• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of biochemjBJ Latest papers and much more!
Biochem J. Nov 1, 2003; 375(Pt 3): 517–529.
PMCID: PMC1223734

Regulation and organization of adenylyl cyclases and cAMP.

Abstract

Adenylyl cyclases are a critically important family of multiply regulated signalling molecules. Their susceptibility to many modes of regulation allows them to integrate the activities of a variety of signalling pathways. However, this property brings with it the problem of imparting specificity and discrimination. Recent studies are revealing the range of strategies utilized by the cyclases to solve this problem. Microdomains are a consequence of these solutions, in which cAMP dynamics may differ from the broad cytosol. Currently evolving methodologies are beginning to reveal cAMP fluctuations in these various compartments.

Full Text

The Full Text of this article is available as a PDF (281K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Tang WJ, Yan S, Drum CL. Class III adenylyl cyclases: regulation and underlying mechanisms. Adv Second Messenger Phosphoprotein Res. 1998;32:137–151. [PubMed]
  • Iseki Mineo, Matsunaga Shigeru, Murakami Akio, Ohno Kaoru, Shiga Kiyoshi, Yoshida Kazuichi, Sugai Michizo, Takahashi Tetsuo, Hori Terumitsu, Watanabe Masakatsu. A blue-light-activated adenylyl cyclase mediates photoavoidance in Euglena gracilis. Nature. 2002 Feb 28;415(6875):1047–1051. [PubMed]
  • Sunahara RK, Dessauer CW, Gilman AG. Complexity and diversity of mammalian adenylyl cyclases. Annu Rev Pharmacol Toxicol. 1996;36:461–480. [PubMed]
  • Houslay MD, Milligan G. Tailoring cAMP-signalling responses through isoform multiplicity. Trends Biochem Sci. 1997 Jun;22(6):217–224. [PubMed]
  • Conti Marco, Richter Wito, Mehats Celine, Livera Gabriel, Park Jy-Young, Jin Catherine. Cyclic AMP-specific PDE4 phosphodiesterases as critical components of cyclic AMP signaling. J Biol Chem. 2003 Feb 21;278(8):5493–5496. [PubMed]
  • Michel Jennifer J Carlisle, Scott John D. AKAP mediated signal transduction. Annu Rev Pharmacol Toxicol. 2002;42:235–257. [PubMed]
  • Li Y, Ndubuka C, Rubin CS. A kinase anchor protein 75 targets regulatory (RII) subunits of cAMP-dependent protein kinase II to the cortical actin cytoskeleton in non-neuronal cells. J Biol Chem. 1996 Jul 12;271(28):16862–16869. [PubMed]
  • Krupinski J, Coussen F, Bakalyar HA, Tang WJ, Feinstein PG, Orth K, Slaughter C, Reed RR, Gilman AG. Adenylyl cyclase amino acid sequence: possible channel- or transporter-like structure. Science. 1989 Jun 30;244(4912):1558–1564. [PubMed]
  • Chen Y, Cann MJ, Litvin TN, Iourgenko V, Sinclair ML, Levin LR, Buck J. Soluble adenylyl cyclase as an evolutionarily conserved bicarbonate sensor. Science. 2000 Jul 28;289(5479):625–628. [PubMed]
  • Gaudin C, Homcy CJ, Ishikawa Y. Mammalian adenylyl cyclase family members are randomly located on different chromosomes. Hum Genet. 1994 Nov;94(5):527–529. [PubMed]
  • Edelhoff S, Villacres EC, Storm DR, Disteche CM. Mapping of adenylyl cyclase genes type I, II, III, IV, V, and VI in mouse. Mamm Genome. 1995 Feb;6(2):111–113. [PubMed]
  • Hanoune J, Defer N. Regulation and role of adenylyl cyclase isoforms. Annu Rev Pharmacol Toxicol. 2001;41:145–174. [PubMed]
  • Buck J, Sinclair ML, Schapal L, Cann MJ, Levin LR. Cytosolic adenylyl cyclase defines a unique signaling molecule in mammals. Proc Natl Acad Sci U S A. 1999 Jan 5;96(1):79–84. [PMC free article] [PubMed]
  • Mons N, Cooper DM. Adenylate cyclases: critical foci in neuronal signaling. Trends Neurosci. 1995 Dec;18(12):536–542. [PubMed]
  • Mons N, Yoshimura M, Cooper DM. Discrete expression of Ca2+/calmodulin-sensitive and Ca(2+)-insensitive adenylyl cyclases in the rat brain. Synapse. 1993 May;14(1):51–59. [PubMed]
  • Matsuoka I, Suzuki Y, Defer N, Nakanishi H, Hanoune J. Differential expression of type I, II, and V adenylyl cyclase gene in the postnatal developing rat brain. J Neurochem. 1997 Feb;68(2):498–506. [PubMed]
  • Xia Z, Storm DR. Calmodulin-regulated adenylyl cyclases and neuromodulation. Curr Opin Neurobiol. 1997 Jun;7(3):391–396. [PubMed]
  • Tian Y, Laychock SG. Protein kinase C and calcium regulation of adenylyl cyclase in isolated rat pancreatic islets. Diabetes. 2001 Nov;50(11):2505–2513. [PubMed]
  • Watson EL, Jacobson KL, Singh JC, Idzerda R, Ott SM, DiJulio DH, Wong ST, Storm DR. The type 8 adenylyl cyclase is critical for Ca2+ stimulation of cAMP accumulation in mouse parotid acini. J Biol Chem. 2000 May 12;275(19):14691–14699. [PubMed]
  • Mons N, Cooper DM. Selective expression of one Ca(2+)-inhibitable adenylyl cyclase in dopaminergically innervated rat brain regions. Brain Res Mol Brain Res. 1994 Mar;22(1-4):236–244. [PubMed]
