• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of biochemjBJ Latest papers and much more!
Biochem J. Jan 1, 2003; 369(Pt 1): 1–15.
PMCID: PMC1223072

Protein kinase CK2: structure, regulation and role in cellular decisions of life and death.

Abstract

Protein kinase CK2 ('casein kinase II') has traditionally been classified as a messenger-independent protein serine/threonine kinase that is typically found in tetrameric complexes consisting of two catalytic (alpha and/or alpha') subunits and two regulatory beta subunits. Accumulated biochemical and genetic evidence indicates that CK2 has a vast array of candidate physiological targets and participates in a complex series of cellular functions, including the maintenance of cell viability. This review summarizes current knowledge of the structural and enzymic features of CK2, and discusses advances that challenge traditional views of this enzyme. For example, the recent demonstrations that individual CK2 subunits exist outside tetrameric complexes and that CK2 displays dual-specificity kinase activity raises new prospects for the precise elucidation of its regulation and cellular functions. This review also discusses a number of the mechanisms that contribute to the regulation of CK2 in cells, and will highlight emerging insights into the role of CK2 in cellular decisions of life and death. In this latter respect, recent evidence suggests that CK2 can exert an anti-apoptotic role by protecting regulatory proteins from caspase-mediated degradation. The mechanistic basis of the observation that CK2 is essential for viability may reside in part in this ability to protect cellular proteins from caspase action. Furthermore, this anti-apoptotic function of CK2 may contribute to its ability to participate in transformation and tumorigenesis.

Full Text

The Full Text of this article is available as a PDF (399K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Krebs EG. The growth of research on protein phosphorylation. Trends Biochem Sci. 1994 Nov;19(11):439–439. [PubMed]
  • Hunter T. Signaling--2000 and beyond. Cell. 2000 Jan 7;100(1):113–127. [PubMed]
  • Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG, Smith HO, Yandell M, Evans CA, Holt RA, et al. The sequence of the human genome. Science. 2001 Feb 16;291(5507):1304–1351. [PubMed]
  • Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W, et al. Initial sequencing and analysis of the human genome. Nature. 2001 Feb 15;409(6822):860–921. [PubMed]
  • Ahn NG, Resing KA. Toward the phosphoproteome. Nat Biotechnol. 2001 Apr;19(4):317–318. [PubMed]
  • Cohen P. The regulation of protein function by multisite phosphorylation--a 25 year update. Trends Biochem Sci. 2000 Dec;25(12):596–601. [PubMed]
  • Pinna LA. Casein kinase 2: an 'eminence grise' in cellular regulation? Biochim Biophys Acta. 1990 Sep 24;1054(3):267–284. [PubMed]
  • Faust M, Montenarh M. Subcellular localization of protein kinase CK2. A key to its function? Cell Tissue Res. 2000 Sep;301(3):329–340. [PubMed]
  • Guerra B, Issinger OG. Protein kinase CK2 and its role in cellular proliferation, development and pathology. Electrophoresis. 1999 Feb;20(2):391–408. [PubMed]
  • Ahmed K. Nuclear matrix and protein kinase CK2 signaling. Crit Rev Eukaryot Gene Expr. 1999;9(3-4):329–336. [PubMed]
  • Ahmed Khalil, Gerber Delphine A, Cochet Claude. Joining the cell survival squad: an emerging role for protein kinase CK2. Trends Cell Biol. 2002 May;12(5):226–230. [PubMed]
  • Allende JE, Allende CC. Protein kinases. 4. Protein kinase CK2: an enzyme with multiple substrates and a puzzling regulation. FASEB J. 1995 Mar;9(5):313–323. [PubMed]
  • Litchfield DW, Lüscher B. Casein kinase II in signal transduction and cell cycle regulation. Mol Cell Biochem. 1993 Nov;127-128:187–199. [PubMed]
  • Pinna LA, Meggio F. Protein kinase CK2 ("casein kinase-2") and its implication in cell division and proliferation. Prog Cell Cycle Res. 1997;3:77–97. [PubMed]
  • Blanquet PR. Casein kinase 2 as a potentially important enzyme in the nervous system. Prog Neurobiol. 2000 Feb;60(3):211–246. [PubMed]
  • Lasa M, Marin O, Pinna LA. Rat liver Golgi apparatus contains a protein kinase similar to the casein kinase of lactating mammary gland. Eur J Biochem. 1997 Feb 1;243(3):719–725. [PubMed]
  • Lozeman FJ, Litchfield DW, Piening C, Takio K, Walsh KA, Krebs EG. Isolation and characterization of human cDNA clones encoding the alpha and the alpha' subunits of casein kinase II. Biochemistry. 1990 Sep 11;29(36):8436–8447. [PubMed]
  • Litchfield DW, Lozeman FJ, Piening C, Sommercorn J, Takio K, Walsh KA, Krebs EG. Subunit structure of casein kinase II from bovine testis. Demonstration that the alpha and alpha' subunits are distinct polypeptides. J Biol Chem. 1990 May 5;265(13):7638–7644. [PubMed]
  • Maridor G, Park W, Krek W, Nigg EA. Casein kinase II. cDNA sequences, developmental expression, and tissue distribution of mRNAs for alpha, alpha', and beta subunits of the chicken enzyme. J Biol Chem. 1991 Feb 5;266(4):2362–2368. [PubMed]
  • Glover CV., 3rd On the physiological role of casein kinase II in Saccharomyces cerevisiae. Prog Nucleic Acid Res Mol Biol. 1998;59:95–133. [PubMed]
  • Xu X, Rich ES, Jr, Seldin DC. Murine protein kinase CK2 alpha': cDNA and genomic cloning and chromosomal mapping. Genomics. 1998 Feb 15;48(1):79–86. [PubMed]
  • Litchfield DW, Bosc DG, Canton DA, Saulnier RB, Vilk G, Zhang C. Functional specialization of CK2 isoforms and characterization of isoform-specific binding partners. Mol Cell Biochem. 2001 Nov;227(1-2):21–29. [PubMed]
