by some Archaea, and are deposited as insoluble cytoplasmic inclusions. Polyester synthases are the key enzymes of polyester biosynthesis and catalyse the conversion of (R)-hydroxyacyl-CoA thioesters to polyesters with the concomitant release of CoA. These soluble enzymes turn into amphipathic enzymes upon covalent catalysis of polyester-chain formation. A self-assembly process is initiated resulting in the formation of insoluble cytoplasmic inclusions with a phospholipid monolayer and covalently attached polyester synthases at the surface. Surface-attached polyester synthases show a marked increase in enzyme activity. These polyester synthases have only recently been biochemically characterized. An overview of these recent findings is provided. At present, 59 polyester synthase structural genes from 45 different bacteria have been cloned and the nucleotide sequences have been obtained. The multiple alignment of the primary structures of these polyester synthases show an overall identity of 8-96% with only eight strictly conserved amino acid residues. Polyester synthases can been assigned to four classes based on their substrate specificity and subunit composition. The current knowledge on the organization of the polyester synthase genes, and other genes encoding proteins related to PHA metabolism, is compiled. In addition, the primary structures of the 59 PHA synthases are aligned and analysed with respect to highly conserved amino acids, and biochemical features of polyester synthases are described. The proposed catalytic mechanism based on similarities to alpha/beta-hydrolases and mutational analysis is discussed. Different threading algorithms suggest that polyester synthases belong to the alpha/beta-hydrolase superfamily, with a conserved cysteine residue as catalytic nucleophile. This review provides a survey of the known biochemical features of these unique enzymes and their proposed catalytic mechanism.

Full Text

The Full Text of this article is available as a PDF (916K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Rehm BH, Steinbüchel A. Biochemical and genetic analysis of PHA synthases and other proteins required for PHA synthesis. Int J Biol Macromol. 1999 Jun-Jul;25(1-3):3–19. [PubMed]
  • Gao D, Maehara A, Yamane T, Ueda S. Identification of the intracellular polyhydroxyalkanoate depolymerase gene of Paracoccus denitrificans and some properties of the gene product. FEMS Microbiol Lett. 2001 Mar 15;196(2):159–164. [PubMed]
  • Rehm Bernd H A, Antonio Regina V, Spiekermann Patricia, Amara Amro A, Steinbüchel Alexander. Molecular characterization of the poly(3-hydroxybutyrate) (PHB) synthase from Ralstonia eutropha: in vitro evolution, site-specific mutagenesis and development of a PHB synthase protein model. Biochim Biophys Acta. 2002 Jan 31;1594(1):178–190. [PubMed]
  • Amara Amro A, Rehm Bernd H A. Replacement of the catalytic nucleophile cysteine-296 by serine in class II polyhydroxyalkanoate synthase from Pseudomonas aeruginosa-mediated synthesis of a new polyester: identification of catalytic residues. Biochem J. 2003 Sep 1;374(Pt 2):413–421. [PMC free article] [PubMed]
  • Hezayen FF, Tindall BJ, Steinbüchel A, Rehm BHA. Characterization of a novel halophilic archaeon, Halobiforma haloterrestris gen. nov., sp. nov., and transfer of Natronobacterium nitratireducens to Halobiforma nitratireducens comb. nov. Int J Syst Evol Microbiol. 2002 Nov;52(Pt 6):2271–2280. [PubMed]
  • Quaiser Achim, Ochsenreiter Torsten, Klenk Hans-Peter, Kletzin Arnulf, Treusch Alexander H, Meurer Guido, Eck Jürgen, Sensen Christoph W, Schleper Christa. First insight into the genome of an uncultivated crenarchaeote from soil. Environ Microbiol. 2002 Oct;4(10):603–611. [PubMed]
  • Jendrossek Dieter, Handrick Rene. Microbial degradation of polyhydroxyalkanoates. Annu Rev Microbiol. 2002;56:403–432. [PubMed]
  • Anderson AJ, Dawes EA. Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiol Rev. 1990 Dec;54(4):450–472. [PMC free article] [PubMed]
  • Lütke-Eversloh T, Bergander K, Luftmann H, Steinbüchel A. Identification of a new class of biopolymer: bacterial synthesis of a sulfur-containing polymer with thioester linkages. Microbiology. 2001 Jan;147(Pt 1):11–19. [PubMed]