  • Ishikawa Y, Katsushika S, Chen L, Halnon NJ, Kawabe J, Homcy CJ. Isolation and characterization of a novel cardiac adenylylcyclase cDNA. J Biol Chem. 1992 Jul 5;267(19):13553–13557. [PubMed]
  • Ishikawa Y, Homcy CJ. The adenylyl cyclases as integrators of transmembrane signal transduction. Circ Res. 1997 Mar;80(3):297–304. [PubMed]
  • Gilman AG. Regulation of adenylyl cyclase by G proteins. Adv Second Messenger Phosphoprotein Res. 1990;24:51–57. [PubMed]
  • Birnbaumer L. Transduction of receptor signal into modulation of effector activity by G proteins: the first 20 years or so .... FASEB J. 1990 Nov;4(14):3178–3188. [PubMed]
  • Taussig R, Quarmby LM, Gilman AG. Regulation of purified type I and type II adenylylcyclases by G protein beta gamma subunits. J Biol Chem. 1993 Jan 5;268(1):9–12. [PubMed]
  • Taussig R, Gilman AG. Mammalian membrane-bound adenylyl cyclases. J Biol Chem. 1995 Jan 6;270(1):1–4. [PubMed]
  • Taussig R, Tang WJ, Hepler JR, Gilman AG. Distinct patterns of bidirectional regulation of mammalian adenylyl cyclases. J Biol Chem. 1994 Feb 25;269(8):6093–6100. [PubMed]
  • Lindorfer MA, Myung CS, Savino Y, Yasuda H, Khazan R, Garrison JC. Differential activity of the G protein beta5 gamma2 subunit at receptors and effectors. J Biol Chem. 1998 Dec 18;273(51):34429–34436. [PubMed]
  • Myung CS, Garrison JC. Role of C-terminal domains of the G protein beta subunit in the activation of effectors. Proc Natl Acad Sci U S A. 2000 Aug 1;97(16):9311–9316. [PMC free article] [PubMed]
  • Régnauld Karine L, Leteurtre Emmanuelle, Gutkind Silvio J, Gespach Christian P, Emami Shahin. Activation of adenylyl cyclases, regulation of insulin status, and cell survival by G(alpha)olf in pancreatic beta-cells. Am J Physiol Regul Integr Comp Physiol. 2002 Mar;282(3):R870–R880. [PubMed]
  • Skolnick P, Daly JW. Stimulation of adenosine 3',5'-monophosphate formation by alpha and beta adrenergic agonists in rat cerebral cortical slices: effects of clonidine. Mol Pharmacol. 1975 Sep;11(5):545–551. [PubMed]
  • Olianas MC, Ingianni A, Onali P. Role of G protein betagamma subunits in muscarinic receptor-induced stimulation and inhibition of adenylyl cyclase activity in rat olfactory bulb. J Neurochem. 1998 Jun;70(6):2620–2627. [PubMed]
  • Yoshimura M, Ikeda H, Tabakoff B. mu-Opioid receptors inhibit dopamine-stimulated activity of type V adenylyl cyclase but enhance dopamine-stimulated activity of type VII adenylyl cyclase. Mol Pharmacol. 1996 Jul;50(1):43–51. [PubMed]
  • Corvol JC, Studler JM, Schonn JS, Girault JA, Hervé D. Galpha(olf) is necessary for coupling D1 and A2a receptors to adenylyl cyclase in the striatum. J Neurochem. 2001 Mar;76(5):1585–1588. [PubMed]
  • Caldwell KK, Boyajian CL, Cooper DM. The effects of Ca2+ and calmodulin on adenylyl cyclase activity in plasma membranes derived from neural and non-neural cells. Cell Calcium. 1992 Feb;13(2):107–121. [PubMed]
  • Bakalyar HA, Reed RR. Identification of a specialized adenylyl cyclase that may mediate odorant detection. Science. 1990 Dec 7;250(4986):1403–1406. [PubMed]
  • Cali JJ, Zwaagstra JC, Mons N, Cooper DM, Krupinski J. Type VIII adenylyl cyclase. A Ca2+/calmodulin-stimulated enzyme expressed in discrete regions of rat brain. J Biol Chem. 1994 Apr 22;269(16):12190–12195. [PubMed]
  • Fagan KA, Mahey R, Cooper DM. Functional co-localization of transfected Ca(2+)-stimulable adenylyl cyclases with capacitative Ca2+ entry sites. J Biol Chem. 1996 May 24;271(21):12438–12444. [PubMed]
  • Choi EJ, Xia Z, Storm DR. Stimulation of the type III olfactory adenylyl cyclase by calcium and calmodulin. Biochemistry. 1992 Jul 21;31(28):6492–6498. [PubMed]
  • Guillou JL, Nakata H, Cooper DM. Inhibition by calcium of mammalian adenylyl cyclases. J Biol Chem. 1999 Dec 10;274(50):35539–35545. [PubMed]
  • Colvin RA, Oibo JA, Allen RA. Calcium inhibition of cardiac adenylyl cyclase. Evidence for two distinct sites of inhibition. Cell Calcium. 1991 Jan;12(1):19–27. [PubMed]
  • Giannattasio G, Bianchi R, Spada A, Vallar L. Effect of calcium on adenylate cyclase of rat anterior pituitary gland. Endocrinology. 1987 Jun;120(6):2611–2619. [PubMed]
  • Rodan SB, Golub EE, Egan JJ, Rodan GA. Comparison of bone and osteosarcoma adenylate cyclase. Effects of Mg2+, Ca2+, ATP4- and HATP3- in the assay mixture. Biochem J. 1980 Mar 1;185(3):629–637. [PMC free article] [PubMed]
  • Cooper DM, Mons N, Karpen JW. Adenylyl cyclases and the interaction between calcium and cAMP signalling. Nature. 1995 Mar 30;374(6521):421–424. [PubMed]
