• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of biochemjBJ Latest papers and much more!
Biochem J. Mar 15, 2003; 370(Pt 3): 751–762.
PMCID: PMC1223225

Mitochondrial threshold effects.

Abstract

The study of mitochondrial diseases has revealed dramatic variability in the phenotypic presentation of mitochondrial genetic defects. To attempt to understand this variability, different authors have studied energy metabolism in transmitochondrial cell lines carrying different proportions of various pathogenic mutations in their mitochondrial DNA. The same kinds of experiments have been performed on isolated mitochondria and on tissue biopsies taken from patients with mitochondrial diseases. The results have shown that, in most cases, phenotypic manifestation of the genetic defect occurs only when a threshold level is exceeded, and this phenomenon has been named the 'phenotypic threshold effect'. Subsequently, several authors showed that it was possible to inhibit considerably the activity of a respiratory chain complex, up to a critical value, without affecting the rate of mitochondrial respiration or ATP synthesis. This phenomenon was called the 'biochemical threshold effect'. More recently, quantitative analysis of the effects of various mutations in mitochondrial DNA on the rate of mitochondrial protein synthesis has revealed the existence of a 'translational threshold effect'. In this review these different mitochondrial threshold effects are discussed, along with their molecular bases and the roles that they play in the presentation of mitochondrial diseases.

Full Text

The Full Text of this article is available as a PDF (241K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • LUFT R, IKKOS D, PALMIERI G, ERNSTER L, AFZELIUS B. A case of severe hypermetabolism of nonthyroid origin with a defect in the maintenance of mitochondrial respiratory control: a correlated clinical, biochemical, and morphological study. J Clin Invest. 1962 Sep;41:1776–1804. [PMC free article] [PubMed]
  • Wallace DC. Mitochondrial diseases in man and mouse. Science. 1999 Mar 5;283(5407):1482–1488. [PubMed]
  • Schon EA, Bonilla E, DiMauro S. Mitochondrial DNA mutations and pathogenesis. J Bioenerg Biomembr. 1997 Apr;29(2):131–149. [PubMed]
  • Chinnery PF, Turnbull DM. Mitochondrial DNA and disease. Lancet. 1999 Jul;354 (Suppl 1):SI17–SI21. [PubMed]
  • Servidei S. Mitochondrial encephalomyopathies: gene mutation. Neuromuscul Disord. 2001 Sep;11(6-7):690–695. [PubMed]
  • Schon EA. Mitochondrial genetics and disease. Trends Biochem Sci. 2000 Nov;25(11):555–560. [PubMed]
  • DiMauro S, Schon EA. Mitochondrial DNA mutations in human disease. Am J Med Genet. 2001 Spring;106(1):18–26. [PubMed]
  • Capaldi RA. The changing face of mitochondrial research. Trends Biochem Sci. 2000 May;25(5):212–214. [PubMed]
  • Preiss T, Lowerson SA, Weber K, Lightowlers RN. Human mitochondria: distinct organelles or dynamic network? Trends Genet. 1995 Jun;11(6):211–212. [PubMed]
  • Chinnery PF, Zwijnenburg PJ, Walker M, Howell N, Taylor RW, Lightowlers RN, Bindoff L, Turnbull DM. Nonrandom tissue distribution of mutant mtDNA. Am J Med Genet. 1999 Aug 27;85(5):498–501. [PubMed]
  • Chinnery PF, Thorburn DR, Samuels DC, White SL, Dahl HM, Turnbull DM, Lightowlers RN, Howell N. The inheritance of mitochondrial DNA heteroplasmy: random drift, selection or both? Trends Genet. 2000 Nov;16(11):500–505. [PubMed]
  • Zhou L, Chomyn A, Attardi G, Miller CA. Myoclonic epilepsy and ragged red fibers (MERRF) syndrome: selective vulnerability of CNS neurons does not correlate with the level of mitochondrial tRNAlys mutation in individual neuronal isolates. J Neurosci. 1997 Oct 15;17(20):7746–7753. [PubMed]