  • Reusch RN, Sadoff HL. Putative structure and functions of a poly-beta-hydroxybutyrate/calcium polyphosphate channel in bacterial plasma membranes. Proc Natl Acad Sci U S A. 1988 Jun;85(12):4176–4180. [PMC free article] [PubMed]
  • Das S, Seebach D, Reusch RN. Differential effects of temperature on E. coli and synthetic polyhydroxybutyrate/polyphosphate channels. Biochemistry. 2002 Apr 23;41(16):5307–5312. [PubMed]
  • Das S, Reusch RN. pH regulates cation selectivity of poly-(R)-3-hydroxybutyrate/polyphosphate channels from E. coli in planar lipid bilayers. Biochemistry. 2001 Feb 20;40(7):2075–2079. [PubMed]
  • Das S, Reusch RN. Gating kinetics of E. coli poly-3-hydroxybutyrate/polyphosphate channels in planar bilayer membranes. J Membr Biol. 1999 Jul 15;170(2):135–145. [PubMed]
  • Reusch RN. Transmembrane ion transport by polyphosphate/poly-(R)-3-hydroxybutyrate complexes. Biochemistry (Mosc) 2000 Mar;65(3):280–295. [PubMed]
  • Reusch RN, Huang R, Bramble LL. Poly-3-hydroxybutyrate/polyphosphate complexes form voltage-activated Ca2+ channels in the plasma membranes of Escherichia coli. Biophys J. 1995 Sep;69(3):754–766. [PMC free article] [PubMed]
  • Reusch RN, Huang R, Kosk-Kosicka D. Novel components and enzymatic activities of the human erythrocyte plasma membrane calcium pump. FEBS Lett. 1997 Aug 4;412(3):592–596. [PubMed]
  • Castuma CE, Huang R, Kornberg A, Reusch RN. Inorganic polyphosphates in the acquisition of competence in Escherichia coli. J Biol Chem. 1995 Jun 2;270(22):12980–12983. [PubMed]
  • Qi Q, Rehm BH. Polyhydroxybutyrate biosynthesis in Caulobacter crescentus: molecular characterization of the polyhydroxybutyrate synthase. Microbiology. 2001 Dec;147(Pt 12):3353–3358. [PubMed]
  • Slater S, Gallaher T, Dennis D. Production of poly-(3-hydroxybutyrate-co-3-hydroxyvalerate) in a recombinant Escherichia coli strain. Appl Environ Microbiol. 1992 Apr;58(4):1089–1094. [PMC free article] [PubMed]
  • Slater SC, Voige WH, Dennis DE. Cloning and expression in Escherichia coli of the Alcaligenes eutrophus H16 poly-beta-hydroxybutyrate biosynthetic pathway. J Bacteriol. 1988 Oct;170(10):4431–4436. [PMC free article] [PubMed]
  • Schubert P, Steinbüchel A, Schlegel HG. Cloning of the Alcaligenes eutrophus genes for synthesis of poly-beta-hydroxybutyric acid (PHB) and synthesis of PHB in Escherichia coli. J Bacteriol. 1988 Dec;170(12):5837–5847. [PMC free article] [PubMed]
  • Peoples OP, Sinskey AJ. Poly-beta-hydroxybutyrate (PHB) biosynthesis in Alcaligenes eutrophus H16. Identification and characterization of the PHB polymerase gene (phbC). J Biol Chem. 1989 Sep 15;264(26):15298–15303. [PubMed]
  • Liebergesell M, Schmidt B, Steinbüchel A. Isolation and identification of granule-associated proteins relevant for poly(3-hydroxyalkanoic acid) biosynthesis in Chromatium vinosum D. FEMS Microbiol Lett. 1992 Dec 1;78(2-3):227–232. [PubMed]
  • Yuan W, Jia Y, Tian J, Snell KD, Müh U, Sinskey AJ, Lambalot RH, Walsh CT, Stubbe J. Class I and III polyhydroxyalkanoate synthases from Ralstonia eutropha and Allochromatium vinosum: characterization and substrate specificity studies. Arch Biochem Biophys. 2001 Oct 1;394(1):87–98. [PubMed]
  • McCool GJ, Cannon MC. PhaC and PhaR are required for polyhydroxyalkanoic acid synthase activity in Bacillus megaterium. J Bacteriol. 2001 Jul;183(14):4235–4243. [PMC free article] [PubMed]
  • Fukui T, Doi Y. Cloning and analysis of the poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) biosynthesis genes of Aeromonas caviae. J Bacteriol. 1997 Aug;179(15):4821–4830. [PMC free article] [PubMed]
  • Liebergesell M, Rahalkar S, Steinbüchel A. Analysis of the Thiocapsa pfennigii polyhydroxyalkanoate synthase: subcloning, molecular characterization and generation of hybrid synthases with the corresponding Chromatium vinosum enzyme. Appl Microbiol Biotechnol. 2000 Aug;54(2):186–194. [PubMed]
  • Matsusaki H, Manji S, Taguchi K, Kato M, Fukui T, Doi Y. Cloning and molecular analysis of the Poly(3-hydroxybutyrate) and Poly(3-hydroxybutyrate-co-3-hydroxyalkanoate) biosynthesis genes in Pseudomonas sp. strain 61-3. J Bacteriol. 1998 Dec;180(24):6459–6467. [PMC free article] [PubMed]
  • Dennis D, McCoy M, Stangl A, Valentin HE, Wu Z. Formation of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) by PHA synthase from Ralstonia eutropha. J Biotechnol. 1998 Oct 8;64(2-3):177–186. [PubMed]