  • Boyajian CL, Garritsen A, Cooper DM. Bradykinin stimulates Ca2+ mobilization in NCB-20 cells leading to direct inhibition of adenylylcyclase. A novel mechanism for inhibition of cAMP production. J Biol Chem. 1991 Mar 15;266(8):4995–5003. [PubMed]
  • Garritsen A, Zhang Y, Firestone JA, Browning MD, Cooper DM. Inhibition of cyclic AMP accumulation in intact NCB-20 cells as a direct result of elevation of cytosolic Ca2+. J Neurochem. 1992 Nov;59(5):1630–1639. [PubMed]
  • Harden TK, Evans T, Hepler JR, Hughes AR, Martin MW, Meeker RB, Smith MM, Tanner LI. Regulation of cyclic AMP metabolism by muscarinic cholinergic receptors. Adv Cyclic Nucleotide Protein Phosphorylation Res. 1985;19:207–220. [PubMed]
  • Lin WW, Chuang DM. Endothelin- and ATP-induced inhibition of adenylyl cyclase activity in C6 glioma cells: role of Gi and calcium. Mol Pharmacol. 1993 Jul;44(1):158–165. [PubMed]
  • Altiok N, Fredholm BB. Bradykinin inhibits cyclic AMP accumulation in D384-human astrocytoma cells via a calcium-dependent inhibition of adenylyl cyclase. Cell Signal. 1993 May;5(3):279–288. [PubMed]
  • Chabardès D, Imbert-Teboul M, Elalouf JM. Functional properties of Ca2+-inhibitable type 5 and type 6 adenylyl cyclases and role of Ca2+ increase in the inhibition of intracellular cAMP content. Cell Signal. 1999 Sep;11(9):651–663. [PubMed]
  • Burnay MM, Vallotton MB, Capponi AM, Rossier MF. Angiotensin II potentiates adrenocorticotrophic hormone-induced cAMP formation in bovine adrenal glomerulosa cells through a capacitative calcium influx. Biochem J. 1998 Feb 15;330(Pt 1):21–27. [PMC free article] [PubMed]
  • Watson EL, Wu Z, Jacobson KL, Storm DR, Singh JC, Ott SM. Capacitative Ca2+ entry is involved in cAMP synthesis in mouse parotid acini. Am J Physiol. 1998 Mar;274(3 Pt 1):C557–C565. [PubMed]
  • Chetkovich DM, Sweatt JD. nMDA receptor activation increases cyclic AMP in area CA1 of the hippocampus via calcium/calmodulin stimulation of adenylyl cyclase. J Neurochem. 1993 Nov;61(5):1933–1942. [PubMed]
  • Yu HJ, Ma H, Green RD. Calcium entry via L-type calcium channels acts as a negative regulator of adenylyl cyclase activity and cyclic AMP levels in cardiac myocytes. Mol Pharmacol. 1993 Oct;44(4):689–693. [PubMed]
  • Cioffi Donna L, Moore Timothy M, Schaack Jerry, Creighton Judy R, Cooper Dermot M F, Stevens Troy. Dominant regulation of interendothelial cell gap formation by calcium-inhibited type 6 adenylyl cyclase. J Cell Biol. 2002 Jun 24;157(7):1267–1278. [PMC free article] [PubMed]
  • Chiono M, Mahey R, Tate G, Cooper DM. Capacitative Ca2+ entry exclusively inhibits cAMP synthesis in C6-2B glioma cells. Evidence that physiologically evoked Ca2+ entry regulates Ca(2+)-inhibitable adenylyl cyclase in non-excitable cells. J Biol Chem. 1995 Jan 20;270(3):1149–1155. [PubMed]
  • Cooper DM, Yoshimura M, Zhang Y, Chiono M, Mahey R. Capacitative Ca2+ entry regulates Ca(2+)-sensitive adenylyl cyclases. Biochem J. 1994 Feb 1;297(Pt 3):437–440. [PMC free article] [PubMed]
  • Fagan KA, Mons N, Cooper DM. Dependence of the Ca2+-inhibitable adenylyl cyclase of C6-2B glioma cells on capacitative Ca2+ entry. J Biol Chem. 1998 Apr 10;273(15):9297–9305. [PubMed]
  • Shuttleworth TJ, Thompson JL. Discriminating between capacitative and arachidonate-activated Ca(2+) entry pathways in HEK293 cells. J Biol Chem. 1999 Oct 29;274(44):31174–31178. [PubMed]
  • Murthy KS, Makhlouf GM. Regulation of adenylyl cyclase type V/VI in smooth muscle: interplay of inhibitory G protein and Ca2+ influx. Mol Pharmacol. 1998 Jul;54(1):122–128. [PubMed]
  • Nakahashi Y, Nelson E, Fagan K, Gonzales E, Guillou JL, Cooper DM. Construction of a full-length Ca2+-sensitive adenylyl cyclase/aequorin chimera. J Biol Chem. 1997 Jul 18;272(29):18093–18097. [PubMed]
  • Gu C, Cooper DM. Ca(2+), Sr(2+), and Ba(2+) identify distinct regulatory sites on adenylyl cyclase (AC) types VI and VIII and consolidate the apposition of capacitative cation entry channels and Ca(2+)-sensitive ACs. J Biol Chem. 2000 Mar 10;275(10):6980–6986. [PubMed]
  • Yoshimura M, Cooper DM. Type-specific stimulation of adenylylcyclase by protein kinase C. J Biol Chem. 1993 Mar 5;268(7):4604–4607. [PubMed]
  • Jacobowitz O, Iyengar R. Phorbol ester-induced stimulation and phosphorylation of adenylyl cyclase 2. Proc Natl Acad Sci U S A. 1994 Oct 25;91(22):10630–10634. [PMC free article] [PubMed]
  • Levin LR, Reed RR. Identification of functional domains of adenylyl cyclase using in vivo chimeras. J Biol Chem. 1995 Mar 31;270(13):7573–7579. [PubMed]
  • Suh BC, Kim TD, Lee IS, Kim KT. Differential regulation of P2Y(11) receptor-mediated signalling to phospholipase C and adenylyl cyclase by protein kinase C in HL-60 promyelocytes. Br J Pharmacol. 2000 Oct;131(3):489–497. [PMC free article] [PubMed]
