• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of biochemjBJ Latest papers and much more!
Biochem J. Nov 1, 2002; 367(Pt 3): 729–740.
PMCID: PMC1222928

Activation of nuclear factor-kappaB during doxorubicin-induced apoptosis in endothelial cells and myocytes is pro-apoptotic: the role of hydrogen peroxide.


Doxorubicin (DOX) is a widely used anti-tumour drug. Cardiotoxicity is a major toxic side effect of DOX therapy. Although recent studies implicated an apoptotic pathway in DOX-induced cardiotoxicity, the mechanism of DOX-induced apoptosis remains unclear. In the present study, we investigated the role of reactive oxygen species and the nuclear transcription factor nuclear factor kappaB (NF-kappaB) during apoptosis induced by DOX in bovine aortic endothelial cells (BAECs) and adult rat cardiomyocytes. DOX-induced NF-kappaB activation is both dose- and time-dependent, as demonstrated using electrophoretic mobility-shift assay and luciferase and p65 (Rel A) nuclear-translocation assays. Addition of a cell-permeant iron metalloporphyrin significantly suppressed NF-kappaB activation and apoptosis induced by DOX. Overexpression of glutathione peroxidase, which detoxifies cellular H(2)O(2), significantly decreased DOX-induced NF-kappaB activation and apoptosis. Inhibition of DOX-induced NF-kappaB activation by a cell-permeant peptide SN50 that blocks translocation of the NF-kappaB complex into the nucleus greatly diminished DOX-induced apoptosis. Apoptosis was inhibited when IkappaB mutant vector, another NF-kappaB inhibitor, was added to DOX-treated BAECs. These results suggest that NF-kappaB activation in DOX-treated endothelial cells and myocytes is pro-apoptotic, in contrast with DOX-treated cancer cells, where NF-kappaB activation is anti-apoptotic. Removal of intracellular H(2)O(2) protects endothelial cells and myocytes from DOX-induced apoptosis, possibly by inhibiting NF-kappaB activation. These findings suggest a novel mechanism for enhancing the therapeutic efficacy of DOX.

Full Text

The Full Text of this article is available as a PDF (451K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Singal PK, Iliskovic N. Doxorubicin-induced cardiomyopathy. N Engl J Med. 1998 Sep 24;339(13):900–905. [PubMed]
  • Buzdar AU, Marcus C, Smith TL, Blumenschein GR. Early and delayed clinical cardiotoxicity of doxorubicin. Cancer. 1985 Jun 15;55(12):2761–2765. [PubMed]
  • Singal PK, Li T, Kumar D, Danelisen I, Iliskovic N. Adriamycin-induced heart failure: mechanism and modulation. Mol Cell Biochem. 2000 Apr;207(1-2):77–86. [PubMed]
  • Myers CE, McGuire WP, Liss RH, Ifrim I, Grotzinger K, Young RC. Adriamycin: the role of lipid peroxidation in cardiac toxicity and tumor response. Science. 1977 Jul 8;197(4299):165–167. [PubMed]
  • Kalyanaraman B, Perez-Reyes E, Mason RP. Spin-trapping and direct electron spin resonance investigations of the redox metabolism of quinone anticancer drugs. Biochim Biophys Acta. 1980 Jun 5;630(1):119–130. [PubMed]
  • Davies KJ, Doroshow JH. Redox cycling of anthracyclines by cardiac mitochondria. I. Anthracycline radical formation by NADH dehydrogenase. J Biol Chem. 1986 Mar 5;261(7):3060–3067. [PubMed]