  • Chinnery PF, Taylor DJ, Manners D, Styles P, Lodi R. No correlation between muscle A3243G mutation load and mitochondrial function in vivo. Neurology. 2001 Apr 24;56(8):1101–1104. [PubMed]
  • Morgan-Hughes JA, Sweeney MG, Cooper JM, Hammans SR, Brockington M, Schapira AH, Harding AE, Clark JB. Mitochondrial DNA (mtDNA) diseases: correlation of genotype to phenotype. Biochim Biophys Acta. 1995 May 24;1271(1):135–140. [PubMed]
  • Fischel-Ghodsian N. Mitochondrial genetics and hearing loss: the missing link between genotype and phenotype. Proc Soc Exp Biol Med. 1998 May;218(1):1–6. [PubMed]
  • Brown MD. The enigmatic relationship between mitochondrial dysfunction and Leber's hereditary optic neuropathy. J Neurol Sci. 1999 May 1;165(1):1–5. [PubMed]
  • Vernham GA, Reid FM, Rundle PA, Jacobs HT. Bilateral sensorineural hearing loss in members of a maternal lineage with mitochondrial point mutation. Clin Otolaryngol Allied Sci. 1994 Aug;19(4):314–319. [PubMed]
  • Fischel-Ghodsian N. Homoplasmic mitochondrial DNA diseases as the paradigm to understand the tissue specificity and variable clinical severity of mitochondrial disorders. Mol Genet Metab. 2000 Sep-Oct;71(1-2):93–99. [PubMed]
  • Chinnery PF, Turnbull DM. Mitochondrial DNA mutations in the pathogenesis of human disease. Mol Med Today. 2000 Nov;6(11):425–432. [PubMed]
  • King MP, Attardi G. Injection of mitochondria into human cells leads to a rapid replacement of the endogenous mitochondrial DNA. Cell. 1988 Mar 25;52(6):811–819. [PubMed]
  • King MP, Attardi G. Human cells lacking mtDNA: repopulation with exogenous mitochondria by complementation. Science. 1989 Oct 27;246(4929):500–503. [PubMed]
  • Wallace DC. Mitotic segregation of mitochondrial DNAs in human cell hybrids and expression of chloramphenicol resistance. Somat Cell Mol Genet. 1986 Jan;12(1):41–49. [PubMed]
  • Shoffner JM, Lott MT, Lezza AM, Seibel P, Ballinger SW, Wallace DC. Myoclonic epilepsy and ragged-red fiber disease (MERRF) is associated with a mitochondrial DNA tRNA(Lys) mutation. Cell. 1990 Jun 15;61(6):931–937. [PubMed]
  • Miyabayashi S, Hanamizu H, Nakamura R, Endo H, Tada K. Defects of mitochondrial respiratory enzymes in cloned cells from MELAS fibroblasts. J Inherit Metab Dis. 1992;15(5):797–802. [PubMed]
  • Hayashi J, Ohta S, Kikuchi A, Takemitsu M, Goto Y, Nonaka I. Introduction of disease-related mitochondrial DNA deletions into HeLa cells lacking mitochondrial DNA results in mitochondrial dysfunction. Proc Natl Acad Sci U S A. 1991 Dec 1;88(23):10614–10618. [PMC free article] [PubMed]
  • Lécher P, Béziat F, Alziari S. Tissular distribution of heteroplasmy and ultrastructural studies of mitochondria from a Drosophila subobscura mitochondrial deletion mutant. Biol Cell. 1994;80(1):25–33. [PubMed]
  • Bai Y, Shakeley RM, Attardi G. Tight control of respiration by NADH dehydrogenase ND5 subunit gene expression in mouse mitochondria. Mol Cell Biol. 2000 Feb;20(3):805–815. [PMC free article] [PubMed]
  • Petruzzella V, Moraes CT, Sano MC, Bonilla E, DiMauro S, Schon EA. Extremely high levels of mutant mtDNAs co-localize with cytochrome c oxidase-negative ragged-red fibers in patients harboring a point mutation at nt 3243. Hum Mol Genet. 1994 Mar;3(3):449–454. [PubMed]
  • Schröder R, Vielhaber S, Wiedemann FR, Kornblum C, Papassotiropoulos A, Broich P, Zierz S, Elger CE, Reichmann H, Seibel P, et al. New insights into the metabolic consequences of large-scale mtDNA deletions: a quantitative analysis of biochemical, morphological, and genetic findings in human skeletal muscle. J Neuropathol Exp Neurol. 2000 May;59(5):353–360. [PubMed]
  • Moslemi AR, Tulinius M, Holme E, Oldfors A. Threshold expression of the tRNA(Lys) A8344G mutation in single muscle fibres. Neuromuscul Disord. 1998 Jun;8(5):345–349. [PubMed]