  • Nelson Eric J, Hellevuo Kaisa, Yoshimura Masami, Tabakoff Boris. Ethanol-induced phosphorylation and potentiation of the activity of type 7 adenylyl cyclase. Involvement of protein kinase C delta. J Biol Chem. 2003 Feb 14;278(7):4552–4560. [PubMed]
  • Lai HL, Yang TH, Messing RO, Ching YH, Lin SC, Chern Y. Protein kinase C inhibits adenylyl cyclase type VI activity during desensitization of the A2a-adenosine receptor-mediated cAMP response. J Biol Chem. 1997 Feb 21;272(8):4970–4977. [PubMed]
  • Lai HL, Lin TH, Kao YY, Lin WJ, Hwang MJ, Chern Y. The N terminus domain of type VI adenylyl cyclase mediates its inhibition by protein kinase C. Mol Pharmacol. 1999 Sep;56(3):644–650. [PubMed]
  • Lin Ting-Hui, Lai Hsing-Lin, Kao Yu-Ya, Sun Chung-Nan, Hwang Ming-Jing, Chern Yijuang. Protein kinase C inhibits type VI adenylyl cyclase by phosphorylating the regulatory N domain and two catalytic C1 and C2 domains. J Biol Chem. 2002 May 3;277(18):15721–15728. [PubMed]
  • Premont RT, Jacobowitz O, Iyengar R. Lowered responsiveness of the catalyst of adenylyl cyclase to stimulation by GS in heterologous desensitization: a role for adenosine 3',5'-monophosphate-dependent phosphorylation. Endocrinology. 1992 Dec;131(6):2774–2784. [PubMed]
  • Iwami G, Kawabe J, Ebina T, Cannon PJ, Homcy CJ, Ishikawa Y. Regulation of adenylyl cyclase by protein kinase A. J Biol Chem. 1995 May 26;270(21):12481–12484. [PubMed]
  • Nair BG, Patel TB. Regulation of cardiac adenylyl cyclase by epidermal growth factor (EGF). Role of EGF receptor protein tyrosine kinase activity. Biochem Pharmacol. 1993 Oct 5;46(7):1239–1245. [PubMed]
  • Chen Z, Nield HS, Sun H, Barbier A, Patel TB. Expression of type V adenylyl cyclase is required for epidermal growth factor-mediated stimulation of cAMP accumulation. J Biol Chem. 1995 Nov 17;270(46):27525–27530. [PubMed]
  • Tan CM, Kelvin DJ, Litchfield DW, Ferguson SS, Feldman RD. Tyrosine kinase-mediated serine phosphorylation of adenylyl cyclase. Biochemistry. 2001 Feb 13;40(6):1702–1709. [PubMed]
  • Tao YP, Najafi L, Shipley S, Howlett A, Klein C. Effects of nitric oxide on adenylyl cyclase stimulation in N18TG2 neuroblastoma cells. J Pharmacol Exp Ther. 1998 Jul;286(1):298–304. [PubMed]
  • McVey M, Hill J, Howlett A, Klein C. Adenylyl cyclase, a coincidence detector for nitric oxide. J Biol Chem. 1999 Jul 2;274(27):18887–18892. [PubMed]
  • Hill J, Howlett A, Klein C. Nitric oxide selectively inhibits adenylyl cyclase isoforms 5 and 6. Cell Signal. 2000 Apr;12(4):233–237. [PubMed]
  • Duhe RJ, Nielsen MD, Dittman AH, Villacres EC, Choi EJ, Storm DR. Oxidation of critical cysteine residues of type I adenylyl cyclase by o-iodosobenzoate or nitric oxide reversibly inhibits stimulation by calcium and calmodulin. J Biol Chem. 1994 Mar 11;269(10):7290–7296. [PubMed]
  • Klein Claudette. Nitric oxide and the other cyclic nucleotide. Cell Signal. 2002 Jun;14(6):493–498. [PubMed]
  • Antoni FA, Palkovits M, Simpson J, Smith SM, Leitch AL, Rosie R, Fink G, Paterson JM. Ca2+/calcineurin-inhibited adenylyl cyclase, highly abundant in forebrain regions, is important for learning and memory. J Neurosci. 1998 Dec 1;18(23):9650–9661. [PubMed]
  • Paterson JM, Smith SM, Harmar AJ, Antoni FA. Control of a novel adenylyl cyclase by calcineurin. Biochem Biophys Res Commun. 1995 Sep 25;214(3):1000–1008. [PubMed]
  • Antoni FA, Barnard RJ, Shipston MJ, Smith SM, Simpson J, Paterson JM. Calcineurin feedback inhibition of agonist-evoked cAMP formation. J Biol Chem. 1995 Nov 24;270(47):28055–28061. [PubMed]
  • Wayman GA, Impey S, Storm DR. Ca2+ inhibition of type III adenylyl cyclase in vivo. J Biol Chem. 1995 Sep 15;270(37):21480–21486. [PubMed]
  • Wayman GA, Wei J, Wong S, Storm DR. Regulation of type I adenylyl cyclase by calmodulin kinase IV in vivo. Mol Cell Biol. 1996 Nov;16(11):6075–6082. [PMC free article] [PubMed]
  • Wei J, Wayman G, Storm DR. Phosphorylation and inhibition of type III adenylyl cyclase by calmodulin-dependent protein kinase II in vivo. J Biol Chem. 1996 Sep 27;271(39):24231–24235. [PubMed]
  • Schultz JE, Klumpp S, Benz R, Schürhoff-Goeters WJ, Schmid A. Regulation of adenylyl cyclase from Paramecium by an intrinsic potassium conductance. Science. 1992 Jan 31;255(5044):600–603. [PubMed]
  • Reddy R, Smith D, Wayman G, Wu Z, Villacres EC, Storm DR. Voltage-sensitive adenylyl cyclase activity in cultured neurons. A calcium-independent phenomenon. J Biol Chem. 1995 Jun 16;270(24):14340–14346. [PubMed]
  • Cooper DM, Schell MJ, Thorn P, Irvine RF. Regulation of adenylyl cyclase by membrane potential. J Biol Chem. 1998 Oct 16;273(42):27703–27707. [PubMed]