  • Kotamraju S, Konorev EA, Joseph J, Kalyanaraman B. Doxorubicin-induced apoptosis in endothelial cells and cardiomyocytes is ameliorated by nitrone spin traps and ebselen. Role of reactive oxygen and nitrogen species. J Biol Chem. 2000 Oct 27;275(43):33585–33592. [PubMed]
  • Sawyer DB, Fukazawa R, Arstall MA, Kelly RA. Daunorubicin-induced apoptosis in rat cardiac myocytes is inhibited by dexrazoxane. Circ Res. 1999 Feb 19;84(3):257–265. [PubMed]
  • Wang L, Ma W, Markovich R, Chen JW, Wang PH. Regulation of cardiomyocyte apoptotic signaling by insulin-like growth factor I. Circ Res. 1998 Sep 7;83(5):516–522. [PubMed]
  • Laurent G, Jaffrézou JP. Signaling pathways activated by daunorubicin. Blood. 2001 Aug 15;98(4):913–924. [PubMed]
  • Nakamura T, Ueda Y, Juan Y, Katsuda S, Takahashi H, Koh E. Fas-mediated apoptosis in adriamycin-induced cardiomyopathy in rats: In vivo study. Circulation. 2000 Aug 1;102(5):572–578. [PubMed]
  • Baeuerle PA, Henkel T. Function and activation of NF-kappa B in the immune system. Annu Rev Immunol. 1994;12:141–179. [PubMed]
  • Chen F, Castranova V, Shi X, Demers LM. New insights into the role of nuclear factor-kappaB, a ubiquitous transcription factor in the initiation of diseases. Clin Chem. 1999 Jan;45(1):7–17. [PubMed]
  • Boland MP, Foster SJ, O'Neill LA. Daunorubicin activates NFkappaB and induces kappaB-dependent gene expression in HL-60 promyelocytic and Jurkat T lymphoma cells. J Biol Chem. 1997 May 16;272(20):12952–12960. [PubMed]
  • Aoki M, Nata T, Morishita R, Matsushita H, Nakagami H, Yamamoto K, Yamazaki K, Nakabayashi M, Ogihara T, Kaneda Y. Endothelial apoptosis induced by oxidative stress through activation of NF-kappaB: antiapoptotic effect of antioxidant agents on endothelial cells. Hypertension. 2001 Jul;38(1):48–55. [PubMed]
  • Arlt A, Vorndamm J, Breitenbroich M, Fölsch UR, Kalthoff H, Schmidt WE, Schäfer H. Inhibition of NF-kappaB sensitizes human pancreatic carcinoma cells to apoptosis induced by etoposide (VP16) or doxorubicin. Oncogene. 2001 Feb 15;20(7):859–868. [PubMed]
  • Somerville L, Cory JG. Enhanced roscovitine-induced apoptosis is mediated by a caspase-3-like activity in deoxyadenosine-resistant mouse leukemia L1210 cells. Anticancer Res. 20(5B):3347–3355. [PubMed]
  • Manna SK, Aggarwal BB. Lipopolysaccharide inhibits TNF-induced apoptosis: role of nuclear factor-kappaB activation and reactive oxygen intermediates. J Immunol. 1999 Feb 1;162(3):1510–1518. [PubMed]
  • Joyce D, Bouzahzah B, Fu M, Albanese C, D'Amico M, Steer J, Klein JU, Lee RJ, Segall JE, Westwick JK, et al. Integration of Rac-dependent regulation of cyclin D1 transcription through a nuclear factor-kappaB-dependent pathway. J Biol Chem. 1999 Sep 3;274(36):25245–25249. [PubMed]
  • Heermeier K, Leicht W, Palmetshofer A, Ullrich M, Wanner C, Galle J. Oxidized LDL suppresses NF-kappaB and overcomes protection from apoptosis in activated endothelial cells. J Am Soc Nephrol. 2001 Mar;12(3):456–463. [PubMed]
  • Hsu SC, Gavrilin MA, Lee HH, Wu CC, Han SH, Lai MZ. NF-kappa B-dependent Fas ligand expression. Eur J Immunol. 1999 Sep;29(9):2948–2956. [PubMed]