  • Antonio RV, Steinbüchel A, Rehm BH. Analysis of in vivo substrate specificity of the PHA synthase from Ralstonia eutropha: formation of novel copolyesters in recombinant Escherichia coli. FEMS Microbiol Lett. 2000 Jan 1;182(1):111–117. [PubMed]
  • Schubert P, Krüger N, Steinbüchel A. Molecular analysis of the Alcaligenes eutrophus poly(3-hydroxybutyrate) biosynthetic operon: identification of the N terminus of poly(3-hydroxybutyrate) synthase and identification of the promoter. J Bacteriol. 1991 Jan;173(1):168–175. [PMC free article] [PubMed]
  • Kyte J, Doolittle RF. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982 May 5;157(1):105–132. [PubMed]
  • Müh U, Sinskey AJ, Kirby DP, Lane WS, Stubbe J. PHA synthase from chromatium vinosum: cysteine 149 is involved in covalent catalysis. Biochemistry. 1999 Jan 12;38(2):826–837. [PubMed]
  • Satoh Yasuharu, Minamoto Norimasa, Tajima Kenji, Munekata Masanobu. Polyhydroxyalkanoate synthase from Bacillus sp. INT005 is composed of PhaC and PhaR. J Biosci Bioeng. 2002;94(4):343–350. [PubMed]
  • Hezayen Francis F, Steinbüchel Alexander, Rehm Bernd H A. Biochemical and enzymological properties of the polyhydroxybutyrate synthase from the extremely halophilic archaeon strain 56. Arch Biochem Biophys. 2002 Jul 15;403(2):284–291. [PubMed]
  • Steinbüchel A, Schlegel HG. Physiology and molecular genetics of poly(beta-hydroxy-alkanoic acid) synthesis in Alcaligenes eutrophus. Mol Microbiol. 1991 Mar;5(3):535–542. [PubMed]
  • Cevallos MA, Encarnación S, Leija A, Mora Y, Mora J. Genetic and physiological characterization of a Rhizobium etli mutant strain unable to synthesize poly-beta-hydroxybutyrate. J Bacteriol. 1996 Mar;178(6):1646–1654. [PMC free article] [PubMed]
  • Maehara A, Ueda S, Nakano H, Yamane T. Analyses of a polyhydroxyalkanoic acid granule-associated 16-kilodalton protein and its putative regulator in the pha locus of Paracoccus denitrificans. J Bacteriol. 1999 May;181(9):2914–2921. [PMC free article] [PubMed]
  • Mandon K, Michel-Reydellet N, Encarnación S, Kaminski PA, Leija A, Cevallos MA, Elmerich C, Mora J. Poly-beta-hydroxybutyrate turnover in Azorhizobium caulinodans is required for growth and affects nifA expression. J Bacteriol. 1998 Oct;180(19):5070–5076. [PMC free article] [PubMed]
  • Tombolini R, Povolo S, Buson A, Squartini A, Nuti MP. Poly-beta-hydroxybutyrate (PHB) biosynthetic genes in Rhizobium meliloti 41. Microbiology. 1995 Oct;141(Pt 10):2553–2559. [PubMed]
  • Valentin HE, Steinbüchel A. Cloning and characterization of the Methylobacterium extorquens polyhydroxyalkanoic-acid-synthase structural gene. Appl Microbiol Biotechnol. 1993 Jun;39(3):309–317. [PubMed]
  • Choi JI, Lee SY, Han K. Cloning of the Alcaligenes latus polyhydroxyalkanoate biosynthesis genes and use of these genes for enhanced production of Poly(3-hydroxybutyrate) in Escherichia coli. Appl Environ Microbiol. 1998 Dec;64(12):4897–4903. [PMC free article] [PubMed]
  • Rodrigues MF, Valentin HE, Berger PA, Tran M, Asrar J, Gruys KJ, Steinbüchel A. Polyhydroxyalkanoate accumulation in Burkholderia sp.: a molecular approach to elucidate the genes involved in the formation of two homopolymers consisting of short-chain-length 3-hydroxyalkanoic acids. Appl Microbiol Biotechnol. 2000 Apr;53(4):453–460. [PubMed]
  • Sudesh K, Fukui T, Doi Y. Genetic analysis of Comamonas acidovorans polyhydroxyalkanoate synthase and factors affecting the incorporation of 4-hydroxybutyrate monomer. Appl Environ Microbiol. 1998 Sep;64(9):3437–3443. [PMC free article] [PubMed]
  • Cuff JA, Clamp ME, Siddiqui AS, Finlay M, Barton GJ. JPred: a consensus secondary structure prediction server. Bioinformatics. 1998;14(10):892–893. [PubMed]
  • Rehm BH, Qi Q, Beermann BB, Hinz HJ, Steinbüchel A. Matrix-assisted in vitro refolding of Pseudomonas aeruginosa class II polyhydroxyalkanoate synthase from inclusion bodies produced in recombinant Escherichia coli. Biochem J. 2001 Aug 15;358(Pt 1):263–268. [PMC free article] [PubMed]
  • Liebergesell M, Sonomoto K, Madkour M, Mayer F, Steinbüchel A. Purification and characterization of the poly(hydroxyalkanoic acid) synthase from Chromatium vinosum and localization of the enzyme at the surface of poly(hydroxyalkanoic acid) granules. Eur J Biochem. 1994 Nov 15;226(1):71–80. [PubMed]