  • Tesmer JJ, Sunahara RK, Gilman AG, Sprang SR. Crystal structure of the catalytic domains of adenylyl cyclase in a complex with Gsalpha.GTPgammaS. Science. 1997 Dec 12;278(5345):1907–1916. [PubMed]
  • Tesmer JJ, Sunahara RK, Johnson RA, Gosselin G, Gilman AG, Sprang SR. Two-metal-Ion catalysis in adenylyl cyclase. Science. 1999 Jul 30;285(5428):756–760. [PubMed]
  • Zhang G, Liu Y, Ruoho AE, Hurley JH. Structure of the adenylyl cyclase catalytic core. Nature. 1997 Mar 20;386(6622):247–253. [PubMed]
  • Zimmermann G, Zhou D, Taussig R. Mutations uncover a role for two magnesium ions in the catalytic mechanism of adenylyl cyclase. J Biol Chem. 1998 Jul 31;273(31):19650–19655. [PubMed]
  • Sunahara RK, Dessauer CW, Whisnant RE, Kleuss C, Gilman AG. Interaction of Gsalpha with the cytosolic domains of mammalian adenylyl cyclase. J Biol Chem. 1997 Aug 29;272(35):22265–22271. [PubMed]
  • Tesmer JJ, Sprang SR. The structure, catalytic mechanism and regulation of adenylyl cyclase. Curr Opin Struct Biol. 1998 Dec;8(6):713–719. [PubMed]
  • Hurley JH. Structure, mechanism, and regulation of mammalian adenylyl cyclase. J Biol Chem. 1999 Mar 19;274(12):7599–7602. [PubMed]
  • Tang WJ, Hurley JH. Catalytic mechanism and regulation of mammalian adenylyl cyclases. Mol Pharmacol. 1998 Aug;54(2):231–240. [PubMed]
  • Hu Biao, Nakata Hiroko, Gu Chen, De Beer Tonny, Cooper Dermot M F. A critical interplay between Ca2+ inhibition and activation by Mg2+ of AC5 revealed by mutants and chimeric constructs. J Biol Chem. 2002 Sep 6;277(36):33139–33147. [PubMed]
  • Vorherr T, Knöpfel L, Hofmann F, Mollner S, Pfeuffer T, Carafoli E. The calmodulin binding domain of nitric oxide synthase and adenylyl cyclase. Biochemistry. 1993 Jun 15;32(23):6081–6088. [PubMed]
  • Wu Z, Wong ST, Storms DR. Modification of the calcium and calmodulin sensitivity of the type I adenylyl cyclase by mutagenesis of its calmodulin binding domain. J Biol Chem. 1993 Nov 15;268(32):23766–23768. [PubMed]
  • Gu C, Cooper DM. Calmodulin-binding sites on adenylyl cyclase type VIII. J Biol Chem. 1999 Mar 19;274(12):8012–8021. [PubMed]
  • Dasgupta M, Honeycutt T, Blumenthal DK. The gamma-subunit of skeletal muscle phosphorylase kinase contains two noncontiguous domains that act in concert to bind calmodulin. J Biol Chem. 1989 Oct 15;264(29):17156–17163. [PubMed]
  • Schlegel W, Kempner ES, Rodbell M. Activation of adenylate cyclase in hepatic membranes involves interactions of the catalytic unit with multimeric complexes of regulatory proteins. J Biol Chem. 1979 Jun 25;254(12):5168–5176. [PubMed]
  • Gu C, Sorkin A, Cooper DM. Persistent interactions between the two transmembrane clusters dictate the targeting and functional assembly of adenylyl cyclase. Curr Biol. 2001 Feb 6;11(3):185–190. [PubMed]
  • Seebacher T, Linder JU, Schultz JE. An isoform-specific interaction of the membrane anchors affects mammalian adenylyl cyclase type V activity. Eur J Biochem. 2001 Jan;268(1):105–110. [PubMed]
  • Gu Chen, Cali James J, Cooper Dermot M F. Dimerization of mammalian adenylate cyclases. Eur J Biochem. 2002 Jan;269(2):413–421. [PubMed]
  • Gao T, Puri TS, Gerhardstein BL, Chien AJ, Green RD, Hosey MM. Identification and subcellular localization of the subunits of L-type calcium channels and adenylyl cyclase in cardiac myocytes. J Biol Chem. 1997 Aug 1;272(31):19401–19407. [PubMed]
  • Singer SJ, Nicolson GL. The fluid mosaic model of the structure of cell membranes. Science. 1972 Feb 18;175(4023):720–731. [PubMed]
  • Shaul PW, Anderson RG. Role of plasmalemmal caveolae in signal transduction. Am J Physiol. 1998 Nov;275(5 Pt 1):L843–L851. [PubMed]
  • Gheber LA, Edidin M. A model for membrane patchiness: lateral diffusion in the presence of barriers and vesicle traffic. Biophys J. 1999 Dec;77(6):3163–3175. [PMC free article] [PubMed]
  • van Deurs Bo, Roepstorff Kirstine, Hommelgaard Anette M, Sandvig Kirsten. Caveolae: anchored, multifunctional platforms in the lipid ocean. Trends Cell Biol. 2003 Feb;13(2):92–100. [PubMed]
  • Simons K, Ikonen E. Functional rafts in cell membranes. Nature. 1997 Jun 5;387(6633):569–572. [PubMed]
  • Simons K, Toomre D. Lipid rafts and signal transduction. Nat Rev Mol Cell Biol. 2000 Oct;1(1):31–39. [PubMed]
  • Gorodinsky A, Harris DA. Glycolipid-anchored proteins in neuroblastoma cells form detergent-resistant complexes without caveolin. J Cell Biol. 1995 May;129(3):619–627. [PMC free article] [PubMed]
  • Huang C, Hepler JR, Chen LT, Gilman AG, Anderson RG, Mumby SM. Organization of G proteins and adenylyl cyclase at the plasma membrane. Mol Biol Cell. 1997 Dec;8(12):2365–2378. [PMC free article] [PubMed]