  • Shi X, Potvin B, Huang T, Hilgard P, Spray DC, Suadicani SO, Wolkoff AW, Stanley P, Stockert RJ. A novel casein kinase 2 alpha-subunit regulates membrane protein traffic in the human hepatoma cell line HuH-7. J Biol Chem. 2001 Jan 19;276(3):2075–2082. [PubMed]
  • Gietz RD, Graham KC, Litchfield DW. Interactions between the subunits of casein kinase II. J Biol Chem. 1995 Jun 2;270(22):13017–13021. [PubMed]
  • Graham KC, Litchfield DW. The regulatory beta subunit of protein kinase CK2 mediates formation of tetrameric CK2 complexes. J Biol Chem. 2000 Feb 18;275(7):5003–5010. [PubMed]
  • Canton DA, Zhang C, Litchfield DW. Assembly of protein kinase CK2: investigation of complex formation between catalytic and regulatory subunits using a zinc-finger-deficient mutant of CK2beta. Biochem J. 2001 Aug 15;358(Pt 1):87–94. [PMC free article] [PubMed]
  • Boldyreff B, Mietens U, Issinger OG. Structure of protein kinase CK2: dimerization of the human beta-subunit. FEBS Lett. 1996 Jan 29;379(2):153–156. [PubMed]
  • Chantalat L, Leroy D, Filhol O, Nueda A, Benitez MJ, Chambaz EM, Cochet C, Dideberg O. Crystal structure of the human protein kinase CK2 regulatory subunit reveals its zinc finger-mediated dimerization. EMBO J. 1999 Jun 1;18(11):2930–2940. [PMC free article] [PubMed]
  • Niefind K, Guerra B, Ermakowa I, Issinger OG. Crystal structure of human protein kinase CK2: insights into basic properties of the CK2 holoenzyme. EMBO J. 2001 Oct 1;20(19):5320–5331. [PMC free article] [PubMed]
  • Meek DW, Simon S, Kikkawa U, Eckhart W. The p53 tumour suppressor protein is phosphorylated at serine 389 by casein kinase II. EMBO J. 1990 Oct;9(10):3253–3260. [PMC free article] [PubMed]
  • Meggio F, Marin O, Pinna LA. Substrate specificity of protein kinase CK2. Cell Mol Biol Res. 1994;40(5-6):401–409. [PubMed]
  • Hanks SK, Hunter T. Protein kinases 6. The eukaryotic protein kinase superfamily: kinase (catalytic) domain structure and classification. FASEB J. 1995 May;9(8):576–596. [PubMed]
  • Hunter T, Plowman GD. The protein kinases of budding yeast: six score and more. Trends Biochem Sci. 1997 Jan;22(1):18–22. [PubMed]
  • Wilson LK, Dhillon N, Thorner J, Martin GS. Casein kinase II catalyzes tyrosine phosphorylation of the yeast nucleolar immunophilin Fpr3. J Biol Chem. 1997 May 16;272(20):12961–12967. [PubMed]
  • Marin O, Meggio F, Sarno S, Cesaro L, Pagano MA, Pinna LA. Tyrosine versus serine/threonine phosphorylation by protein kinase casein kinase-2. A study with peptide substrates derived from immunophilin Fpr3. J Biol Chem. 1999 Oct 8;274(41):29260–29265. [PubMed]
  • Chardot T, Shen H, Meunier JC. Dual specificity of casein kinase II from the yeast Yarrowia lipolytica. C R Acad Sci III. 1995 Sep;318(9):937–942. [PubMed]
  • Zhu H, Klemic JF, Chang S, Bertone P, Casamayor A, Klemic KG, Smith D, Gerstein M, Reed MA, Snyder M. Analysis of yeast protein kinases using protein chips. Nat Genet. 2000 Nov;26(3):283–289. [PubMed]
  • Bodenbach L, Fauss J, Robitzki A, Krehan A, Lorenz P, Lozeman FJ, Pyerin W. Recombinant human casein kinase II. A study with the complete set of subunits (alpha, alpha' and beta), site-directed autophosphorylation mutants and a bicistronically expressed holoenzyme. Eur J Biochem. 1994 Feb 15;220(1):263–273. [PubMed]
  • Yang-Feng TL, Naiman T, Kopatz I, Eli D, Dafni N, Canaani D. Assignment of the human casein kinase II alpha' subunit gene (CSNK2A1) to chromosome 16p13.2-p13.3. Genomics. 1994 Jan 1;19(1):173–173. [PubMed]
  • Wirkner U, Voss H, Lichter P, Ansorge W, Pyerin W. The human gene (CSNK2A1) coding for the casein kinase II subunit alpha is located on chromosome 20 and contains tandemly arranged Alu repeats. Genomics. 1994 Jan 15;19(2):257–265. [PubMed]
  • Xu X, Toselli PA, Russell LD, Seldin DC. Globozoospermia in mice lacking the casein kinase II alpha' catalytic subunit. Nat Genet. 1999 Sep;23(1):118–121. [PubMed]
  • Hanna DE, Rethinaswamy A, Glover CV. Casein kinase II is required for cell cycle progression during G1 and G2/M in Saccharomyces cerevisiae. J Biol Chem. 1995 Oct 27;270(43):25905–25914. [PubMed]
  • Rethinaswamy A, Birnbaum MJ, Glover CV. Temperature-sensitive mutations of the CKA1 gene reveal a role for casein kinase II in maintenance of cell polarity in Saccharomyces cerevisiae. J Biol Chem. 1998 Mar 6;273(10):5869–5877. [PubMed]
  • Litchfield DW, Lüscher B, Lozeman FJ, Eisenman RN, Krebs EG. Phosphorylation of casein kinase II by p34cdc2 in vitro and at mitosis. J Biol Chem. 1992 Jul 15;267(20):13943–13951. [PubMed]
  • Bosc DG, Slominski E, Sichler C, Litchfield DW. Phosphorylation of casein kinase II by p34cdc2. Identification of phosphorylation sites using phosphorylation site mutants in vitro. J Biol Chem. 1995 Oct 27;270(43):25872–25878. [PubMed]
  • Vilk G, Saulnier RB, St Pierre R, Litchfield DW. Inducible expression of protein kinase CK2 in mammalian cells. Evidence for functional specialization of CK2 isoforms. J Biol Chem. 1999 May 14;274(20):14406–14414. [PubMed]
  • Yu IJ, Spector DL, Bae YS, Marshak DR. Immunocytochemical localization of casein kinase II during interphase and mitosis. J Cell Biol. 1991 Sep;114(6):1217–1232. [PMC free article] [PubMed]
  • Krek W, Maridor G, Nigg EA. Casein kinase II is a predominantly nuclear enzyme. J Cell Biol. 1992 Jan;116(1):43–55. [PMC free article] [PubMed]
  • Schmidt-Spaniol I, Grimm B, Issinger OG. Subcellular localization of protein kinase CK-2 alpha- and beta-subunits in synchronized cells from primary human fibroblasts and established cell lines. Cell Mol Biol Res. 1993;39(8):761–772. [PubMed]