  • Day BJ, Shawen S, Liochev SI, Crapo JD. A metalloporphyrin superoxide dismutase mimetic protects against paraquat-induced endothelial cell injury, in vitro. J Pharmacol Exp Ther. 1995 Dec;275(3):1227–1232. [PubMed]
  • Konorev EA, Zhang H, Joseph J, Kennedy MC, Kalyanaraman B. Bicarbonate exacerbates oxidative injury induced by antitumor antibiotic doxorubicin in cardiomyocytes. Am J Physiol Heart Circ Physiol. 2000 Nov;279(5):H2424–H2430. [PubMed]
  • Pieper GM, Olds C, Hilton G, Lindholm PF, Adams MB, Roza AM. Antioxidant treatment inhibits activation of myocardial nuclear factor kappa B and inhibits nitrosylation of myocardial heme protein in cardiac transplant rejection. Antioxid Redox Signal. 2001 Feb;3(1):81–88. [PubMed]
  • Ye J, Ghosh P, Cippitelli M, Subleski J, Hardy KJ, Ortaldo JR, Young HA. Characterization of a silencer regulatory element in the human interferon-gamma promoter. J Biol Chem. 1994 Oct 14;269(41):25728–25734. [PubMed]
  • Gavrieli Y, Sherman Y, Ben-Sasson SA. Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J Cell Biol. 1992 Nov;119(3):493–501. [PMC free article] [PubMed]
  • Nicholson DW, Thornberry NA. Caspases: killer proteases. Trends Biochem Sci. 1997 Aug;22(8):299–306. [PubMed]
  • Kalish H, Camp JE, Stepień M, Latos-Grazyński L, Balch AL. Reactivity of mono-meso-substituted iron(II) octaethylporphyrin complexes with hydrogen peroxide in the absence of dioxygen. Evidence for nucleophilic attack on the heme. J Am Chem Soc. 2001 Nov 28;123(47):11719–11727. [PubMed]
  • Crow JP. Manganese and iron porphyrins catalyze peroxynitrite decomposition and simultaneously increase nitration and oxidant yield: implications for their use as peroxynitrite scavengers in vivo. Arch Biochem Biophys. 1999 Nov 1;371(1):41–52. [PubMed]
  • Li Q, Sanlioglu S, Li S, Ritchie T, Oberley L, Engelhardt JF. GPx-1 gene delivery modulates NFkappaB activation following diverse environmental injuries through a specific subunit of the IKK complex. Antioxid Redox Signal. 2001 Jun;3(3):415–432. [PubMed]
  • Kalivendi SV, Kotamraju S, Zhao H, Joseph J, Kalyanaraman B. Doxorubicin-induced apoptosis is associated with increased transcription of endothelial nitric-oxide synthase. Effect of antiapoptotic antioxidants and calcium. J Biol Chem. 2001 Dec 14;276(50):47266–47276. [PubMed]
  • Golstein P. Controlling cell death. Science. 1997 Feb 21;275(5303):1081–1082. [PubMed]
  • Green DR, Reed JC. Mitochondria and apoptosis. Science. 1998 Aug 28;281(5381):1309–1312. [PubMed]
  • Schmidt KN, Amstad P, Cerutti P, Baeuerle PA. The roles of hydrogen peroxide and superoxide as messengers in the activation of transcription factor NF-kappa B. Chem Biol. 1995 Jan;2(1):13–22. [PubMed]
  • Wang S, Leonard SS, Castranova V, Vallyathan V, Shi X. The role of superoxide radical in TNF-alpha induced NF-kappaB activation. Ann Clin Lab Sci. 1999 Jul-Sep;29(3):192–199. [PubMed]
  • Shi X, Dong Z, Huang C, Ma W, Liu K, Ye J, Chen F, Leonard SS, Ding M, Castranova V, et al. The role of hydroxyl radical as a messenger in the activation of nuclear transcription factor NF-kappaB. Mol Cell Biochem. 1999 Apr;194(1-2):63–70. [PubMed]