  • Melkonian KA, Ostermeyer AG, Chen JZ, Roth MG, Brown DA. Role of lipid modifications in targeting proteins to detergent-resistant membrane rafts. Many raft proteins are acylated, while few are prenylated. J Biol Chem. 1999 Feb 5;274(6):3910–3917. [PubMed]
  • Anderson RG. The caveolae membrane system. Annu Rev Biochem. 1998;67:199–225. [PubMed]
  • Fagan KA, Smith KE, Cooper DM. Regulation of the Ca2+-inhibitable adenylyl cyclase type VI by capacitative Ca2+ entry requires localization in cholesterol-rich domains. J Biol Chem. 2000 Aug 25;275(34):26530–26537. [PubMed]
  • Fagan KA, Graf RA, Tolman S, Schaack J, Cooper DM. Regulation of a Ca2+-sensitive adenylyl cyclase in an excitable cell. Role of voltage-gated versus capacitative Ca2+ entry. J Biol Chem. 2000 Dec 22;275(51):40187–40194. [PubMed]
  • Balázs R, Miller S, Chun Y, Cotman CW. Receptor-coupled phospholipase C and adenylyl cyclase function with different calcium pools in astrocytes. Neuroreport. 1998 May 11;9(7):1397–1401. [PubMed]
  • Lockwich TP, Liu X, Singh BB, Jadlowiec J, Weiland S, Ambudkar IS. Assembly of Trp1 in a signaling complex associated with caveolin-scaffolding lipid raft domains. J Biol Chem. 2000 Apr 21;275(16):11934–11942. [PubMed]
  • Isshiki M, Ando J, Korenaga R, Kogo H, Fujimoto T, Fujita T, Kamiya A. Endothelial Ca2+ waves preferentially originate at specific loci in caveolin-rich cell edges. Proc Natl Acad Sci U S A. 1998 Apr 28;95(9):5009–5014. [PMC free article] [PubMed]
  • Rybin VO, Xu X, Lisanti MP, Steinberg SF. Differential targeting of beta -adrenergic receptor subtypes and adenylyl cyclase to cardiomyocyte caveolae. A mechanism to functionally regulate the cAMP signaling pathway. J Biol Chem. 2000 Dec 29;275(52):41447–41457. [PubMed]
  • Ostrom RS, Violin JD, Coleman S, Insel PA. Selective enhancement of beta-adrenergic receptor signaling by overexpression of adenylyl cyclase type 6: colocalization of receptor and adenylyl cyclase in caveolae of cardiac myocytes. Mol Pharmacol. 2000 May;57(5):1075–1079. [PubMed]
  • Smith Karen E, Gu Chen, Fagan Kent A, Hu Biao, Cooper Dermot M F. Residence of adenylyl cyclase type 8 in caveolae is necessary but not sufficient for regulation by capacitative Ca(2+) entry. J Biol Chem. 2002 Feb 22;277(8):6025–6031. [PubMed]
  • Ostrom Rennolds S, Naugle Jennifer E, Hase Miki, Gregorian Caroline, Swaney James S, Insel Paul A, Brunton Laurence L, Meszaros J Gary. Angiotensin II enhances adenylyl cyclase signaling via Ca2+/calmodulin. Gq-Gs cross-talk regulates collagen production in cardiac fibroblasts. J Biol Chem. 2003 Jul 4;278(27):24461–24468. [PubMed]
  • Toya Y, Schwencke C, Couet J, Lisanti MP, Ishikawa Y. Inhibition of adenylyl cyclase by caveolin peptides. Endocrinology. 1998 Apr;139(4):2025–2031. [PubMed]
  • Schwencke C, Yamamoto M, Okumura S, Toya Y, Kim SJ, Ishikawa Y. Compartmentation of cyclic adenosine 3',5'-monophosphate signaling in caveolae. Mol Endocrinol. 1999 Jul;13(7):1061–1070. [PubMed]
  • Pike LJ, Miller JM. Cholesterol depletion delocalizes phosphatidylinositol bisphosphate and inhibits hormone-stimulated phosphatidylinositol turnover. J Biol Chem. 1998 Aug 28;273(35):22298–22304. [PubMed]
  • García-Cardeña G, Martasek P, Masters BS, Skidd PM, Couet J, Li S, Lisanti MP, Sessa WC. Dissecting the interaction between nitric oxide synthase (NOS) and caveolin. Functional significance of the nos caveolin binding domain in vivo. J Biol Chem. 1997 Oct 10;272(41):25437–25440. [PubMed]
  • Craven SE, El-Husseini AE, Bredt DS. Synaptic targeting of the postsynaptic density protein PSD-95 mediated by lipid and protein motifs. Neuron. 1999 Mar;22(3):497–509. [PubMed]
  • Sheng M. Molecular organization of the postsynaptic specialization. Proc Natl Acad Sci U S A. 2001 Jun 19;98(13):7058–7061. [PMC free article] [PubMed]
  • Hering Heike, Lin Chih-Chun, Sheng Morgan. Lipid rafts in the maintenance of synapses, dendritic spines, and surface AMPA receptor stability. J Neurosci. 2003 Apr 15;23(8):3262–3271. [PubMed]
  • Mons N, Harry A, Dubourg P, Premont RT, Iyengar R, Cooper DM. Immunohistochemical localization of adenylyl cyclase in rat brain indicates a highly selective concentration at synapses. Proc Natl Acad Sci U S A. 1995 Aug 29;92(18):8473–8477. [PMC free article] [PubMed]
  • Rubin CS. A kinase anchor proteins and the intracellular targeting of signals carried by cyclic AMP. Biochim Biophys Acta. 1994 Dec 30;1224(3):467–479. [PubMed]
  • Dell'Acqua ML, Scott JD. Protein kinase A anchoring. J Biol Chem. 1997 May 16;272(20):12881–12884. [PubMed]
  • Laporte SA, Oakley RH, Caron MG. Signal transduction. Bringing channels closer to the action! Science. 2001 Jul 6;293(5527):62–63. [PubMed]