  • Penner CG, Wang Z, Litchfield DW. Expression and localization of epitope-tagged protein kinase CK2. J Cell Biochem. 1997 Mar 15;64(4):525–537. [PubMed]
  • Hilgard Philip, Huang Tianmin, Wolkoff Allan W, Stockert Richard J. Translated Alu sequence determines nuclear localization of a novel catalytic subunit of casein kinase 2. Am J Physiol Cell Physiol. 2002 Aug;283(2):C472–C483. [PubMed]
  • Hériché JK, Lebrin F, Rabilloud T, Leroy D, Chambaz EM, Goldberg Y. Regulation of protein phosphatase 2A by direct interaction with casein kinase 2alpha. Science. 1997 May 9;276(5314):952–955. [PubMed]
  • Bosc DG, Graham KC, Saulnier RB, Zhang C, Prober D, Gietz RD, Litchfield DW. Identification and characterization of CKIP-1, a novel pleckstrin homology domain-containing protein that interacts with protein kinase CK2. J Biol Chem. 2000 May 12;275(19):14295–14306. [PubMed]
  • Messenger Moira M, Saulnier Ronald B, Gilchrist Andrew D, Diamond Phaedra, Gorbsky Gary J, Litchfield David W. Interactions between protein kinase CK2 and Pin1. Evidence for phosphorylation-dependent interactions. J Biol Chem. 2002 Jun 21;277(25):23054–23064. [PubMed]
  • Zhou XZ, Lu PJ, Wulf G, Lu KP. Phosphorylation-dependent prolyl isomerization: a novel signaling regulatory mechanism. Cell Mol Life Sci. 1999 Nov 30;56(9-10):788–806. [PubMed]
  • Gavin Anne-Claude, Bösche Markus, Krause Roland, Grandi Paola, Marzioch Martina, Bauer Andreas, Schultz Jörg, Rick Jens M, Michon Anne-Marie, Cruciat Cristina-Maria, et al. Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature. 2002 Jan 10;415(6868):141–147. [PubMed]
  • Ho Yuen, Gruhler Albrecht, Heilbut Adrian, Bader Gary D, Moore Lynda, Adams Sally-Lin, Millar Anna, Taylor Paul, Bennett Keiryn, Boutilier Kelly, et al. Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature. 2002 Jan 10;415(6868):180–183. [PubMed]
  • von Mering Christian, Krause Roland, Snel Berend, Cornell Michael, Oliver Stephen G, Fields Stanley, Bork Peer. Comparative assessment of large-scale data sets of protein-protein interactions. Nature. 2002 May 23;417(6887):399–403. [PubMed]
  • Boldyreff B, Piontek K, Schmidt-Spaniol I, Issinger OG. The beta subunit of casein kinase II: cloning of cDNAs from murine and porcine origin and expression of the porcine sequence as a fusion protein. Biochim Biophys Acta. 1991 Mar 26;1088(3):439–441. [PubMed]
  • Jakobi R, Voss H, Pyerin W. Human phosvitin/casein kinase type II. Molecular cloning and sequencing of full-length cDNA encoding subunit beta. Eur J Biochem. 1989 Jul 15;183(1):227–233. [PubMed]
  • Heller-Harrison RA, Meisner H, Czech MP. Cloning and characterization of a cDNA encoding the beta subunit of human casein kinase II. Biochemistry. 1989 Nov 14;28(23):9053–9058. [PubMed]
  • Jedlicki A, Hinrichs MV, Allende CC, Allende JE. The cDNAs coding for the alpha- and beta-subunits of Xenopus laevis casein kinase II. FEBS Lett. 1992 Feb 10;297(3):280–284. [PubMed]
  • Boldyreff B, James P, Staudenmann W, Issinger OG. Ser2 is the autophosphorylation site in the beta subunit from bicistronically expressed human casein kinase-2 and from native rat liver casein kinase-2 beta. Eur J Biochem. 1993 Dec 1;218(2):515–521. [PubMed]
  • Litchfield DW, Lozeman FJ, Cicirelli MF, Harrylock M, Ericsson LH, Piening CJ, Krebs EG. Phosphorylation of the beta subunit of casein kinase II in human A431 cells. Identification of the autophosphorylation site and a site phosphorylated by p34cdc2. J Biol Chem. 1991 Oct 25;266(30):20380–20389. [PubMed]
  • Meggio F, Pinna LA. Subunit structure and autophosphorylation mechanism of casein kinase-TS (type-2) from rat liver cytosol. Eur J Biochem. 1984 Dec 17;145(3):593–599. [PubMed]
  • Glover CV. A filamentous form of Drosophila casein kinase II. J Biol Chem. 1986 Oct 25;261(30):14349–14354. [PubMed]
  • Valero E, De Bonis S, Filhol O, Wade RH, Langowski J, Chambaz EM, Cochet C. Quaternary structure of casein kinase 2. Characterization of multiple oligomeric states and relation with its catalytic activity. J Biol Chem. 1995 Apr 7;270(14):8345–8352. [PubMed]
  • Lüscher B, Litchfield DW. Biosynthesis of casein kinase II in lymphoid cell lines. Eur J Biochem. 1994 Mar 1;220(2):521–526. [PubMed]
  • Litchfield DW, Bosc DG, Slominski E. The protein kinase from mitotic human cells that phosphorylates Ser-209 on the casein kinase II beta-subunit is p34cdc2. Biochim Biophys Acta. 1995 Oct 19;1269(1):69–78. [PubMed]
  • Meggio F, Boldyreff B, Marin O, Issinger OG, Pinna LA. Phosphorylation and activation of protein kinase CK2 by p34cdc2 are independent events. Eur J Biochem. 1995 Jun 15;230(3):1025–1031. [PubMed]
  • Glotzer M, Murray AW, Kirschner MW. Cyclin is degraded by the ubiquitin pathway. Nature. 1991 Jan 10;349(6305):132–138. [PubMed]
  • Hershko A, Ciechanover A. The ubiquitin system. Annu Rev Biochem. 1998;67:425–479. [PubMed]
  • Zhang Cunjie, Vilk Greg, Canton David A, Litchfield David W. Phosphorylation regulates the stability of the regulatory CK2beta subunit. Oncogene. 2002 May 23;21(23):3754–3764. [PubMed]
  • King RW, Glotzer M, Kirschner MW. Mutagenic analysis of the destruction signal of mitotic cyclins and structural characterization of ubiquitinated intermediates. Mol Biol Cell. 1996 Sep;7(9):1343–1357. [PMC free article] [PubMed]
  • Boldyreff B, Meggio F, Pinna LA, Issinger OG. Efficient autophosphorylation and phosphorylation of the beta-subunit by casein kinase-2 require the integrity of an acidic cluster 50 residues downstream from the phosphoacceptor site. J Biol Chem. 1994 Feb 18;269(7):4827–4831. [PubMed]