  • Silvestri G, Rana M, Odoardi F, Modoni A, Paris E, Papacci M, Tonali P, Servidei S. Single-fiber PCR in MELAS(3243) patients: correlations between intratissue distribution and phenotypic expression of the mtDNA(A3243G) genotype. Am J Med Genet. 2000 Sep 18;94(3):201–206. [PubMed]
  • Taanman JW. The mitochondrial genome: structure, transcription, translation and replication. Biochim Biophys Acta. 1999 Feb 9;1410(2):103–123. [PubMed]
  • Spelbrink JN, Van Oost BA, Van den Bogert C. The relationship between mitochondrial genotype and mitochondrial phenotype in lymphoblasts with a heteroplasmic mtDNA deletion. Hum Mol Genet. 1994 Nov;3(11):1989–1997. [PubMed]
  • D'Aurelio M, Pallotti F, Barrientos A, Gajewski CD, Kwong JQ, Bruno C, Beal MF, Manfredi G. In vivo regulation of oxidative phosphorylation in cells harboring a stop-codon mutation in mitochondrial DNA-encoded cytochrome c oxidase subunit I. J Biol Chem. 2001 Dec 14;276(50):46925–46932. [PubMed]
  • Chomyn A, Enriquez JA, Micol V, Fernandez-Silva P, Attardi G. The mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episode syndrome-associated human mitochondrial tRNALeu(UUR) mutation causes aminoacylation deficiency and concomitant reduced association of mRNA with ribosomes. J Biol Chem. 2000 Jun 23;275(25):19198–19209. [PubMed]
  • Enriquez JA, Chomyn A, Attardi G. MtDNA mutation in MERRF syndrome causes defective aminoacylation of tRNA(Lys) and premature translation termination. Nat Genet. 1995 May;10(1):47–55. [PubMed]
  • Chomyn A. The myoclonic epilepsy and ragged-red fiber mutation provides new insights into human mitochondrial function and genetics. Am J Hum Genet. 1998 Apr;62(4):745–751. [PMC free article] [PubMed]
  • Boulet L, Karpati G, Shoubridge EA. Distribution and threshold expression of the tRNA(Lys) mutation in skeletal muscle of patients with myoclonic epilepsy and ragged-red fibers (MERRF). Am J Hum Genet. 1992 Dec;51(6):1187–1200. [PMC free article] [PubMed]
  • Helm M, Florentz C, Chomyn A, Attardi G. Search for differences in post-transcriptional modification patterns of mitochondrial DNA-encoded wild-type and mutant human tRNALys and tRNALeu(UUR). Nucleic Acids Res. 1999 Feb 1;27(3):756–763. [PMC free article] [PubMed]
  • Enríquez JA, Attardi G. Evidence for aminoacylation-induced conformational changes in human mitochondrial tRNAs. Proc Natl Acad Sci U S A. 1996 Aug 6;93(16):8300–8305. [PMC free article] [PubMed]
  • Goldman E, Jakubowski H. Uncharged tRNA, protein synthesis, and the bacterial stringent response. Mol Microbiol. 1990 Dec;4(12):2035–2040. [PubMed]
  • Hanson BJ, Carrozzo R, Piemonte F, Tessa A, Robinson BH, Capaldi RA. Cytochrome c oxidase-deficient patients have distinct subunit assembly profiles. J Biol Chem. 2001 May 11;276(19):16296–16301. [PubMed]
  • Triepels RH, Hanson BJ, van den Heuvel LP, Sundell L, Marusich MF, Smeitink JA, Capaldi RA. Human complex I defects can be resolved by monoclonal antibody analysis into distinct subunit assembly patterns. J Biol Chem. 2001 Mar 23;276(12):8892–8897. [PubMed]
  • Rossignol R, Malgat M, Mazat JP, Letellier T. Threshold effect and tissue specificity. Implication for mitochondrial cytopathies. J Biol Chem. 1999 Nov 19;274(47):33426–33432. [PubMed]
  • Kacser H, Burns JA. The control of flux. Symp Soc Exp Biol. 1973;27:65–104. [PubMed]
  • Heinrich R, Rapoport TA. A linear steady-state treatment of enzymatic chains. General properties, control and effector strength. Eur J Biochem. 1974 Feb 15;42(1):89–95. [PubMed]
  • Reder C. Metabolic control theory: a structural approach. J Theor Biol. 1988 Nov 21;135(2):175–201. [PubMed]
  • Rossignol R, Letellier T, Malgat M, Rocher C, Mazat JP. Tissue variation in the control of oxidative phosphorylation: implication for mitochondrial diseases. Biochem J. 2000 Apr 1;347(Pt 1):45–53. [PMC free article] [PubMed]