  • Davare MA, Avdonin V, Hall DD, Peden EM, Burette A, Weinberg RJ, Horne MC, Hoshi T, Hell JW. A beta2 adrenergic receptor signaling complex assembled with the Ca2+ channel Cav1.2. Science. 2001 Jul 6;293(5527):98–101. [PubMed]
  • Lavine Natalie, Ethier Nathalie, Oak James N, Pei Lin, Liu Fang, Trieu Phan, Rebois R Victor, Bouvier Michel, Hebert Terence E, Van Tol Hubert H M. G protein-coupled receptors form stable complexes with inwardly rectifying potassium channels and adenylyl cyclase. J Biol Chem. 2002 Nov 29;277(48):46010–46019. [PubMed]
  • Marx Steven O, Kurokawa Junko, Reiken Steven, Motoike Howard, D'Armiento Jeanine, Marks Andrew R, Kass Robert S. Requirement of a macromolecular signaling complex for beta adrenergic receptor modulation of the KCNQ1-KCNE1 potassium channel. Science. 2002 Jan 18;295(5554):496–499. [PubMed]
  • Beavo Joseph A, Brunton Laurence L. Cyclic nucleotide research -- still expanding after half a century. Nat Rev Mol Cell Biol. 2002 Sep;3(9):710–718. [PubMed]
  • Mehats Celine, Andersen Carsten B, Filopanti Marcello, Jin S L Catherine, Conti Marco. Cyclic nucleotide phosphodiesterases and their role in endocrine cell signaling. Trends Endocrinol Metab. 2002 Jan-Feb;13(1):29–35. [PubMed]
  • Tsunoda S, Sierralta J, Sun Y, Bodner R, Suzuki E, Becker A, Socolich M, Zuker CS. A multivalent PDZ-domain protein assembles signalling complexes in a G-protein-coupled cascade. Nature. 1997 Jul 17;388(6639):243–249. [PubMed]
  • Montell C. TRP trapped in fly signaling web. Curr Opin Neurobiol. 1998 Jun;8(3):389–397. [PubMed]
  • Buxton IL, Brunton LL. Compartments of cyclic AMP and protein kinase in mammalian cardiomyocytes. J Biol Chem. 1983 Sep 10;258(17):10233–10239. [PubMed]
  • Jurevicius J, Fischmeister R. cAMP compartmentation is responsible for a local activation of cardiac Ca2+ channels by beta-adrenergic agonists. Proc Natl Acad Sci U S A. 1996 Jan 9;93(1):295–299. [PMC free article] [PubMed]
  • Taskén KA, Collas P, Kemmner WA, Witczak O, Conti M, Taskén K. Phosphodiesterase 4D and protein kinase a type II constitute a signaling unit in the centrosomal area. J Biol Chem. 2001 Jun 22;276(25):21999–22002. [PubMed]
  • Razani B, Rubin CS, Lisanti MP. Regulation of cAMP-mediated signal transduction via interaction of caveolins with the catalytic subunit of protein kinase A. J Biol Chem. 1999 Sep 10;274(37):26353–26360. [PubMed]
  • Kramer RH. Patch cramming: monitoring intracellular messengers in intact cells with membrane patches containing detector ion channels. Neuron. 1990 Mar;4(3):335–341. [PubMed]
  • Trivedi B, Kramer RH. Real-time patch-cram detection of intracellular cGMP reveals long-term suppression of responses to NO and muscarinic agonists. Neuron. 1998 Oct;21(4):895–906. [PubMed]
  • Adams SR, Harootunian AT, Buechler YJ, Taylor SS, Tsien RY. Fluorescence ratio imaging of cyclic AMP in single cells. Nature. 1991 Feb 21;349(6311):694–697. [PubMed]
  • DeBernardi MA, Brooker G. Single cell Ca2+/cAMP cross-talk monitored by simultaneous Ca2+/cAMP fluorescence ratio imaging. Proc Natl Acad Sci U S A. 1996 May 14;93(10):4577–4582. [PMC free article] [PubMed]
  • Zaccolo M, De Giorgi F, Cho CY, Feng L, Knapp T, Negulescu PA, Taylor SS, Tsien RY, Pozzan T. A genetically encoded, fluorescent indicator for cyclic AMP in living cells. Nat Cell Biol. 2000 Jan;2(1):25–29. [PubMed]
  • Goaillard JM, Vincent PV, Fischmeister R. Simultaneous measurements of intracellular cAMP and L-type Ca2+ current in single frog ventricular myocytes. J Physiol. 2001 Jan 1;530(Pt 1):79–91. [PMC free article] [PubMed]
  • Zaccolo Manuela, Magalhães Paulo, Pozzan Tullio. Compartmentalisation of cAMP and Ca(2+) signals. Curr Opin Cell Biol. 2002 Apr;14(2):160–166. [PubMed]
  • Sudlow LC, Gillette R. Cyclic AMP levels, adenylyl cyclase activity, and their stimulation by serotonin quantified in intact neurons. J Gen Physiol. 1997 Sep;110(3):243–255. [PMC free article] [PubMed]
  • Heine Martin, Ponimaskin Evgeni, Bickmeyer Ulf, Richter Diethelm W. 5-HT-receptor-induced changes of the intracellular cAMP level monitored by a hyperpolarization-activated cation channel. Pflugers Arch. 2002 Jan;443(3):418–426. [PubMed]
  • Rich TC, Fagan KA, Nakata H, Schaack J, Cooper DM, Karpen JW. Cyclic nucleotide-gated channels colocalize with adenylyl cyclase in regions of restricted cAMP diffusion. J Gen Physiol. 2000 Aug;116(2):147–161. [PMC free article] [PubMed]
  • Fagan KA, Schaack J, Zweifach A, Cooper DM. Adenovirus encoded cyclic nucleotide-gated channels: a new methodology for monitoring cAMP in living cells. FEBS Lett. 2001 Jun 29;500(1-2):85–90. [PubMed]