  • Leroy D, Heriché JK, Filhol O, Chambaz EM, Cochet C. Binding of polyamines to an autonomous domain of the regulatory subunit of protein kinase CK2 induces a conformational change in the holoenzyme. A proposed role for the kinase stimulation. J Biol Chem. 1997 Aug 15;272(33):20820–20827. [PubMed]
  • Marin O, Meggio F, Sarno S, Pinna LA. Physical dissection of the structural elements responsible for regulatory properties and intersubunit interactions of protein kinase CK2 beta-subunit. Biochemistry. 1997 Jun 10;36(23):7192–7198. [PubMed]
  • Soderling TR. Protein kinases. Regulation by autoinhibitory domains. J Biol Chem. 1990 Feb 5;265(4):1823–1826. [PubMed]
  • Kobe B, Heierhorst J, Kemp BE. Intrasteric regulation of protein kinases. Adv Second Messenger Phosphoprotein Res. 1997;31:29–40. [PubMed]
  • Leroy D, Schmid N, Behr JP, Filhol O, Pares S, Garin J, Bourgarit JJ, Chambaz EM, Cochet C. Direct identification of a polyamine binding domain on the regulatory subunit of the protein kinase casein kinase 2 by photoaffinity labeling. J Biol Chem. 1995 Jul 21;270(29):17400–17406. [PubMed]
  • Meggio F, Boldyreff B, Issinger OG, Pińna LA. Casein kinase 2 down-regulation and activation by polybasic peptides are mediated by acidic residues in the 55-64 region of the beta-subunit. A study with calmodulin as phosphorylatable substrate. Biochemistry. 1994 Apr 12;33(14):4336–4342. [PubMed]
  • Kusk M, Bendixen C, Dunø M, Westergaard O, Thomsen B. Genetic dissection of intersubunit contacts within human protein kinase CK2. J Mol Biol. 1995 Nov 10;253(5):703–711. [PubMed]
  • Meggio F, Boldyreff B, Marin O, Pinna LA, Issinger OG. Role of the beta subunit of casein kinase-2 on the stability and specificity of the recombinant reconstituted holoenzyme. Eur J Biochem. 1992 Feb 15;204(1):293–297. [PubMed]
  • Marin O, Meggio F, Pinna LA. Structural features underlying the unusual mode of calmodulin phosphorylation by protein kinase CK2: A study with synthetic calmodulin fragments. Biochem Biophys Res Commun. 1999 Mar 16;256(2):442–446. [PubMed]
  • Li D, Meier UT, Dobrowolska G, Krebs EG. Specific interaction between casein kinase 2 and the nucleolar protein Nopp140. J Biol Chem. 1997 Feb 7;272(6):3773–3779. [PubMed]
  • Filhol O, Baudier J, Delphin C, Loue-Mackenbach P, Chambaz EM, Cochet C. Casein kinase II and the tumor suppressor protein P53 associate in a molecular complex that is negatively regulated upon P53 phosphorylation. J Biol Chem. 1992 Oct 15;267(29):20577–20583. [PubMed]
  • Appel K, Wagner P, Boldyreff B, Issinger OG, Montenarh M. Mapping of the interaction sites of the growth suppressor protein p53 with the regulatory beta-subunit of protein kinase CK2. Oncogene. 1995 Nov 16;11(10):1971–1978. [PubMed]
  • Jensen HH, Hjerrild M, Guerra B, Larsen MR, Højrup P, Boldyreff B. Phosphorylation of the Fas associated factor FAF1 by protein kinase CK2 and identification of serines 289 and 291 as the in vitro phosphorylation sites. Int J Biochem Cell Biol. 2001 Jun;33(6):577–589. [PubMed]
  • Bojanowski K, Filhol O, Cochet C, Chambaz EM, Larsen AK. DNA topoisomerase II and casein kinase II associate in a molecular complex that is catalytically active. J Biol Chem. 1993 Oct 25;268(30):22920–22926. [PubMed]
  • Raman C, Kuo A, Deshane J, Litchfield DW, Kimberly RP. Regulation of casein kinase 2 by direct interaction with cell surface receptor CD5. J Biol Chem. 1998 Jul 24;273(30):19183–19189. [PubMed]
  • Bonnet H, Filhol O, Truchet I, Brethenou P, Cochet C, Amalric F, Bouche G. Fibroblast growth factor-2 binds to the regulatory beta subunit of CK2 and directly stimulates CK2 activity toward nucleolin. J Biol Chem. 1996 Oct 4;271(40):24781–24787. [PubMed]
  • Guerra B, Siemer S, Boldyreff B, Issinger OG. Protein kinase CK2: evidence for a protein kinase CK2beta subunit fraction, devoid of the catalytic CK2alpha subunit, in mouse brain and testicles. FEBS Lett. 1999 Dec 3;462(3):353–357. [PubMed]
  • Chen M, Li D, Krebs EG, Cooper JA. The casein kinase II beta subunit binds to Mos and inhibits Mos activity. Mol Cell Biol. 1997 Apr;17(4):1904–1912. [PMC free article] [PubMed]
  • Boldyreff B, Issinger OG. A-Raf kinase is a new interacting partner of protein kinase CK2 beta subunit. FEBS Lett. 1997 Feb 17;403(2):197–199. [PubMed]
  • Hagemann C, Kalmes A, Wixler V, Wixler L, Schuster T, Rapp UR. The regulatory subunit of protein kinase CK2 is a specific A-Raf activator. FEBS Lett. 1997 Feb 17;403(2):200–202. [PubMed]
  • Chen M, Cooper JA. The beta subunit of CKII negatively regulates Xenopus oocyte maturation. Proc Natl Acad Sci U S A. 1997 Aug 19;94(17):9136–9140. [PMC free article] [PubMed]
  • Roussou I, Draetta G. The Schizosaccharomyces pombe casein kinase II alpha and beta subunits: evolutionary conservation and positive role of the beta subunit. Mol Cell Biol. 1994 Jan;14(1):576–586. [PMC free article] [PubMed]
  • Li D, Dobrowolska G, Aicher LD, Chen M, Wright JH, Drueckes P, Dunphy EL, Munar ES, Krebs EG. Expression of the casein kinase 2 subunits in Chinese hamster ovary and 3T3 L1 cells provides information on the role of the enzyme in cell proliferation and the cell cycle. J Biol Chem. 1999 Nov 12;274(46):32988–32996. [PubMed]
  • Vilk G, Derksen DR, Litchfield DW. Inducible expression of the regulatory protein kinase CK2beta subunit: incorporation into complexes with catalytic CK2 subunits and re-examination of the effects of CK2beta on cell proliferation. J Cell Biochem. 2001;84(1):84–99. [PubMed]