  • Murphy MP. How understanding the control of energy metabolism can help investigation of mitochondrial dysfunction, regulation and pharmacology. Biochim Biophys Acta. 2001 Mar 1;1504(1):1–11. [PubMed]
  • Letellier T, Heinrich R, Malgat M, Mazat JP. The kinetic basis of threshold effects observed in mitochondrial diseases: a systemic approach. Biochem J. 1994 Aug 15;302(Pt 1):171–174. [PMC free article] [PubMed]
  • Davey GP, Clark JB. Threshold effects and control of oxidative phosphorylation in nonsynaptic rat brain mitochondria. J Neurochem. 1996 Apr;66(4):1617–1624. [PubMed]
  • Davey GP, Canevari L, Clark JB. Threshold effects in synaptosomal and nonsynaptic mitochondria from hippocampal CA1 and paramedian neocortex brain regions. J Neurochem. 1997 Dec;69(6):2564–2570. [PubMed]
  • Davey GP, Peuchen S, Clark JB. Energy thresholds in brain mitochondria. Potential involvement in neurodegeneration. J Biol Chem. 1998 May 22;273(21):12753–12757. [PubMed]
  • Villani G, Attardi G. In vivo control of respiration by cytochrome c oxidase in wild-type and mitochondrial DNA mutation-carrying human cells. Proc Natl Acad Sci U S A. 1997 Feb 18;94(4):1166–1171. [PMC free article] [PubMed]
  • Villani G, Greco M, Papa S, Attardi G. Low reserve of cytochrome c oxidase capacity in vivo in the respiratory chain of a variety of human cell types. J Biol Chem. 1998 Nov 27;273(48):31829–31836. [PubMed]
  • James AM, Wei YH, Pang CY, Murphy MP. Altered mitochondrial function in fibroblasts containing MELAS or MERRF mitochondrial DNA mutations. Biochem J. 1996 Sep 1;318(Pt 2):401–407. [PMC free article] [PubMed]
  • Barrientos A, Moraes CT. Titrating the effects of mitochondrial complex I impairment in the cell physiology. J Biol Chem. 1999 Jun 4;274(23):16188–16197. [PubMed]
  • Gnaiger E, Lassnig B, Kuznetsov A, Rieger G, Margreiter R. Mitochondrial oxygen affinity, respiratory flux control and excess capacity of cytochrome c oxidase. J Exp Biol. 1998 Apr;201(Pt 8):1129–1139. [PubMed]
  • Kunz WS, Kudin A, Vielhaber S, Elger CE, Attardi G, Villani G. Flux control of cytochrome c oxidase in human skeletal muscle. J Biol Chem. 2000 Sep 8;275(36):27741–27745. [PubMed]
  • Wiedemann FR, Kunz WS. Oxygen dependence of flux control of cytochrome c oxidase -- implications for mitochondrial diseases. FEBS Lett. 1998 Jan 23;422(1):33–35. [PubMed]
  • Grivennikova Vera G, Serebryanaya Darya V, Isakova Elena P, Belozerskaya Tatyana A, Vinogradov Andrei D. The transition between active and de-activated forms of NADH:ubiquinone oxidoreductase (Complex I) in the mitochondrial membrane of Neurospora crassa. Biochem J. 2003 Feb 1;369(Pt 3):619–626. [PMC free article] [PubMed]
  • Grivennikova VG, Kapustin AN, Vinogradov AD. Catalytic activity of NADH-ubiquinone oxidoreductase (complex I) in intact mitochondria. evidence for the slow active/inactive transition. J Biol Chem. 2001 Mar 23;276(12):9038–9044. [PubMed]
  • Böttcher Bettina, Scheide Dierk, Hesterberg Micaela, Nagel-Steger Luitgard, Friedrich Thorsten. A novel, enzymatically active conformation of the Escherichia coli NADH:ubiquinone oxidoreductase (complex I). J Biol Chem. 2002 May 17;277(20):17970–17977. [PubMed]
  • Schägger H, Pfeiffer K. Supercomplexes in the respiratory chains of yeast and mammalian mitochondria. EMBO J. 2000 Apr 17;19(8):1777–1783. [PMC free article] [PubMed]
  • Schägger H. Blue-native gels to isolate protein complexes from mitochondria. Methods Cell Biol. 2001;65:231–244. [PubMed]
  • Schägger H, Ohm TG. Human diseases with defects in oxidative phosphorylation. 2. F1F0 ATP-synthase defects in Alzheimer disease revealed by blue native polyacrylamide gel electrophoresis. Eur J Biochem. 1995 Feb 1;227(3):916–921. [PubMed]