  • Jia Y, Kappock TJ, Frick T, Sinskey AJ, Stubbe J. Lipases provide a new mechanistic model for polyhydroxybutyrate (PHB) synthases: characterization of the functional residues in Chromatium vinosum PHB synthase. Biochemistry. 2000 Apr 11;39(14):3927–3936. [PubMed]
  • Guex N, Peitsch MC. SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis. 1997 Dec;18(15):2714–2723. [PubMed]
  • Karplus K, Barrett C, Hughey R. Hidden Markov models for detecting remote protein homologies. Bioinformatics. 1998;14(10):846–856. [PubMed]
  • MacCallum RM, Kelley LA, Sternberg MJ. SAWTED: structure assignment with text description--enhanced detection of remote homologues with automated SWISS-PROT annotation comparisons. Bioinformatics. 2000 Feb;16(2):125–129. [PubMed]
  • Fischer D, Eisenberg D. Protein fold recognition using sequence-derived predictions. Protein Sci. 1996 May;5(5):947–955. [PMC free article] [PubMed]
  • Laskowski RA, Moss DS, Thornton JM. Main-chain bond lengths and bond angles in protein structures. J Mol Biol. 1993 Jun 20;231(4):1049–1067. [PubMed]
  • Lüthy R, Bowie JU, Eisenberg D. Assessment of protein models with three-dimensional profiles. Nature. 1992 Mar 5;356(6364):83–85. [PubMed]
  • Kelley LA, MacCallum RM, Sternberg MJ. Enhanced genome annotation using structural profiles in the program 3D-PSSM. J Mol Biol. 2000 Jun 2;299(2):499–520. [PubMed]
  • Noble ME, Cleasby A, Johnson LN, Egmond MR, Frenken LG. Analysis of the structure of Pseudomonas glumae lipase. Protein Eng. 1994 Apr;7(4):559–562. [PubMed]
  • Gerngross TU, Snell KD, Peoples OP, Sinskey AJ, Csuhai E, Masamune S, Stubbe J. Overexpression and purification of the soluble polyhydroxyalkanoate synthase from Alcaligenes eutrophus: evidence for a required posttranslational modification for catalytic activity. Biochemistry. 1994 Aug 9;33(31):9311–9320. [PubMed]
  • Hoppensack A, Rehm BH, Steinbüchel A. Analysis of 4-phosphopantetheinylation of polyhydroxybutyrate synthase from Ralstonia eutropha: generation of beta-alanine auxotrophic Tn5 mutants and cloning of the panD gene region. J Bacteriol. 1999 Mar;181(5):1429–1435. [PMC free article] [PubMed]
  • Jia Y, Yuan W, Wodzinska J, Park C, Sinskey AJ, Stubbe J. Mechanistic studies on class I polyhydroxybutyrate (PHB) synthase from Ralstonia eutropha: class I and III synthases share a similar catalytic mechanism. Biochemistry. 2001 Jan 30;40(4):1011–1019. [PubMed]
  • Taguchi S, Maehara A, Takase K, Nakahara M, Nakamura H, Doi Y. Analysis of mutational effects of a polyhydroxybutyrate (PHB) polymerase on bacterial PHB accumulation using an in vivo assay system. FEMS Microbiol Lett. 2001 Apr 20;198(1):65–71. [PubMed]
  • Chen JM, Rawlings ND, Stevens RA, Barrett AJ. Identification of the active site of legumain links it to caspases, clostripain and gingipains in a new clan of cysteine endopeptidases. FEBS Lett. 1998 Dec 28;441(3):361–365. [PubMed]
  • Griebel R, Smith Z, Merrick JM. Metabolism of poly-beta-hydroxybutyrate. I. Purification, composition, and properties of native poly-beta-hydroxybutyrate granules from Bacillus megaterium. Biochemistry. 1968 Oct;7(10):3676–3681. [PubMed]
  • Witkowski A, Joshi AK, Smith S. Characterization of the interthiol acyltransferase reaction catalyzed by the beta-ketoacyl synthase domain of the animal fatty acid synthase. Biochemistry. 1997 Dec 23;36(51):16338–16344. [PubMed]
  • Leaf TA, Peterson MS, Stoup SK, Somers D, Srienc F. Saccharomyces cerevisiae expressing bacterial polyhydroxybutyrate synthase produces poly-3-hydroxybutyrate. Microbiology. 1996 May;142(Pt 5):1169–1180. [PubMed]
  • Bohmert K, Balbo I, Kopka J, Mittendorf V, Nawrath C, Poirier Y, Tischendorf G, Trethewey RN, Willmitzer L. Transgenic Arabidopsis plants can accumulate polyhydroxybutyrate to up to 4% of their fresh weight. Planta. 2000 Nov;211(6):841–845. [PubMed]
  • Poirier Y, Somerville C, Schechtman LA, Satkowski MM, Noda I. Synthesis of high-molecular-weight poly([R]-(-)-3-hydroxybutyrate) in transgenic Arabidopsis thaliana plant cells. Int J Biol Macromol. 1995 Feb;17(1):7–12. [PubMed]
  • Williams MD, Fieno AM, Grant RA, Sherman DH. Expression and analysis of a bacterial poly(hydroxyalkanoate) synthase in insect cells using a baculovirus system. Protein Expr Purif. 1996 Mar;7(2):203–211. [PubMed]