  • Lebrin F, Chambaz EM, Bianchini L. A role for protein kinase CK2 in cell proliferation: evidence using a kinase-inactive mutant of CK2 catalytic subunit alpha. Oncogene. 2001 Apr 12;20(16):2010–2022. [PubMed]
  • Litchfield DW, Dobrowolska G, Krebs EG. Regulation of casein kinase II by growth factors: a reevaluation. Cell Mol Biol Res. 1994;40(5-6):373–381. [PubMed]
  • Pavletich NP. Mechanisms of cyclin-dependent kinase regulation: structures of Cdks, their cyclin activators, and Cip and INK4 inhibitors. J Mol Biol. 1999 Apr 16;287(5):821–828. [PubMed]
  • Pines J. Cyclins and cyclin-dependent kinases: a biochemical view. Biochem J. 1995 Jun 15;308(Pt 3):697–711. [PMC free article] [PubMed]
  • Carroll D, Marshak DR. Serum-stimulated cell growth causes oscillations in casein kinase II activity. J Biol Chem. 1989 May 5;264(13):7345–7348. [PubMed]
  • Bosc DG, Lüscher B, Litchfield DW. Expression and regulation of protein kinase CK2 during the cell cycle. Mol Cell Biochem. 1999 Jan;191(1-2):213–222. [PubMed]
  • Münstermann U, Fritz G, Seitz G, Lu YP, Schneider HR, Issinger OG. Casein kinase II is elevated in solid human tumours and rapidly proliferating non-neoplastic tissue. Eur J Biochem. 1990 Apr 30;189(2):251–257. [PubMed]
  • Orlandini M, Semplici F, Ferruzzi R, Meggio F, Pinna LA, Oliviero S. Protein kinase CK2alpha' is induced by serum as a delayed early gene and cooperates with Ha-ras in fibroblast transformation. J Biol Chem. 1998 Aug 14;273(33):21291–21297. [PubMed]
  • Cochet C, Chambaz EM. Oligomeric structure and catalytic activity of G type casein kinase. Isolation of the two subunits and renaturation experiments. J Biol Chem. 1983 Feb 10;258(3):1403–1406. [PubMed]
  • Martel V, Filhol O, Nueda A, Gerber D, Benitez MJ, Cochet C. Visualization and molecular analysis of nuclear import of protein kinase CK2 subunits in living cells. Mol Cell Biochem. 2001 Nov;227(1-2):81–90. [PubMed]
  • Allende CC, Allende JE. Promiscuous subunit interactions: a possible mechanism for the regulation of protein kinase CK2. J Cell Biochem Suppl. 1998;30-31:129–136. [PubMed]
  • Cobb MH, Goldsmith EJ. How MAP kinases are regulated. J Biol Chem. 1995 Jun 23;270(25):14843–14846. [PubMed]
  • Taylor SS, Radzio-Andzelm E. Three protein kinase structures define a common motif. Structure. 1994 May 15;2(5):345–355. [PubMed]
  • Hu E, Rubin CS. Expression of wild-type and mutated forms of the catalytic (alpha) subunit of Caenorhabditis elegans casein kinase II in Escherichia coli. J Biol Chem. 1990 Nov 25;265(33):20609–20615. [PubMed]
  • Grankowski N, Boldyreff B, Issinger OG. Isolation and characterization of recombinant human casein kinase II subunits alpha and beta from bacteria. Eur J Biochem. 1991 May 23;198(1):25–30. [PubMed]
  • Hinrichs MV, Jedlicki A, Tellez R, Pongor S, Gatica M, Allende CC, Allende JE. Activity of recombinant alpha and beta subunits of casein kinase II from Xenopus laevis. Biochemistry. 1993 Jul 20;32(28):7310–7316. [PubMed]
  • Agostinis P, Goris J, Pinna LA, Merlevede W. Regulation of casein kinase 2 by phosphorylation/dephosphorylation. Biochem J. 1987 Dec 15;248(3):785–789. [PMC free article] [PubMed]
  • Sanghera JS, Charlton LA, Paddon HB, Pelech SL. Purification and characterization of echinoderm casein kinase II. Regulation by protein kinase C. Biochem J. 1992 May 1;283(Pt 3):829–837. [PMC free article] [PubMed]
  • Ackerman P, Glover CV, Osheroff N. Stimulation of casein kinase II by epidermal growth factor: relationship between the physiological activity of the kinase and the phosphorylation state of its beta subunit. Proc Natl Acad Sci U S A. 1990 Jan;87(2):821–825. [PMC free article] [PubMed]
  • Mulner-Lorillon O, Cormier P, Labbé JC, Dorée M, Poulhe R, Osborne H, Bellé R. M-phase-specific cdc2 protein kinase phosphorylates the beta subunit of casein kinase II and increases casein kinase II activity. Eur J Biochem. 1990 Oct 24;193(2):529–534. [PubMed]
  • Palen E, Traugh JA. Phosphorylation of casein kinase II. Biochemistry. 1991 Jun 4;30(22):5586–5590. [PubMed]
  • Donella-Deana A, Cesaro L, Sarno S, Brunati AM, Ruzzene M, Pinna LA. Autocatalytic tyrosine-phosphorylation of protein kinase CK2 alpha and alpha' subunits: implication of Tyr182. Biochem J. 2001 Jul 15;357(Pt 2):563–567. [PMC free article] [PubMed]
  • Hériché JK, Chambaz EM. Protein kinase CK2alpha is a target for the Abl and Bcr-Abl tyrosine kinases. Oncogene. 1998 Jul 9;17(1):13–18. [PubMed]
  • Tuazon PT, Traugh JA. Casein kinase I and II--multipotential serine protein kinases: structure, function, and regulation. Adv Second Messenger Phosphoprotein Res. 1991;23:123–164. [PubMed]
  • Shore LJ, Soler AP, Gilmour SK. Ornithine decarboxylase expression leads to translocation and activation of protein kinase CK2 in vivo. J Biol Chem. 1997 May 9;272(19):12536–12543. [PubMed]
  • Pawson T, Scott JD. Signaling through scaffold, anchoring, and adaptor proteins. Science. 1997 Dec 19;278(5346):2075–2080. [PubMed]
  • Pawson T, Nash P. Protein-protein interactions define specificity in signal transduction. Genes Dev. 2000 May 1;14(9):1027–1047. [PubMed]
  • Michel Jennifer J Carlisle, Scott John D. AKAP mediated signal transduction. Annu Rev Pharmacol Toxicol. 2002;42:235–257. [PubMed]
  • Schillace RV, Scott JD. Organization of kinases, phosphatases, and receptor signaling complexes. J Clin Invest. 1999 Mar;103(6):761–765. [PMC free article] [PubMed]