  • Zhang Mei, Mileykovskaya Eugenia, Dowhan William. Gluing the respiratory chain together. Cardiolipin is required for supercomplex formation in the inner mitochondrial membrane. J Biol Chem. 2002 Nov 15;277(46):43553–43556. [PubMed]
  • Bernardi P, Petronilli V, Di Lisa F, Forte M. A mitochondrial perspective on cell death. Trends Biochem Sci. 2001 Feb;26(2):112–117. [PubMed]
  • Paumard Patrick, Vaillier Jacques, Coulary Bénédicte, Schaeffer Jacques, Soubannier Vincent, Mueller David M, Brèthes Daniel, di Rago Jean-Paul, Velours Jean. The ATP synthase is involved in generating mitochondrial cristae morphology. EMBO J. 2002 Feb 1;21(3):221–230. [PMC free article] [PubMed]
  • Papa S, Sardanelli AM, Scacco S, Petruzzella V, Technikova-Dobrova Z, Vergari R, Signorile A. The NADH: ubiquinone oxidoreductase (complex I) of the mammalian respiratory chain and the cAMP cascade. J Bioenerg Biomembr. 2002 Feb;34(1):1–10. [PubMed]
  • Kadenbach B, Hüttemann M, Arnold S, Lee I, Bender E. Mitochondrial energy metabolism is regulated via nuclear-coded subunits of cytochrome c oxidase. Free Radic Biol Med. 2000 Aug;29(3-4):211–221. [PubMed]
  • Beauvoit B, Rigoulet M. Regulation of cytochrome c oxidase by adenylic nucleotides. Is oxidative phosphorylation feedback regulated by its end-products? IUBMB Life. 2001 Sep-Nov;52(3-5):143–152. [PubMed]
  • Elliott Sean J, Léger Christophe, Pershad Harsh R, Hirst Judy, Heffron Kerensa, Ginet Nicolas, Blasco Francis, Rothery Richard A, Weiner Joel H, Armstrong Fraser A. Detection and interpretation of redox potential optima in the catalytic activity of enzymes. Biochim Biophys Acta. 2002 Sep 10;1555(1-3):54–59. [PubMed]
  • Preston TJ, Abadi A, Wilson L, Singh G. Mitochondrial contributions to cancer cell physiology: potential for drug development. Adv Drug Deliv Rev. 2001 Jul 2;49(1-2):45–61. [PubMed]
  • Raha S, Robinson BH. Mitochondria, oxygen free radicals, disease and ageing. Trends Biochem Sci. 2000 Oct;25(10):502–508. [PubMed]
  • Michiels Carine, Minet Emmanuel, Mottet Denis, Raes Martine. Regulation of gene expression by oxygen: NF-kappaB and HIF-1, two extremes. Free Radic Biol Med. 2002 Nov 1;33(9):1231–1242. [PubMed]
  • Korzeniewski B, Malgat M, Letellier T, Mazat JP. Effect of 'binary mitochondrial heteroplasmy' on respiration and ATP synthesis: implications for mitochondrial diseases. Biochem J. 2001 Aug 1;357(Pt 3):835–842. [PMC free article] [PubMed]
  • Ventura Barbara, Genova Maria Luisa, Bovina Carla, Formiggini Gabriella, Lenaz Giorgio. Control of oxidative phosphorylation by Complex I in rat liver mitochondria: implications for aging. Biochim Biophys Acta. 2002 Feb 15;1553(3):249–260. [PubMed]
  • Mazat JP, Letellier T, Bédes F, Malgat M, Korzeniewski B, Jouaville LS, Morkuniene R. Metabolic control analysis and threshold effect in oxidative phosphorylation: implications for mitochondrial pathologies. Mol Cell Biochem. 1997 Sep;174(1-2):143–148. [PubMed]
  • Taylor RW, Wardell TM, Smith PM, Muratovska A, Murphy MP, Turnbull DM, Lightowlers RN. An antigenomic strategy for treating heteroplasmic mtDNA disorders. Adv Drug Deliv Rev. 2001 Jul 2;49(1-2):121–125. [PubMed]
  • Bentlage HA, Attardi G. Relationship of genotype to phenotype in fibroblast-derived transmitochondrial cell lines carrying the 3243 mutation associated with the MELAS encephalomyopathy: shift towards mutant genotype and role of mtDNA copy number. Hum Mol Genet. 1996 Feb;5(2):197–205. [PubMed]
  • Pedersen PL. Tumor mitochondria and the bioenergetics of cancer cells. Prog Exp Tumor Res. 1978;22:190–274. [PubMed]
  • Hofhaus G, Johns DR, Hurko O, Attardi G, Chomyn A. Respiration and growth defects in transmitochondrial cell lines carrying the 11778 mutation associated with Leber's hereditary optic neuropathy. J Biol Chem. 1996 May 31;271(22):13155–13161. [PubMed]