  • Fagan KA, Rich TC, Tolman S, Schaack J, Karpen JW, Cooper DM. Adenovirus-mediated expression of an olfactory cyclic nucleotide-gated channel regulates the endogenous Ca2+-inhibitable adenylyl cyclase in C6-2B glioma cells. J Biol Chem. 1999 Apr 30;274(18):12445–12453. [PubMed]
  • Rich TC, Tse TE, Rohan JG, Schaack J, Karpen JW. In vivo assessment of local phosphodiesterase activity using tailored cyclic nucleotide-gated channels as cAMP sensors. J Gen Physiol. 2001 Jul;118(1):63–78. [PMC free article] [PubMed]
  • Storm DR, Hansel C, Hacker B, Parent A, Linden DJ. Impaired cerebellar long-term potentiation in type I adenylyl cyclase mutant mice. Neuron. 1998 Jun;20(6):1199–1210. [PubMed]
  • Wong ST, Athos J, Figueroa XA, Pineda VV, Schaefer ML, Chavkin CC, Muglia LJ, Storm DR. Calcium-stimulated adenylyl cyclase activity is critical for hippocampus-dependent long-term memory and late phase LTP. Neuron. 1999 Aug;23(4):787–798. [PubMed]
  • Schaefer ML, Wong ST, Wozniak DF, Muglia LM, Liauw JA, Zhuo M, Nardi A, Hartman RE, Vogt SK, Luedke CE, et al. Altered stress-induced anxiety in adenylyl cyclase type VIII-deficient mice. J Neurosci. 2000 Jul 1;20(13):4809–4820. [PubMed]
  • Muglia LM, Schaefer ML, Vogt SK, Gurtner G, Imamura A, Muglia LJ. The 5'-flanking region of the mouse adenylyl cyclase type VIII gene imparts tissue-specific expression in transgenic mice. J Neurosci. 1999 Mar 15;19(6):2051–2058. [PubMed]
  • Villacres EC, Wu Z, Hua W, Nielsen MD, Watters JJ, Yan C, Beavo J, Storm DR. Developmentally expressed Ca(2+)-sensitive adenylyl cyclase activity is disrupted in the brains of type I adenylyl cyclase mutant mice. J Biol Chem. 1995 Jun 16;270(24):14352–14357. [PubMed]
  • Wu ZL, Thomas SA, Villacres EC, Xia Z, Simmons ML, Chavkin C, Palmiter RD, Storm DR. Altered behavior and long-term potentiation in type I adenylyl cyclase mutant mice. Proc Natl Acad Sci U S A. 1995 Jan 3;92(1):220–224. [PMC free article] [PubMed]
  • Wong ST, Trinh K, Hacker B, Chan GC, Lowe G, Gaggar A, Xia Z, Gold GH, Storm DR. Disruption of the type III adenylyl cyclase gene leads to peripheral and behavioral anosmia in transgenic mice. Neuron. 2000 Sep;27(3):487–497. [PubMed]
  • Lee Ko-Woon, Hong Jang-Hee, Choi In Young, Che Yongzhe, Lee Ja-Kyeong, Yang Sung-Don, Song Chang-Woo, Kang Ho Sung, Lee Jae-Heun, Noh Jai Sung, et al. Impaired D2 dopamine receptor function in mice lacking type 5 adenylyl cyclase. J Neurosci. 2002 Sep 15;22(18):7931–7940. [PubMed]
  • Iwamoto Tamio, Okumura Satoshi, Iwatsubo Kousaku, Kawabe Jun-Ichi, Ohtsu Koji, Sakai Ikuko, Hashimoto Yoko, Izumitani Aki, Sango Kazunori, Ajiki Kyoko, et al. Motor dysfunction in type 5 adenylyl cyclase-null mice. J Biol Chem. 2003 May 9;278(19):16936–16940. [PubMed]
  • Lipskaia L, Defer N, Esposito G, Hajar I, Garel MC, Rockman HA, Hanoune J. Enhanced cardiac function in transgenic mice expressing a Ca(2+)-stimulated adenylyl cyclase. Circ Res. 2000 Apr 14;86(7):795–801. [PubMed]
  • Cooper DM, Brooker G. Ca(2+)-inhibited adenylyl cyclase in cardiac tissue. Trends Pharmacol Sci. 1993 Feb;14(2):34–36. [PubMed]
  • Gorbunova Yuliya V, Spitzer Nicholas C. Dynamic interactions of cyclic AMP transients and spontaneous Ca(2+) spikes. Nature. 2002 Jul 4;418(6893):93–96. [PubMed]
  • Zaccolo Manuela, Pozzan Tullio. CAMP and Ca2+ interplay: a matter of oscillation patterns. Trends Neurosci. 2003 Feb;26(2):53–55. [PubMed]
  • Schmidt M, Evellin S, Weernink PA, von Dorp F, Rehmann H, Lomasney JW, Jakobs KH. A new phospholipase-C-calcium signalling pathway mediated by cyclic AMP and a Rap GTPase. Nat Cell Biol. 2001 Nov;3(11):1020–1024. [PubMed]
  • Onyike CU, Lin AH, Abrams TW. Persistence of the interaction of calmodulin with adenylyl cyclase: implications for integration of transient calcium stimuli. J Neurochem. 1998 Sep;71(3):1298–1306. [PubMed]
  • Lin AH, Onyike CU, Abrams TW. Sequence-dependent interactions between transient calcium and transmitter stimuli in activation of mammalian brain adenylyl cyclase. Brain Res. 1998 Aug 3;800(2):300–307. [PubMed]
  • Blau L, Weissmann G. Transmembrane calcium movements mediated by ionomycin and phosphatidate in liposomes with Fura 2 entrapped. Biochemistry. 1988 Jul 26;27(15):5661–5666. [PubMed]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

  • Cited in Books
    Cited in Books
    PubMed Central articles cited in books
  • Compound
    Compound
    PubChem Compound links
  • MedGen
    MedGen
    Related information in MedGen
  • PubMed
    PubMed
    PubMed citations for these articles
  • Substance
    Substance
    PubChem Substance links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...