  • Li D, Dobrowolska G, Krebs EG. The physical association of casein kinase 2 with nucleolin. J Biol Chem. 1996 Jun 28;271(26):15662–15668. [PubMed]
  • Skjerpen Camilla Skiple, Nilsen Trine, Wesche Jørgen, Olsnes Sjur. Binding of FGF-1 variants to protein kinase CK2 correlates with mitogenicity. EMBO J. 2002 Aug 1;21(15):4058–4069. [PMC free article] [PubMed]
  • Miyata Y, Yahara I. Interaction between casein kinase II and the 90-kDa stress protein, HSP90. Biochemistry. 1995 Jun 27;34(25):8123–8129. [PubMed]
  • Kimura Y, Rutherford SL, Miyata Y, Yahara I, Freeman BC, Yue L, Morimoto RI, Lindquist S. Cdc37 is a molecular chaperone with specific functions in signal transduction. Genes Dev. 1997 Jul 15;11(14):1775–1785. [PubMed]
  • Faust M, Schuster N, Montenarh M. Specific binding of protein kinase CK2 catalytic subunits to tubulin. FEBS Lett. 1999 Nov 26;462(1-2):51–56. [PubMed]
  • Gerber DA, Souquere-Besse S, Puvion F, Dubois MF, Bensaude O, Cochet C. Heat-induced relocalization of protein kinase CK2. Implication of CK2 in the context of cellular stress. J Biol Chem. 2000 Aug 4;275(31):23919–23926. [PubMed]
  • Davis Alan T, Wang Huamin, Zhang Ping, Ahmed Khalil. Heat shock mediated modulation of protein kinase CK2 in the nuclear matrix. J Cell Biochem. 2002;85(3):583–591. [PubMed]
  • Keller DM, Zeng X, Wang Y, Zhang QH, Kapoor M, Shu H, Goodman R, Lozano G, Zhao Y, Lu H. A DNA damage-induced p53 serine 392 kinase complex contains CK2, hSpt16, and SSRP1. Mol Cell. 2001 Feb;7(2):283–292. [PubMed]
  • Sarrouilhe D, Filhol O, Leroy D, Bonello G, Baudry M, Chambaz EM, Cochet C. The tight association of protein kinase CK2 with plasma membranes is mediated by a specific domain of its regulatory beta-subunit. Biochim Biophys Acta. 1998 Jun 22;1403(2):199–210. [PubMed]
  • Dittié AS, Thomas L, Thomas G, Tooze SA. Interaction of furin in immature secretory granules from neuroendocrine cells with the AP-1 adaptor complex is modulated by casein kinase II phosphorylation. EMBO J. 1997 Aug 15;16(16):4859–4870. [PMC free article] [PubMed]
  • Mauxion F, Le Borgne R, Munier-Lehmann H, Hoflack B. A casein kinase II phosphorylation site in the cytoplasmic domain of the cation-dependent mannose 6-phosphate receptor determines the high affinity interaction of the AP-1 Golgi assembly proteins with membranes. J Biol Chem. 1996 Jan 26;271(4):2171–2178. [PubMed]
  • Wong HN, Ward MA, Bell AW, Chevet E, Bains S, Blackstock WP, Solari R, Thomas DY, Bergeron JJ. Conserved in vivo phosphorylation of calnexin at casein kinase II sites as well as a protein kinase C/proline-directed kinase site. J Biol Chem. 1998 Jul 3;273(27):17227–17235. [PubMed]
  • Issinger OG. Purification and properties of a ribosomal casein kinase from rabbit reticulocytes. Biochem J. 1977 Sep 1;165(3):511–518. [PMC free article] [PubMed]
  • Walter J, Schnölzer M, Pyerin W, Kinzel V, Kübler D. Induced release of cell surface protein kinase yields CK1- and CK2-like enzymes in tandem. J Biol Chem. 1996 Jan 5;271(1):111–119. [PubMed]
  • Kikkawa U, Mann SK, Firtel RA, Hunter T. Molecular cloning of casein kinase II alpha subunit from Dictyostelium discoideum and its expression in the life cycle. Mol Cell Biol. 1992 Dec;12(12):5711–5723. [PMC free article] [PubMed]
  • Fraser AG, Kamath RS, Zipperlen P, Martinez-Campos M, Sohrmann M, Ahringer J. Functional genomic analysis of C. elegans chromosome I by systematic RNA interference. Nature. 2000 Nov 16;408(6810):325–330. [PubMed]
  • Landesman-Bollag E, Romieu-Mourez R, Song DH, Sonenshein GE, Cardiff RD, Seldin DC. Protein kinase CK2 in mammary gland tumorigenesis. Oncogene. 2001 May 31;20(25):3247–3257. [PubMed]
  • Yenice S, Davis AT, Goueli SA, Akdas A, Limas C, Ahmed K. Nuclear casein kinase 2 (CK-2) activity in human normal, benign hyperplastic, and cancerous prostate. Prostate. 1994;24(1):11–16. [PubMed]
  • Daya-Makin M, Sanghera JS, Mogentale TL, Lipp M, Parchomchuk J, Hogg JC, Pelech SL. Activation of a tumor-associated protein kinase (p40TAK) and casein kinase 2 in human squamous cell carcinomas and adenocarcinomas of the lung. Cancer Res. 1994 Apr 15;54(8):2262–2268. [PubMed]
  • Faust RA, Gapany M, Tristani P, Davis A, Adams GL, Ahmed K. Elevated protein kinase CK2 activity in chromatin of head and neck tumors: association with malignant transformation. Cancer Lett. 1996 Mar 19;101(1):31–35. [PubMed]
  • Stalter G, Siemer S, Becht E, Ziegler M, Remberger K, Issinger OG. Asymmetric expression of protein kinase CK2 subunits in human kidney tumors. Biochem Biophys Res Commun. 1994 Jul 15;202(1):141–147. [PubMed]
  • ole-MoiYoi OK, Brown WC, Iams KP, Nayar A, Tsukamoto T, Macklin MD. Evidence for the induction of casein kinase II in bovine lymphocytes transformed by the intracellular protozoan parasite Theileria parva. EMBO J. 1993 Apr;12(4):1621–1631. [PMC free article] [PubMed]
  • Saha S, Bardelli A, Buckhaults P, Velculescu VE, Rago C, St Croix B, Romans KE, Choti MA, Lengauer C, Kinzler KW, et al. A phosphatase associated with metastasis of colorectal cancer. Science. 2001 Nov 9;294(5545):1343–1346. [PubMed]
  • Seldin DC, Leder P. Casein kinase II alpha transgene-induced murine lymphoma: relation to theileriosis in cattle. Science. 1995 Feb 10;267(5199):894–897. [PubMed]
  • Kelliher MA, Seldin DC, Leder P. Tal-1 induces T cell acute lymphoblastic leukemia accelerated by casein kinase IIalpha. EMBO J. 1996 Oct 1;15(19):5160–5166. [PMC free article] [PubMed]
  • Landesman-Bollag E, Channavajhala PL, Cardiff RD, Seldin DC. p53 deficiency and misexpression of protein kinase CK2alpha collaborate in the development of thymic lymphomas in mice. Oncogene. 1998 Jun 11;16(23):2965–2974. [PubMed]
