Logo of biochemjBJ Latest papers and much more!
Biochem J. Sep 1, 2002; 366(Pt 2): 491–500.
PMCID: PMC1222785

The family of hepatoma-derived growth factor proteins: characterization of a new member HRP-4 and classification of its subfamilies.

Abstract

Hepatoma-derived growth factor (HDGF)-related proteins (HRPs) comprise a family of polypeptides named after HDGF, which was identified by its mitogenic activity towards fibroblasts. In the present study, we describe a hitherto unknown HRP, termed HRP-4. The cDNA of bovine HRP-4 (bHRP-4) predicts a polypeptide of 235 amino acids. Northern- and Western-blot analyses of various bovine tissues demonstrated that HRP-4 is only expressed in the testis. Recombinantly produced bHRP-4 and murine HDGF (mHDGF) histidine-tagged polypeptides display growth-factor activity for cultured primary human fibroblasts at an optimum concentration of 1 ng/ml in serum-free medium. The growth-factor activity declines with increasing concentrations to reach background levels at 1 microg/ml. The expression of the fusion proteins, bHRP-4-green fluorescent protein and mHDGF-green fluorescent protein, in HEK-293 cells demonstrates nuclear localization of the proteins. bHRP-4 and mHDGF bind to the glycosaminoglycans heparin and heparan sulphate, but not to chondroitin sulphate. Affinity constants determined for these interactions are between 6 and 42 nM. Comparison of the bHRP-4 amino acid sequence with HRP-1-3 and p52/75/lens epithelium-derived growth factor (LEDGF) shows that these proteins share a conserved N-terminal part of 91 amino acids but have C-termini of different lengths and charge. This demonstrates the modular structure of these proteins and allows its classification into three groups based on charge, size and sequence comparison. HRP-4, HRP-1 and HDGF are small acidic proteins, HRP-3 is a small basic protein, and HRP-2 and p52/75/LEDGF are larger basic proteins.