  • Ollis DL, Cheah E, Cygler M, Dijkstra B, Frolow F, Franken SM, Harel M, Remington SJ, Silman I, Schrag J, et al. The alpha/beta hydrolase fold. Protein Eng. 1992 Apr;5(3):197–211. [PubMed]
  • Schrag JD, Cygler M. Lipases and alpha/beta hydrolase fold. Methods Enzymol. 1997;284:85–107. [PubMed]
  • Lawson DM, Derewenda U, Serre L, Ferri S, Szittner R, Wei Y, Meighen EA, Derewenda ZS. Structure of a myristoyl-ACP-specific thioesterase from Vibrio harveyi. Biochemistry. 1994 Aug 16;33(32):9382–9388. [PubMed]
  • Pathak D, Ollis D. Refined structure of dienelactone hydrolase at 1.8 A. J Mol Biol. 1990 Jul 20;214(2):497–525. [PubMed]
  • Pletnev Vladimir, Addlagatta Anthony, Wawrzak Zdzislaw, Duax William. Three-dimensional structure of homodimeric cholesterol esterase-ligand complex at 1.4 A resolution. Acta Crystallogr D Biol Crystallogr. 2003 Jan;59(Pt 1):50–56. [PubMed]
  • Noble ME, Cleasby A, Johnson LN, Egmond MR, Frenken LG. The crystal structure of triacylglycerol lipase from Pseudomonas glumae reveals a partially redundant catalytic aspartate. FEBS Lett. 1993 Sep 27;331(1-2):123–128. [PubMed]
  • Cygler M, Schrag JD. Structure as basis for understanding interfacial properties of lipases. Methods Enzymol. 1997;284:3–27. [PubMed]
  • Schrag JD, Li Y, Cygler M, Lang D, Burgdorf T, Hecht HJ, Schmid R, Schomburg D, Rydel TJ, Oliver JD, et al. The open conformation of a Pseudomonas lipase. Structure. 1997 Feb 15;5(2):187–202. [PubMed]
  • Steinbuchel A, Aerts K, Babel W, Follner C, Liebergesell M, Madkour MH, Mayer F, Pieper-Furst U, Pries A, Valentin HE, et al. Considerations on the structure and biochemistry of bacterial polyhydroxyalkanoic acid inclusions. Can J Microbiol. 1995;41 (Suppl 1):94–105. [PubMed]
  • Gerngross TU, Martin DP. Enzyme-catalyzed synthesis of poly[(R)-(-)-3-hydroxybutyrate]: formation of macroscopic granules in vitro. Proc Natl Acad Sci U S A. 1995 Jul 3;92(14):6279–6283. [PMC free article] [PubMed]
  • Amara AA, Steinbüchel A, Rehm BHA. In vivo evolution of the Aeromonas punctata polyhydroxyalkanoate (PHA) synthase: isolation and characterization of modified PHA synthases with enhanced activity. Appl Microbiol Biotechnol. 2002 Aug;59(4-5):477–482. [PubMed]
  • Kichise Tomoyasu, Taguchi Seiichi, Doi Yoshiharu. Enhanced accumulation and changed monomer composition in polyhydroxyalkanoate (PHA) copolyester by in vitro evolution of Aeromonas caviae PHA synthase. Appl Environ Microbiol. 2002 May;68(5):2411–2419. [PMC free article] [PubMed]
  • Taguchi Seiichi, Nakamura Hirofumi, Hiraishi Tomohiro, Yamato Ichiro, Doi Yoshiharu. In vitro evolution of a polyhydroxybutyrate synthase by intragenic suppression-type mutagenesis. J Biochem. 2002 Jun;131(6):801–806. [PubMed]
  • Qi Q, Rehm BH, Steinbüchel A. Synthesis of poly(3-hydroxyalkanoates) in Escherichia coli expressing the PHA synthase gene phaC2 from Pseudomonas aeruginosa: comparison of PhaC1 and PhaC2. FEMS Microbiol Lett. 1997 Dec 1;157(1):155–162. [PubMed]
  • Qi Q, Steinbüchel A, Rehm BH. Metabolic routing towards polyhydroxyalkanoic acid synthesis in recombinant Escherichia coli (fadR): inhibition of fatty acid beta-oxidation by acrylic acid. FEMS Microbiol Lett. 1998 Oct 1;167(1):89–94. [PubMed]
  • Langenbach S, Rehm BH, Steinbüchel A. Functional expression of the PHA synthase gene phaC1 from Pseudomonas aeruginosa in Escherichia coli results in poly(3-hydroxyalkanoate) synthesis. FEMS Microbiol Lett. 1997 May 15;150(2):303–309. [PubMed]
  • Gerngross TU, Reilly P, Stubbe J, Sinskey AJ, Peoples OP. Immunocytochemical analysis of poly-beta-hydroxybutyrate (PHB) synthase in Alcaligenes eutrophus H16: localization of the synthase enzyme at the surface of PHB granules. J Bacteriol. 1993 Aug;175(16):5289–5293. [PMC free article] [PubMed]
  • Stuart ES, Tehrani A, Valentin HE, Dennis D, Lenz RW, Fuller RC. Protein organization on the PHA inclusion cytoplasmic boundary. J Biotechnol. 1998 Oct 8;64(2-3):137–144. [PubMed]
  • Valentin HE, Stuart ES, Fuller RC, Lenz RW, Dennis D. Investigation of the function of proteins associated to polyhydroxyalkanoate inclusions in Pseudomonas putida BMO1. J Biotechnol. 1998 Oct 8;64(2-3):145–157. [PubMed]