  • Channavajhala Padmalatha, Seldin David C. Functional interaction of protein kinase CK2 and c-Myc in lymphomagenesis. Oncogene. 2002 Aug 8;21(34):5280–5288. [PubMed]
  • Henriksson M, Lüscher B. Proteins of the Myc network: essential regulators of cell growth and differentiation. Adv Cancer Res. 1996;68:109–182. [PubMed]
  • Oelgeschläger M, Krieg J, Lüscher-Firzlaff JM, Lüscher B. Casein kinase II phosphorylation site mutations in c-Myb affect DNA binding and transcriptional cooperativity with NF-M. Mol Cell Biol. 1995 Nov;15(11):5966–5974. [PMC free article] [PubMed]
  • Lin A, Frost J, Deng T, Smeal T, al-Alawi N, Kikkawa U, Hunter T, Brenner D, Karin M. Casein kinase II is a negative regulator of c-Jun DNA binding and AP-1 activity. Cell. 1992 Sep 4;70(5):777–789. [PubMed]
  • O'Brien KA, Lemke SJ, Cocke KS, Rao RN, Beckmann RP. Casein kinase 2 binds to and phosphorylates BRCA1. Biochem Biophys Res Commun. 1999 Jul 14;260(3):658–664. [PubMed]
  • Bousset K, Henriksson M, Lüscher-Firzlaff JM, Litchfield DW, Lüscher B. Identification of casein kinase II phosphorylation sites in Max: effects on DNA-binding kinetics of Max homo- and Myc/Max heterodimers. Oncogene. 1993 Dec;8(12):3211–3220. [PubMed]
  • Koskinen PJ, Västrik I, Mäkelä TP, Eisenman RN, Alitalo K. Max activity is affected by phosphorylation at two NH2-terminal sites. Cell Growth Differ. 1994 Mar;5(3):313–320. [PubMed]
  • Coqueret O, Martin N, Bérubé G, Rabbat M, Litchfield DW, Nepveu A. DNA binding by cut homeodomain proteins is down-modulated by casein kinase II. J Biol Chem. 1998 Jan 30;273(5):2561–2566. [PubMed]
  • Lodie TA, Savedra R, Jr, Golenbock DT, Van Beveren CP, Maki RA, Fenton MJ. Stimulation of macrophages by lipopolysaccharide alters the phosphorylation state, conformation, and function of PU.1 via activation of casein kinase II. J Immunol. 1997 Feb 15;158(4):1848–1856. [PubMed]
  • Yee AA, Yin P, Siderovski DP, Mak TW, Litchfield DW, Arrowsmith CH. Cooperative interaction between the DNA-binding domains of PU.1 and IRF4. J Mol Biol. 1998 Jun 26;279(5):1075–1083. [PubMed]
  • Ford HL, Landesman-Bollag E, Dacwag CS, Stukenberg PT, Pardee AB, Seldin DC. Cell cycle-regulated phosphorylation of the human SIX1 homeodomain protein. J Biol Chem. 2000 Jul 21;275(29):22245–22254. [PubMed]
  • Willert K, Brink M, Wodarz A, Varmus H, Nusse R. Casein kinase 2 associates with and phosphorylates dishevelled. EMBO J. 1997 Jun 2;16(11):3089–3096. [PMC free article] [PubMed]
  • Song DH, Sussman DJ, Seldin DC. Endogenous protein kinase CK2 participates in Wnt signaling in mammary epithelial cells. J Biol Chem. 2000 Aug 4;275(31):23790–23797. [PubMed]
  • Landesman-Bollag E, Song DH, Romieu-Mourez R, Sussman DJ, Cardiff RD, Sonenshein GE, Seldin DC. Protein kinase CK2: signaling and tumorigenesis in the mammary gland. Mol Cell Biochem. 2001 Nov;227(1-2):153–165. [PubMed]
  • Davies SP, Reddy H, Caivano M, Cohen P. Specificity and mechanism of action of some commonly used protein kinase inhibitors. Biochem J. 2000 Oct 1;351(Pt 1):95–105. [PMC free article] [PubMed]
  • Niefind K, Pütter M, Guerra B, Issinger OG, Schomburg D. GTP plus water mimic ATP in the active site of protein kinase CK2. Nat Struct Biol. 1999 Dec;6(12):1100–1103. [PubMed]
  • Sarno S, Reddy H, Meggio F, Ruzzene M, Davies SP, Donella-Deana A, Shugar D, Pinna LA. Selectivity of 4,5,6,7-tetrabromobenzotriazole, an ATP site-directed inhibitor of protein kinase CK2 ('casein kinase-2'). FEBS Lett. 2001 May 4;496(1):44–48. [PubMed]
  • Shen J, Channavajhala P, Seldin DC, Sonenshein GE. Phosphorylation by the protein kinase CK2 promotes calpain-mediated degradation of IkappaBalpha. J Immunol. 2001 Nov 1;167(9):4919–4925. [PubMed]
  • Blaydes JP, Hupp TR. DNA damage triggers DRB-resistant phosphorylation of human p53 at the CK2 site. Oncogene. 1998 Aug 27;17(8):1045–1052. [PubMed]
  • Eyers PA, van den IJssel P, Quinlan RA, Goedert M, Cohen P. Use of a drug-resistant mutant of stress-activated protein kinase 2a/p38 to validate the in vivo specificity of SB 203580. FEBS Lett. 1999 May 21;451(2):191–196. [PubMed]
  • Battistutta R, De Moliner E, Sarno S, Zanotti G, Pinna LA. Structural features underlying selective inhibition of protein kinase CK2 by ATP site-directed tetrabromo-2-benzotriazole. Protein Sci. 2001 Nov;10(11):2200–2206. [PMC free article] [PubMed]
  • Cardenas ME, Dang Q, Glover CV, Gasser SM. Casein kinase II phosphorylates the eukaryote-specific C-terminal domain of topoisomerase II in vivo. EMBO J. 1992 May;11(5):1785–1796. [PMC free article] [PubMed]
  • Ulloa L, Díaz-Nido J, Avila J. Depletion of casein kinase II by antisense oligonucleotide prevents neuritogenesis in neuroblastoma cells. EMBO J. 1993 Apr;12(4):1633–1640. [PMC free article] [PubMed]
  • Sayed M, Pelech S, Wong C, Marotta A, Salh B. Protein kinase CK2 is involved in G2 arrest and apoptosis following spindle damage in epithelial cells. Oncogene. 2001 Oct 25;20(48):6994–7005. [PubMed]
  • Wang H, Davis A, Yu S, Ahmed K. Response of cancer cells to molecular interruption of the CK2 signal. Mol Cell Biochem. 2001 Nov;227(1-2):167–174. [PubMed]
  • Pepperkok R, Lorenz P, Jakobi R, Ansorge W, Pyerin W. Cell growth stimulation by EGF: inhibition through antisense-oligodeoxynucleotides demonstrates important role of casein kinase II. Exp Cell Res. 1991 Dec;197(2):245–253. [PubMed]