  • Pfeiffer T, Schuster S, Bonhoeffer S. Cooperation and competition in the evolution of ATP-producing pathways. Science. 2001 Apr 20;292(5516):504–507. [PubMed]
  • Erecińska M, Wilson DF. Regulation of cellular energy metabolism. J Membr Biol. 1982;70(1):1–14. [PubMed]
  • Korzeniewski B. Theoretical studies on the regulation of oxidative phosphorylation in intact tissues. Biochim Biophys Acta. 2001 Mar 1;1504(1):31–45. [PubMed]
  • Ludwig B, Bender E, Arnold S, Hüttemann M, Lee I, Kadenbach B. Cytochrome C oxidase and the regulation of oxidative phosphorylation. Chembiochem. 2001 Jun 1;2(6):392–403. [PubMed]
  • Taivassalo Tanja, Abbott Amy, Wyrick Phil, Haller Ronald G. Venous oxygen levels during aerobic forearm exercise: An index of impaired oxidative metabolism in mitochondrial myopathy. Ann Neurol. 2002 Jan;51(1):38–44. [PubMed]
  • Reichmann H, Vogler L, Seibel P. Ragged red or ragged blue fibers. Eur Neurol. 1996;36(2):98–102. [PubMed]
  • Wredenberg Anna, Wibom Rolf, Wilhelmsson Hans, Graff Caroline, Wiener Heidi H, Burden Steven J, Oldfors Anders, Westerblad Håkan, Larsson Nils-Göran. Increased mitochondrial mass in mitochondrial myopathy mice. Proc Natl Acad Sci U S A. 2002 Nov 12;99(23):15066–15071. [PMC free article] [PubMed]
  • Weber Katharina, Brück Patrick, Mikes Zsuzsanna, Küpper Jan-Heiner, Klingenspor Martin, Wiesner Rudolf J. Glucocorticoid hormone stimulates mitochondrial biogenesis specifically in skeletal muscle. Endocrinology. 2002 Jan;143(1):177–184. [PubMed]
  • Heddi A, Stepien G, Benke PJ, Wallace DC. Coordinate induction of energy gene expression in tissues of mitochondrial disease patients. J Biol Chem. 1999 Aug 13;274(33):22968–22976. [PubMed]
  • Chung AB, Stepien G, Haraguchi Y, Li K, Wallace DC. Transcriptional control of nuclear genes for the mitochondrial muscle ADP/ATP translocator and the ATP synthase beta subunit. Multiple factors interact with the OXBOX/REBOX promoter sequences. J Biol Chem. 1992 Oct 15;267(29):21154–21161. [PubMed]
  • Lehman John J, Kelly Daniel P. Transcriptional activation of energy metabolic switches in the developing and hypertrophied heart. Clin Exp Pharmacol Physiol. 2002 Apr;29(4):339–345. [PubMed]
  • Wilson Heather L, Roesler William J. CCAAT/enhancer binding proteins: do they possess intrinsic cAMP-inducible activity? Mol Cell Endocrinol. 2002 Feb 25;188(1-2):15–20. [PubMed]
  • Whitehouse I, Flaus A, Havas K, Owen-Hughes T. Mechanisms for ATP-dependent chromatin remodelling. Biochem Soc Trans. 2000;28(4):376–379. [PubMed]
  • Harvey Alexandra J, Kind Karen L, Thompson Jeremy G. REDOX regulation of early embryo development. Reproduction. 2002 Apr;123(4):479–486. [PubMed]
  • Simonides WS, Thelen MH, van der Linden CG, Muller A, van Hardeveld C. Mechanism of thyroid-hormone regulated expression of the SERCA genes in skeletal muscle: implications for thermogenesis. Biosci Rep. 2001 Apr;21(2):139–154. [PubMed]
  • Roesler WJ. The role of C/EBP in nutrient and hormonal regulation of gene expression. Annu Rev Nutr. 2001;21:141–165. [PubMed]
  • Nelson BD, Luciakova K, Li R, Betina S. The role of thyroid hormone and promoter diversity in the regulation of nuclear encoded mitochondrial proteins. Biochim Biophys Acta. 1995 May 24;1271(1):85–91. [PubMed]
  • Kacser H, Burns JA. The molecular basis of dominance. Genetics. 1981 Mar-Apr;97(3-4):639–666. [PMC free article] [PubMed]
  • Ono T, Isobe K, Nakada K, Hayashi JI. Human cells are protected from mitochondrial dysfunction by complementation of DNA products in fused mitochondria. Nat Genet. 2001 Jul;28(3):272–275. [PubMed]
  • Attardi Giuseppe, Enriquez José A, Cabezas-Herrera Juan. Inter-mitochondrial complementation of mtDNA mutations and nuclear context. Nat Genet. 2002 Apr;30(4):360–361. [PubMed]