  • York Gregory M, Lupberger Joachim, Tian Jiamin, Lawrence Adam G, Stubbe JoAnne, Sinskey Anthony J. Ralstonia eutropha H16 encodes two and possibly three intracellular Poly[D-(-)-3-hydroxybutyrate] depolymerase genes. J Bacteriol. 2003 Jul;185(13):3788–3794. [PMC free article] [PubMed]
  • Saegusa H, Shiraki M, Kanai C, Saito T. Cloning of an intracellular Poly[D(-)-3-Hydroxybutyrate] depolymerase gene from Ralstonia eutropha H16 and characterization of the gene product. J Bacteriol. 2001 Jan;183(1):94–100. [PMC free article] [PubMed]
  • Handrick R, Reinhardt S, Jendrossek D. Mobilization of poly(3-hydroxybutyrate) in Ralstonia eutropha. J Bacteriol. 2000 Oct;182(20):5916–5918. [PMC free article] [PubMed]
  • Jurasek L, Marchessault RH. The role of phasins in the morphogenesis of poly(3-hydroxybutyrate) granules. Biomacromolecules. 2002 Mar-Apr;3(2):256–261. [PubMed]
  • Pieper-Fürst U, Madkour MH, Mayer F, Steinbüchel A. Identification of the region of a 14-kilodalton protein of Rhodococcus ruber that is responsible for the binding of this phasin to polyhydroxyalkanoic acid granules. J Bacteriol. 1995 May;177(9):2513–2523. [PMC free article] [PubMed]
  • Wieczorek R, Steinbüchel A, Schmidt B. Occurrence of polyhydroxyalkanoic acid granule-associated proteins related to the Alcaligenes eutrophus H16 GA24 protein in other bacteria. FEMS Microbiol Lett. 1996 Jan 1;135(1):23–30. [PubMed]
  • York GM, Junker BH, Stubbe JA, Sinskey AJ. Accumulation of the PhaP phasin of Ralstonia eutropha is dependent on production of polyhydroxybutyrate in cells. J Bacteriol. 2001 Jul;183(14):4217–4226. [PMC free article] [PubMed]
  • York GM, Stubbe J, Sinskey AJ. New insight into the role of the PhaP phasin of Ralstonia eutropha in promoting synthesis of polyhydroxybutyrate. J Bacteriol. 2001 Apr;183(7):2394–2397. [PMC free article] [PubMed]
  • Pötter Markus, Madkour Mohamed H, Mayer Frank, Steinbüchel Alexander. Regulation of phasin expression and polyhydroxyalkanoate (PHA) granule formation in Ralstonia eutropha H16. Microbiology. 2002 Aug;148(Pt 8):2413–2426. [PubMed]
  • York Gregory M, Stubbe JoAnne, Sinskey Anthony J. The Ralstonia eutropha PhaR protein couples synthesis of the PhaP phasin to the presence of polyhydroxybutyrate in cells and promotes polyhydroxybutyrate production. J Bacteriol. 2002 Jan;184(1):59–66. [PMC free article] [PubMed]
  • Maehara Akira, Taguchi Seiichi, Nishiyama Tatsuaki, Yamane Tsuneo, Doi Yoshiharu. A repressor protein, PhaR, regulates polyhydroxyalkanoate (PHA) synthesis via its direct interaction with PHA. J Bacteriol. 2002 Jul;184(14):3992–4002. [PMC free article] [PubMed]
  • Prieto MA, Bühler B, Jung K, Witholt B, Kessler B. PhaF, a polyhydroxyalkanoate-granule-associated protein of Pseudomonas oleovorans GPo1 involved in the regulatory expression system for pha genes. J Bacteriol. 1999 Feb;181(3):858–868. [PMC free article] [PubMed]
  • Klinke S, de Roo G, Witholt B, Kessler B. Role of phaD in accumulation of medium-chain-length Poly(3-hydroxyalkanoates) in Pseudomonas oleovorans. Appl Environ Microbiol. 2000 Sep;66(9):3705–3710. [PMC free article] [PubMed]
  • Wieczorek R, Pries A, Steinbüchel A, Mayer F. Analysis of a 24-kilodalton protein associated with the polyhydroxyalkanoic acid granules in Alcaligenes eutrophus. J Bacteriol. 1995 May;177(9):2425–2435. [PMC free article] [PubMed]
  • Kessler B, Witholt B. Factors involved in the regulatory network of polyhydroxyalkanoate metabolism. J Biotechnol. 2001 Mar 30;86(2):97–104. [PubMed]
  • Hoppert M, Mayer F. Principles of macromolecular organization and cell function in bacteria and archaea. Cell Biochem Biophys. 1999;31(3):247–284. [PubMed]
  • Barnard GN, Sanders JK. The poly-beta-hydroxybutyrate granule in vivo. A new insight based on NMR spectroscopy of whole cells. J Biol Chem. 1989 Feb 25;264(6):3286–3291. [PubMed]
  • Qi Q, Steinbüchel A, Rehm BH. In vitro synthesis of poly(3-hydroxydecanoate): purification and enzymatic characterization of type II polyhydroxyalkanoate synthases PhaC1 and PhaC2 from Pseudomonas aeruginosa. Appl Microbiol Biotechnol. 2000 Jul;54(1):37–43. [PubMed]
  • Ren Q, De Roo G, Kessler B, Witholt B. Recovery of active medium-chain-length-poly-3-hydroxyalkanoate polymerase from inactive inclusion bodies using ion-exchange resin. Biochem J. 2000 Jul 15;349(Pt 2):599–604. [PMC free article] [PubMed]