  • Lorenz P, Pepperkok R, Ansorge W, Pyerin W. Cell biological studies with monoclonal and polyclonal antibodies against human casein kinase II subunit beta demonstrate participation of the kinase in mitogenic signaling. J Biol Chem. 1993 Feb 5;268(4):2733–2739. [PubMed]
  • Pepperkok R, Lorenz P, Ansorge W, Pyerin W. Casein kinase II is required for transition of G0/G1, early G1, and G1/S phases of the cell cycle. J Biol Chem. 1994 Mar 4;269(9):6986–6991. [PubMed]
  • Winkler KE, Swenson KI, Kornbluth S, Means AR. Requirement of the prolyl isomerase Pin1 for the replication checkpoint. Science. 2000 Mar 3;287(5458):1644–1647. [PubMed]
  • Russo GL, Vandenberg MT, Yu IJ, Bae YS, Franza BR, Jr, Marshak DR. Casein kinase II phosphorylates p34cdc2 kinase in G1 phase of the HeLa cell division cycle. J Biol Chem. 1992 Oct 5;267(28):20317–20325. [PubMed]
  • Block K, Boyer TG, Yew PR. Phosphorylation of the human ubiquitin-conjugating enzyme, CDC34, by casein kinase 2. J Biol Chem. 2001 Nov 2;276(44):41049–41058. [PubMed]
  • Daum JR, Gorbsky GJ. Casein kinase II catalyzes a mitotic phosphorylation on threonine 1342 of human DNA topoisomerase IIalpha, which is recognized by the 3F3/2 phosphoepitope antibody. J Biol Chem. 1998 Nov 13;273(46):30622–30629. [PubMed]
  • Escargueil AE, Plisov SY, Filhol O, Cochet C, Larsen AK. Mitotic phosphorylation of DNA topoisomerase II alpha by protein kinase CK2 creates the MPM-2 phosphoepitope on Ser-1469. J Biol Chem. 2000 Nov 3;275(44):34710–34718. [PubMed]
  • Birnbaum MJ, Glover VC. The phosphotransferase activity of casein kinase II is required for its physiological function in vivo. Biochem Biophys Res Commun. 1991 Dec 16;181(2):524–528. [PubMed]
  • Krippner-Heidenreich A, Talanian RV, Sekul R, Kraft R, Thole H, Ottleben H, Lüscher B. Targeting of the transcription factor Max during apoptosis: phosphorylation-regulated cleavage by caspase-5 at an unusual glutamic acid residue in position P1. Biochem J. 2001 Sep 15;358(Pt 3):705–715. [PMC free article] [PubMed]
  • Desagher S, Osen-Sand A, Montessuit S, Magnenat E, Vilbois F, Hochmann A, Journot L, Antonsson B, Martinou JC. Phosphorylation of bid by casein kinases I and II regulates its cleavage by caspase 8. Mol Cell. 2001 Sep;8(3):601–611. [PubMed]
  • Yin X, Gu S, Jiang JX. Regulation of lens connexin 45.6 by apoptotic protease, caspase-3. Cell Commun Adhes. 2001;8(4-6):373–376. [PubMed]
  • Ruzzene Maria, Penzo Daniele, Pinna Lorenzo A. Protein kinase CK2 inhibitor 4,5,6,7-tetrabromobenzotriazole (TBB) induces apoptosis and caspase-dependent degradation of haematopoietic lineage cell-specific protein 1 (HS1) in Jurkat cells. Biochem J. 2002 May 15;364(Pt 1):41–47. [PMC free article] [PubMed]
  • Li Pei-Feng, Li Jincheng, Müller Eva-Christina, Otto Albrecht, Dietz Rainer, von Harsdorf Rüdiger. Phosphorylation by protein kinase CK2: a signaling switch for the caspase-inhibiting protein ARC. Mol Cell. 2002 Aug;10(2):247–258. [PubMed]
  • Guo C, Yu S, Davis AT, Wang H, Green JE, Ahmed K. A potential role of nuclear matrix-associated protein kinase CK2 in protection against drug-induced apoptosis in cancer cells. J Biol Chem. 2001 Feb 23;276(8):5992–5999. [PubMed]
  • Ravi Rajani, Bedi Atul. Sensitization of tumor cells to Apo2 ligand/TRAIL-induced apoptosis by inhibition of casein kinase II. Cancer Res. 2002 Aug 1;62(15):4180–4185. [PubMed]
  • Faust RA, Tawfic S, Davis AT, Bubash LA, Ahmed K. Antisense oligonucleotides against protein kinase CK2-alpha inhibit growth of squamous cell carcinoma of the head and neck in vitro. Head Neck. 2000 Jul;22(4):341–346. [PubMed]
  • Thornberry NA, Rano TA, Peterson EP, Rasper DM, Timkey T, Garcia-Calvo M, Houtzager VM, Nordstrom PA, Roy S, Vaillancourt JP, et al. A combinatorial approach defines specificities of members of the caspase family and granzyme B. Functional relationships established for key mediators of apoptosis. J Biol Chem. 1997 Jul 18;272(29):17907–17911. [PubMed]
  • Nicholson DW, Thornberry NA. Caspases: killer proteases. Trends Biochem Sci. 1997 Aug;22(8):299–306. [PubMed]
  • Toczyski DP, Galgoczy DJ, Hartwell LH. CDC5 and CKII control adaptation to the yeast DNA damage checkpoint. Cell. 1997 Sep 19;90(6):1097–1106. [PubMed]
  • Ghavidel A, Schultz MC. TATA binding protein-associated CK2 transduces DNA damage signals to the RNA polymerase III transcriptional machinery. Cell. 2001 Sep 7;106(5):575–584. [PubMed]
  • Kapoor M, Lozano G. Functional activation of p53 via phosphorylation following DNA damage by UV but not gamma radiation. Proc Natl Acad Sci U S A. 1998 Mar 17;95(6):2834–2837. [PMC free article] [PubMed]
  • Sayed M, Kim SO, Salh BS, Issinger OG, Pelech SL. Stress-induced activation of protein kinase CK2 by direct interaction with p38 mitogen-activated protein kinase. J Biol Chem. 2000 Jun 2;275(22):16569–16573. [PubMed]
  • Ackermann K, Waxmann A, Glover CV, Pyerin W. Genes targeted by protein kinase CK2: a genome-wide expression array analysis in yeast. Mol Cell Biochem. 2001 Nov;227(1-2):59–66. [PubMed]
  • Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE. The Protein Data Bank. Nucleic Acids Res. 2000 Jan 1;28(1):235–242. [PMC free article] [PubMed]
  • Sayle RA, Milner-White EJ. RASMOL: biomolecular graphics for all. Trends Biochem Sci. 1995 Sep;20(9):374–374. [PubMed]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

  • Cited in Books
    Cited in Books
    PubMed Central articles cited in books
  • MedGen
    MedGen
    Related information in MedGen
  • PubMed
    PubMed
    PubMed citations for these articles

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...