Full Text

The Full Text of this article is available as a PDF (297K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Nakamura H, Izumoto Y, Kambe H, Kuroda T, Mori T, Kawamura K, Yamamoto H, Kishimoto T. Molecular cloning of complementary DNA for a novel human hepatoma-derived growth factor. Its homology with high mobility group-1 protein. J Biol Chem. 1994 Oct 7;269(40):25143–25149. [PubMed]
  • Oliver JA, Al-Awqati Q. An endothelial growth factor involved in rat renal development. J Clin Invest. 1998 Sep 15;102(6):1208–1219. [PMC free article] [PubMed]
  • Everett AD, Lobe DR, Matsumura ME, Nakamura H, McNamara CA. Hepatoma-derived growth factor stimulates smooth muscle cell growth and is expressed in vascular development. J Clin Invest. 2000 Mar;105(5):567–575. [PMC free article] [PubMed]
  • Everett AD, Stoops T, McNamara CA. Nuclear targeting is required for hepatoma-derived growth factor-stimulated mitogenesis in vascular smooth muscle cells. J Biol Chem. 2001 Oct 5;276(40):37564–37568. [PubMed]
  • Kishima Yoshihiko, Yamamoto Hiroyasu, Izumoto Yoshitaka, Yoshida Kenya, Enomoto Hirayuki, Yamamoto Mitsunari, Kuroda Toshifumi, Ito Hiroaki, Yoshizaki Kazuyuki, Nakamura Hideji. Hepatoma-derived growth factor stimulates cell growth after translocation to the nucleus by nuclear localization signals. J Biol Chem. 2002 Mar 22;277(12):10315–10322. [PubMed]
  • Bustin M, Lehn DA, Landsman D. Structural features of the HMG chromosomal proteins and their genes. Biochim Biophys Acta. 1990 Jul 30;1049(3):231–243. [PubMed]
  • Kuehl L, Rechsteiner M, Wu L. Relationship between the structure of chromosomal protein HMG1 and its accumulation in the cell nucleus. J Biol Chem. 1985 Aug 25;260(18):10361–10368. [PubMed]
  • Thanos D, Maniatis T. The high mobility group protein HMG I(Y) is required for NF-kappa B-dependent virus induction of the human IFN-beta gene. Cell. 1992 Nov 27;71(5):777–789. [PubMed]
  • Giancotti V, Pani B, D'Andrea P, Berlingieri MT, Di Fiore PP, Fusco A, Vecchio G, Philp R, Crane-Robinson C, Nicolas RH, et al. Elevated levels of a specific class of nuclear phosphoproteins in cells transformed with v-ras and v-mos oncogenes and by cotransfection with c-myc and polyoma middle T genes. EMBO J. 1987 Jul;6(7):1981–1987. [PMC free article] [PubMed]
  • Matsuyama A, Inoue H, Shibuta K, Tanaka Y, Barnard GF, Sugimachi K, Mori M. Hepatoma-derived growth factor is associated with reduced sensitivity to irradiation in esophageal cancer. Cancer Res. 2001 Aug 1;61(15):5714–5717. [PubMed]
  • Izumoto Y, Kuroda T, Harada H, Kishimoto T, Nakamura H. Hepatoma-derived growth factor belongs to a gene family in mice showing significant homology in the amino terminus. Biochem Biophys Res Commun. 1997 Sep 8;238(1):26–32. [PubMed]
  • Ge H, Si Y, Roeder RG. Isolation of cDNAs encoding novel transcription coactivators p52 and p75 reveals an alternate regulatory mechanism of transcriptional activation. EMBO J. 1998 Nov 16;17(22):6723–6729. [PMC free article] [PubMed]
  • Singh DP, Fatma N, Kimura A, Chylack LT, Jr, Shinohara T. LEDGF binds to heat shock and stress-related element to activate the expression of stress-related genes. Biochem Biophys Res Commun. 2001 May 18;283(4):943–955. [PubMed]
  • Singh DP, Kimura A, Chylack LT, Jr, Shinohara T. Lens epithelium-derived growth factor (LEDGF/p75) and p52 are derived from a single gene by alternative splicing. Gene. 2000 Jan 25;242(1-2):265–273. [PubMed]
  • Ikegame K, Yamamoto M, Kishima Y, Enomoto H, Yoshida K, Suemura M, Kishimoto T, Nakamura H. A new member of a hepatoma-derived growth factor gene family can translocate to the nucleus. Biochem Biophys Res Commun. 1999 Dec 9;266(1):81–87. [PubMed]
  • Kuroda T, Tanaka H, Nakamura H, Nishimune Y, Kishimoto T. Hepatoma-derived growth factor-related protein (HRP)-1 gene in spermatogenesis in mice. Biochem Biophys Res Commun. 1999 Aug 27;262(2):433–437. [PubMed]
  • Gieselmann V, Polten A, Kreysing J, von Figura K. Arylsulfatase A pseudodeficiency: loss of a polyadenylylation signal and N-glycosylation site. Proc Natl Acad Sci U S A. 1989 Dec;86(23):9436–9440. [PMC free article] [PubMed]
  • Kappler J, Franken S, Junghans U, Hoffmann R, Linke T, Müller HW, Koch KW. Glycosaminoglycan-binding properties and secondary structure of the C-terminus of netrin-1. Biochem Biophys Res Commun. 2000 May 10;271(2):287–291. [PubMed]
  • Taipale J, Keski-Oja J. Growth factors in the extracellular matrix. FASEB J. 1997 Jan;11(1):51–59. [PubMed]
  • Nakamura M, Singh DP, Kubo E, Chylack LT, Jr, Shinohara T. LEDGF: survival of embryonic chick retinal photoreceptor cells. Invest Ophthalmol Vis Sci. 2000 Apr;41(5):1168–1175. [PubMed]
  • Singh DP, Ohguro N, Kikuchi T, Sueno T, Reddy VN, Yuge K, Chylack LT, Jr, Shinohara T. Lens epithelium-derived growth factor: effects on growth and survival of lens epithelial cells, keratinocytes, and fibroblasts. Biochem Biophys Res Commun. 2000 Jan 7;267(1):373–381. [PubMed]
  • Machida S, Chaudhry P, Shinohara T, Singh DP, Reddy VN, Chylack LT, Jr, Sieving PA, Bush RA. Lens epithelium-derived growth factor promotes photoreceptor survival in light-damaged and RCS rats. Invest Ophthalmol Vis Sci. 2001 Apr;42(5):1087–1095. [PubMed]
  • Fatma N, Singh DP, Shinohara T, Chylack LT., Jr Heparin's roles in stabilizing, potentiating, and transporting LEDGF into the nucleus. Invest Ophthalmol Vis Sci. 2000 Aug;41(9):2648–2657. [PubMed]
  • Abraham JA, Mergia A, Whang JL, Tumolo A, Friedman J, Hjerrild KA, Gospodarowicz D, Fiddes JC. Nucleotide sequence of a bovine clone encoding the angiogenic protein, basic fibroblast growth factor. Science. 1986 Aug 1;233(4763):545–548. [PubMed]
  • Mignatti P, Rifkin DB. Release of basic fibroblast growth factor, an angiogenic factor devoid of secretory signal sequence: a trivial phenomenon or a novel secretion mechanism? J Cell Biochem. 1991 Nov;47(3):201–207. [PubMed]
  • Arese M, Chen Y, Florkiewicz RZ, Gualandris A, Shen B, Rifkin DB. Nuclear activities of basic fibroblast growth factor: potentiation of low-serum growth mediated by natural or chimeric nuclear localization signals. Mol Biol Cell. 1999 May;10(5):1429–1444. [PMC free article] [PubMed]
  • Reiland J, Rapraeger AC. Heparan sulfate proteoglycan and FGF receptor target basic FGF to different intracellular destinations. J Cell Sci. 1993 Aug;105(Pt 4):1085–1093. [PubMed]
  • Herndon ME, Stipp CS, Lander AD. Interactions of neural glycosaminoglycans and proteoglycans with protein ligands: assessment of selectivity, heterogeneity and the participation of core proteins in binding. Glycobiology. 1999 Feb;9(2):143–155. [PubMed]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

  • MedGen
    MedGen
    Related information in MedGen
  • PubMed
    PubMed
    PubMed citations for these articles
  • Substance
    Substance
    PubChem Substance links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...