  • Aggarwal BB. Apoptosis and nuclear factor-kappa B: a tale of association and dissociation. Biochem Pharmacol. 2000 Oct 15;60(8):1033–1039. [PubMed]
  • Schreck R, Albermann K, Baeuerle PA. Nuclear factor kappa B: an oxidative stress-responsive transcription factor of eukaryotic cells (a review). Free Radic Res Commun. 1992;17(4):221–237. [PubMed]
  • Misko TP, Highkin MK, Veenhuizen AW, Manning PT, Stern MK, Currie MG, Salvemini D. Characterization of the cytoprotective action of peroxynitrite decomposition catalysts. J Biol Chem. 1998 Jun 19;273(25):15646–15653. [PubMed]
  • Salvemini D, Wang ZQ, Stern MK, Currie MG, Misko TP. Peroxynitrite decomposition catalysts: therapeutics for peroxynitrite-mediated pathology. Proc Natl Acad Sci U S A. 1998 Mar 3;95(5):2659–2663. [PMC free article] [PubMed]
  • Nathens AB, Bitar R, Davreux C, Bujard M, Marshall JC, Dackiw AP, Watson RW, Rotstein OD. Pyrrolidine dithiocarbamate attenuates endotoxin-induced acute lung injury. Am J Respir Cell Mol Biol. 1997 Nov;17(5):608–616. [PubMed]
  • Bian X, McAllister-Lucas LM, Shao F, Schumacher KR, Feng Z, Porter AG, Castle VP, Opipari AW., Jr NF-kappa B activation mediates doxorubicin-induced cell death in N-type neuroblastoma cells. J Biol Chem. 2001 Dec 28;276(52):48921–48929. [PubMed]
  • Moellering D, McAndrew J, Jo H, Darley-Usmar VM. Effects of pyrrolidine dithiocarbamate on endothelial cells: protection against oxidative stress. Free Radic Biol Med. 1999 May;26(9-10):1138–1145. [PubMed]
  • Ji C, Kozak KR, Marnett LJ. IkappaB kinase, a molecular target for inhibition by 4-hydroxy-2-nonenal. J Biol Chem. 2001 May 25;276(21):18223–18228. [PubMed]
  • Chan H, Bartos DP, Owen-Schaub LB. Activation-dependent transcriptional regulation of the human Fas promoter requires NF-kappaB p50-p65 recruitment. Mol Cell Biol. 1999 Mar;19(3):2098–2108. [PMC free article] [PubMed]
  • Qin ZH, Chen RW, Wang Y, Nakai M, Chuang DM, Chase TN. Nuclear factor kappaB nuclear translocation upregulates c-Myc and p53 expression during NMDA receptor-mediated apoptosis in rat striatum. J Neurosci. 1999 May 15;19(10):4023–4033. [PubMed]
  • Hettmann T, DiDonato J, Karin M, Leiden JM. An essential role for nuclear factor kappaB in promoting double positive thymocyte apoptosis. J Exp Med. 1999 Jan 4;189(1):145–158. [PMC free article] [PubMed]
  • Liu RY, Fan C, Olashaw NE, Wang X, Zuckerman KS. Tumor necrosis factor-alpha-induced proliferation of human Mo7e leukemic cells occurs via activation of nuclear factor kappaB transcription factor. J Biol Chem. 1999 May 14;274(20):13877–13885. [PubMed]
  • Rong Y, Doctrow SR, Tocco G, Baudry M. EUK-134, a synthetic superoxide dismutase and catalase mimetic, prevents oxidative stress and attenuates kainate-induced neuropathology. Proc Natl Acad Sci U S A. 1999 Aug 17;96(17):9897–9902. [PMC free article] [PubMed]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society


Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...


  • Compound
    PubChem Compound links
  • MedGen
    Related information in MedGen
  • PubMed
    PubMed citations for these articles
  • Substance
    PubChem Substance links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...