  • Enríquez JA, Cabezas-Herrera J, Bayona-Bafaluy MP, Attardi G. Very rare complementation between mitochondria carrying different mitochondrial DNA mutations points to intrinsic genetic autonomy of the organelles in cultured human cells. J Biol Chem. 2000 Apr 14;275(15):11207–11215. [PubMed]
  • Nakada K, Inoue K, Ono T, Isobe K, Ogura A, Goto YI, Nonaka I, Hayashi JI. Inter-mitochondrial complementation: Mitochondria-specific system preventing mice from expression of disease phenotypes by mutant mtDNA. Nat Med. 2001 Aug;7(8):934–940. [PubMed]
  • Frey TG, Mannella CA. The internal structure of mitochondria. Trends Biochem Sci. 2000 Jul;25(7):319–324. [PubMed]
  • Moraes CT, DiMauro S, Zeviani M, Lombes A, Shanske S, Miranda AF, Nakase H, Bonilla E, Werneck LC, Servidei S, et al. Mitochondrial DNA deletions in progressive external ophthalmoplegia and Kearns-Sayre syndrome. N Engl J Med. 1989 May 18;320(20):1293–1299. [PubMed]
  • Bourgeron T, Chretien D, Rötig A, Munnich A, Rustin P. Fate and expression of the deleted mitochondrial DNA differ between human heteroplasmic skin fibroblast and Epstein-Barr virus-transformed lymphocyte cultures. J Biol Chem. 1993 Sep 15;268(26):19369–19376. [PubMed]
  • Bourgeron T, Chretien D, Amati P, Rötig A, Munnich A, Rustin P. Expression of respiratory chain deficiencies in human cultured cells. Neuromuscul Disord. 1993 Sep-Nov;3(5-6):605–608. [PubMed]
  • Lécher P, Petit N, Le Goff S, Alziari S. Quantitative analysis, by ultrastructural in situ hybridization, of mitochondrial genomes and their expression in mid-gut and ovarian cells of a mutant strain of Drosophila subobscura. Biol Cell. 2000 Aug;92(5):341–350. [PubMed]
  • Sciacco M, Bonilla E, Schon EA, DiMauro S, Moraes CT. Distribution of wild-type and common deletion forms of mtDNA in normal and respiration-deficient muscle fibers from patients with mitochondrial myopathy. Hum Mol Genet. 1994 Jan;3(1):13–19. [PubMed]
  • Porteous WK, James AM, Sheard PW, Porteous CM, Packer MA, Hyslop SJ, Melton JV, Pang CY, Wei YH, Murphy MP. Bioenergetic consequences of accumulating the common 4977-bp mitochondrial DNA deletion. Eur J Biochem. 1998 Oct 1;257(1):192–201. [PubMed]
  • Vielhaber S, Kudin A, Schröder R, Elger CE, Kunz WS. Muscle fibres: applications for the study of the metabolic consequences of enzyme deficiencies in skeletal muscle. Biochem Soc Trans. 2000 Feb;28(2):159–164. [PubMed]
  • Holt IJ, Harding AE, Morgan-Hughes JA. Deletions of muscle mitochondrial DNA in patients with mitochondrial myopathies. Nature. 1988 Feb 25;331(6158):717–719. [PubMed]
  • Chomyn A, Meola G, Bresolin N, Lai ST, Scarlato G, Attardi G. In vitro genetic transfer of protein synthesis and respiration defects to mitochondrial DNA-less cells with myopathy-patient mitochondria. Mol Cell Biol. 1991 Apr;11(4):2236–2244. [PMC free article] [PubMed]
  • Yoneda M, Miyatake T, Attardi G. Complementation of mutant and wild-type human mitochondrial DNAs coexisting since the mutation event and lack of complementation of DNAs introduced separately into a cell within distinct organelles. Mol Cell Biol. 1994 Apr;14(4):2699–2712. [PMC free article] [PubMed]
  • Hanna MG, Nelson IP, Morgan-Hughes JA, Harding AE. Impaired mitochondrial translation in human myoblasts harbouring the mitochondrial DNA tRNA lysine 8344 A-->G (MERRF) mutation: relationship to proportion of mutant mitochondrial DNA. J Neurol Sci. 1995 Jun;130(2):154–160. [PubMed]
  • Chomyn A, Martinuzzi A, Yoneda M, Daga A, Hurko O, Johns D, Lai ST, Nonaka I, Angelini C, Attardi G. MELAS mutation in mtDNA binding site for transcription termination factor causes defects in protein synthesis and in respiration but no change in levels of upstream and downstream mature transcripts. Proc Natl Acad Sci U S A. 1992 May 15;89(10):4221–4225. [PMC free article] [PubMed]