  • Sim SJ, Snell KD, Hogan SA, Stubbe J, Rha C, Sinskey AJ. PHA synthase activity controls the molecular weight and polydispersity of polyhydroxybutyrate in vivo. Nat Biotechnol. 1997 Jan;15(1):63–67. [PubMed]
  • Jossek R, Reichelt R, Steinbüchel A. In vitro biosynthesis of poly(3-hydroxybutyric acid) by using purified poly(hydroxyalkanoic acid) synthase of Chromatium vinosum. Appl Microbiol Biotechnol. 1998 Mar;49(3):258–266. [PubMed]
  • Jossek R, Steinbüchel A. In vitro synthesis of poly(3-hydroxybutyric acid) by using an enzymatic coenzyme A recycling system. FEMS Microbiol Lett. 1998 Nov 15;168(2):319–324. [PubMed]
  • Liu SJ, Steinbüchel A. Exploitation of butyrate kinase and phosphotransbutyrylase from Clostridium acetobutylicum for the in vitro biosynthesis of poly(hydroxyalkanoic acid). Appl Microbiol Biotechnol. 2000 May;53(5):545–552. [PubMed]
  • Liu SJ, Steinbüchel A. A novel genetically engineered pathway for synthesis of poly(hydroxyalkanoic acids) in Escherichia coli. Appl Environ Microbiol. 2000 Feb;66(2):739–743. [PMC free article] [PubMed]
  • Rehm BH, Krüger N, Steinbüchel A. A new metabolic link between fatty acid de novo synthesis and polyhydroxyalkanoic acid synthesis. The PHAG gene from Pseudomonas putida KT2440 encodes a 3-hydroxyacyl-acyl carrier protein-coenzyme a transferase. J Biol Chem. 1998 Sep 11;273(37):24044–24051. [PubMed]
  • Kraak MN, Smits TH, Kessler B, Witholt B. Polymerase C1 levels and poly(R-3-hydroxyalkanoate) synthesis in wild-type and recombinant Pseudomonas strains. J Bacteriol. 1997 Aug;179(16):4985–4991. [PMC free article] [PubMed]
  • Jaeger KE, Steinbüchel A, Jendrossek D. Substrate specificities of bacterial polyhydroxyalkanoate depolymerases and lipases: bacterial lipases hydrolyze poly(omega-hydroxyalkanoates). Appl Environ Microbiol. 1995 Aug;61(8):3113–3118. [PMC free article] [PubMed]
  • Kusaka S, Abe H, Lee SY, Doi Y. Molecular mass of poly[(R)-3-hydroxybutyric acid] produced in a recombinant Escherichia coli. Appl Microbiol Biotechnol. 1997 Feb;47(2):140–143. [PubMed]
  • Williams SF, Martin DP, Horowitz DM, Peoples OP. PHA applications: addressing the price performance issue: I. Tissue engineering. Int J Biol Macromol. 1999 Jun-Jul;25(1-3):111–121. [PubMed]
  • Lee SY, Choi J, Wong HH. Recent advances in polyhydroxyalkanoate production by bacterial fermentation: mini-review. Int J Biol Macromol. 1999 Jun-Jul;25(1-3):31–36. [PubMed]
  • Chen GQ, Zhang G, Park SJ, Lee SY. Industrial scale production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate). Appl Microbiol Biotechnol. 2001 Oct;57(1-2):50–55. [PubMed]
  • Steinbüchel A, Füchtenbusch B. Bacterial and other biological systems for polyester production. Trends Biotechnol. 1998 Oct;16(10):419–427. [PubMed]
  • Hoffmann Nils, Amara Amro A, Beermann Br Bernd, Qi Qingsheng, Hinz Hans-Jurgen, Rehm Bernd H A. Biochemical characterization of the Pseudomonas putida 3-hydroxyacyl ACP:CoA transacylase, which diverts intermediates of fatty acid de novo biosynthesis. J Biol Chem. 2002 Nov 8;277(45):42926–42936. [PubMed]
  • Hoffmann N, Steinbüchel A, Rehm BH. Homologous functional expression of cryptic phaG from Pseudomonas oleovorans establishes the transacylase-mediated polyhydroxyalkanoate biosynthetic pathway. Appl Microbiol Biotechnol. 2000 Nov;54(5):665–670. [PubMed]
  • Hoffmann N, Steinbüchel A, Rehm BH. The Pseudomonas aeruginosa phaG gene product is involved in the synthesis of polyhydroxyalkanoic acid consisting of medium-chain-length constituents from non-related carbon sources. FEMS Microbiol Lett. 2000 Mar 15;184(2):253–259. [PubMed]
  • Fukui T, Shiomi N, Doi Y. Expression and characterization of (R)-specific enoyl coenzyme A hydratase involved in polyhydroxyalkanoate biosynthesis by Aeromonas caviae. J Bacteriol. 1998 Feb;180(3):667–673. [PMC free article] [PubMed]
  • Hisano Tamao, Tsuge Takeharu, Fukui Toshiaki, Iwata Tadahisa, Miki Kunio, Doi Yoshiharu. Crystal structure of the (R)-specific enoyl-CoA hydratase from Aeromonas caviae involved in polyhydroxyalkanoate biosynthesis. J Biol Chem. 2003 Jan 3;278(1):617–624. [PubMed]