  • Moraes CT, Ricci E, Bonilla E, DiMauro S, Schon EA. The mitochondrial tRNA(Leu(UUR)) mutation in mitochondrial encephalomyopathy, lactic acidosis, and strokelike episodes (MELAS): genetic, biochemical, and morphological correlations in skeletal muscle. Am J Hum Genet. 1992 May;50(5):934–949. [PMC free article] [PubMed]
  • Hayashi J, Ohta S, Takai D, Miyabayashi S, Sakuta R, Goto Y, Nonaka I. Accumulation of mtDNA with a mutation at position 3271 in tRNA(Leu)(UUR) gene introduced from a MELAS patient to HeLa cells lacking mtDNA results in progressive inhibition of mitochondrial respiratory function. Biochem Biophys Res Commun. 1993 Dec 30;197(3):1049–1055. [PubMed]
  • de Vries D, de Wijs I, Ruitenbeek W, Begeer J, Smit P, Bentlage H, van Oost B. Extreme variability of clinical symptoms among sibs in a MELAS family correlated with heteroplasmy for the mitochondrial A3243G mutation. J Neurol Sci. 1994 Jun;124(1):77–82. [PubMed]
  • Matthews PM, Brown RM, Morten K, Marchington D, Poulton J, Brown G. Intracellular heteroplasmy for disease-associated point mutations in mtDNA: implications for disease expression and evidence for mitotic segregation of heteroplasmic units of mtDNA. Hum Genet. 1995 Sep;96(3):261–268. [PubMed]
  • Mariotti C, Savarese N, Suomalainen A, Rimoldi M, Comi G, Prelle A, Antozzi C, Servidei S, Jarre L, DiDonato S, et al. Genotype to phenotype correlations in mitochondrial encephalomyopathies associated with the A3243G mutation of mitochondrial DNA. J Neurol. 1995 May;242(5):304–312. [PubMed]
  • Hanna MG, Nelson IP, Morgan-Hughes JA, Wood NW. MELAS: a new disease associated mitochondrial DNA mutation and evidence for further genetic heterogeneity. J Neurol Neurosurg Psychiatry. 1998 Oct;65(4):512–517. [PMC free article] [PubMed]
  • Chinnery PF, Taylor DJ, Brown DT, Manners D, Styles P, Lodi R. Very low levels of the mtDNA A3243G mutation associated with mitochondrial dysfunction in vivo. Ann Neurol. 2000 Mar;47(3):381–384. [PubMed]
  • Tatuch Y, Christodoulou J, Feigenbaum A, Clarke JT, Wherret J, Smith C, Rudd N, Petrova-Benedict R, Robinson BH. Heteroplasmic mtDNA mutation (T----G) at 8993 can cause Leigh disease when the percentage of abnormal mtDNA is high. Am J Hum Genet. 1992 Apr;50(4):852–858. [PMC free article] [PubMed]
  • Campos Y, Martín MA, Rubio JC, Solana LG, García-Benayas C, Terradas JL, Arenas J. Leigh syndrome associated with the T9176C mutation in the ATPase 6 gene of mitochondrial DNA. Neurology. 1997 Aug;49(2):595–597. [PubMed]
  • Guan MX, Enriquez JA, Fischel-Ghodsian N, Puranam RS, Lin CP, Maw MA, Attardi G. The deafness-associated mitochondrial DNA mutation at position 7445, which affects tRNASer(UCN) precursor processing, has long-range effects on NADH dehydrogenase subunit ND6 gene expression. Mol Cell Biol. 1998 Oct;18(10):5868–5879. [PMC free article] [PubMed]
  • Guan MX, Fischel-Ghodsian N, Attardi G. Nuclear background determines biochemical phenotype in the deafness-associated mitochondrial 12S rRNA mutation. Hum Mol Genet. 2001 Mar 15;10(6):573–580. [PubMed]
  • Chinnery PF, Andrews RM, Turnbull DM, Howell NN. Leber hereditary optic neuropathy: Does heteroplasmy influence the inheritance and expression of the G11778A mitochondrial DNA mutation? Am J Med Genet. 2001 Jan 22;98(3):235–243. [PubMed]
  • Gattermann N, Retzlaff S, Wang YL, Hofhaus G, Heinisch J, Aul C, Schneider W. Heteroplasmic point mutations of mitochondrial DNA affecting subunit I of cytochrome c oxidase in two patients with acquired idiopathic sideroblastic anemia. Blood. 1997 Dec 15;90(12):4961–4972. [PubMed]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

  • MedGen
    MedGen
    Related information in MedGen
  • PubMed
    PubMed
    PubMed citations for these articles

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...