  • Tsuge Takeharu, Taguchi Kazunori, Seiichi Taguchi, Doi Yoshiharu. Molecular characterization and properties of (R)-specific enoyl-CoA hydratases from Pseudomonas aeruginosa: metabolic tools for synthesis of polyhydroxyalkanoates via fatty acid beta-oxidation. Int J Biol Macromol. 2003 Jan 15;31(4-5):195–205. [PubMed]
  • Matsumoto K, Matsusaki H, Taguchi S, Seki M, Doi Y. Cloning and characterization of the Pseudomonas sp. 61-3 phaG gene involved in polyhydroxyalkanoate biosynthesis. Biomacromolecules. 2001 Spring;2(1):142–147. [PubMed]
  • Fiedler S, Steinbüchel A, Rehm BH. PhaG-mediated synthesis of Poly(3-hydroxyalkanoates) consisting of medium-chain-length constituents from nonrelated carbon sources in recombinant Pseudomonas fragi. Appl Environ Microbiol. 2000 May;66(5):2117–2124. [PMC free article] [PubMed]
  • Fukui T, Yokomizo S, Kobayashi G, Doi Y. Co-expression of polyhydroxyalkanoate synthase and (R)-enoyl-CoA hydratase genes of Aeromonas caviae establishes copolyester biosynthesis pathway in Escherichia coli. FEMS Microbiol Lett. 1999 Jan 1;170(1):69–75. [PubMed]
  • Rehm BH, Mitsky TA, Steinbüchel A. Role of fatty acid de novo biosynthesis in polyhydroxyalkanoic acid (PHA) and rhamnolipid synthesis by pseudomonads: establishment of the transacylase (PhaG)-mediated pathway for PHA biosynthesis in Escherichia coli. Appl Environ Microbiol. 2001 Jul;67(7):3102–3109. [PMC free article] [PubMed]
  • Fiedler Silke, Steinbüchel Alexander, Rehm Bernd H A. The role of the fatty acid beta-oxidation multienzyme complex from Pseudomonas oleovorans in polyhydroxyalkanoate biosynthesis: molecular characterization of the fadBA operon from P. oleovorans and of the enoyl-CoA hydratase genes phaJ from P. oleovorans and Pseudomonas putida. Arch Microbiol. 2002 Aug;178(2):149–160. [PubMed]
  • Matsumoto K, Nakae S, Taguchi K, Matsusaki H, Seki M, Doi Y. Biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyalkanoates) copolymer from sugars by recombinant Ralstonia eutropha harboring the phaC1Ps and the phaGPs genes of Pseudomonas sp. 61-3. Biomacromolecules. 2001 Fall;2(3):934–939. [PubMed]
  • Green Phillip R, Kemper Joe, Schechtman Lee, Guo Ling, Satkowski Mike, Fiedler Silke, Steinbüchel Alexander, Rehm Bernd H A. Formation of short chain length/medium chain length polyhydroxyalkanoate copolymers by fatty acid beta-oxidation inhibited Ralstonia eutropha. Biomacromolecules. 2002 Jan-Feb;3(1):208–213. [PubMed]
  • Gao Hai Jun, Wu Qiong, Chen Guo Qiang. Enhanced production of D-(-)-3-hydroxybutyric acid by recombinant Escherichia coli. FEMS Microbiol Lett. 2002 Jul 16;213(1):59–65. [PubMed]
  • Lee SY, Lee Y, Wang F. Chiral compounds from bacterial polyesters: sugars to plastics to fine chemicals. Biotechnol Bioeng. 1999 Nov 5;65(3):363–368. [PubMed]
  • de Roo Guy, Kellerhals Michele B, Ren Qun, Witholt Bernard, Kessler Birgit. Production of chiral R-3-hydroxyalkanoic acids and R-3-hydroxyalkanoic acid methylesters via hydrolytic degradation of polyhydroxyalkanoate synthesized by pseudomonads. Biotechnol Bioeng. 2002 Mar 20;77(6):717–722. [PubMed]
  • van Wegen RJ, Lee SY, Middelberg AP. Metabolic and kinetic analysis of poly(3-hydroxybutyrate) production by recombinant Escherichia coli. Biotechnol Bioeng. 2001 Jul 5;74(1):70–80. [PubMed]
  • Park Si Jae, Park Jong Pil, Lee Sang Yup. Metabolic engineering of Escherichia coli for the production of medium-chain-length polyhydroxyalkanoates rich in specific monomers. FEMS Microbiol Lett. 2002 Sep 10;214(2):217–222. [PubMed]
  • Madison LL, Huisman GW. Metabolic engineering of poly(3-hydroxyalkanoates): from DNA to plastic. Microbiol Mol Biol Rev. 1999 Mar;63(1):21–53. [PMC free article] [PubMed]
  • Spiekermann P, Rehm BH, Kalscheuer R, Baumeister D, Steinbüchel A. A sensitive, viable-colony staining method using Nile red for direct screening of bacteria that accumulate polyhydroxyalkanoic acids and other lipid storage compounds. Arch Microbiol. 1999 Jan;171(2):73–80. [PubMed]
  • Poirier Y. Production of polyesters in transgenic plants. Adv Biochem Eng Biotechnol. 2001;71:209–240. [PubMed]
  • Feng DF, Doolittle RF. Progressive sequence alignment as a prerequisite to correct phylogenetic trees. J Mol Evol. 1987;25(4):351–360. [PubMed]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

Formats:

Related citations in PubMed

Cited by other articles in PMC

See all...

Links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...