• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of biochemjBJ Latest papers and much more!
Biochem J. Jun 15, 2002; 364(Pt 3): 593–611.
PMCID: PMC1222606

Structure-function of the multifunctional Ca2+/calmodulin-dependent protein kinase II.

Abstract

Ca2+/calmodulin (CaM)-dependent protein kinase (CaMKII) is a ubiquitous mediator of Ca2+-linked signalling that phosphorylates a wide range of substrates to co-ordinate and regulate Ca2+-mediated alterations in cellular function. The transmission of information by the kinase from extracellular stimuli and the intracellular Ca2+ rise is not passive. Rather, its multimeric structure and autoregulation enable this enzyme to participate actively in the sensitivity, timing and location of its action. CaMKII can: (i) be activated in a Ca2+-spike frequency-dependent manner; (ii) become independent of its initial Ca2+/CaM activators; and (iii) undergo a 'molecular switch-like' behaviour, which is crucial for certain forms of learning and memory. CaMKII is derived from a family of four homologous but distinct genes, with over 30 alternatively spliced isoforms described at present. These isoforms possess diverse developmental and anatomical expression patterns, as well as subcellular localization. Six independent catalytic/autoregulatory domains are connected by a narrow stalk-like appendage to each hexameric ring within the dodecameric structure. Ca2+/CaM binding activates the enzyme by disinhibiting the autoregulatory domain; this process initiates an intra-holoenzyme autophosphorylation reaction that induces complex changes in the enzyme's sensitivity to Ca2+/CaM, including the generation of Ca2+/CaM-independent (autonomous) activity and marked increase in affinity for CaM. The role of CaMKII in Ca2+ signal transduction is shaped by its autoregulation, isoenzymic type and subcellular localization. The molecular determinants and mechanisms producing these processes are discussed as they relate to the structure-function of this multifunctional protein kinase.

Full Text

The Full Text of this article is available as a PDF (487K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Meyer T, Stryer L. Calcium spiking. Annu Rev Biophys Biophys Chem. 1991;20:153–174. [PubMed]
  • Dolmetsch RE, Lewis RS, Goodnow CC, Healy JI. Differential activation of transcription factors induced by Ca2+ response amplitude and duration. Nature. 1997 Apr 24;386(6627):855–858. [PubMed]
  • Soderling TR. The Ca-calmodulin-dependent protein kinase cascade. Trends Biochem Sci. 1999 Jun;24(6):232–236. [PubMed]
  • Hook SS, Means AR. Ca(2+)/CaM-dependent kinases: from activation to function. Annu Rev Pharmacol Toxicol. 2001;41:471–505. [PubMed]
  • Soderling TR, Stull JT. Structure and regulation of calcium/calmodulin-dependent protein kinases. Chem Rev. 2001 Aug;101(8):2341–2352. [PubMed]
  • Lee JC, Edelman AM. Activation of Ca(2+)-calmodulin-dependent protein kinase Ia is due to direct phosphorylation by its activator. Biochem Biophys Res Commun. 1995 May 16;210(2):631–637. [PubMed]
  • Tokumitsu H, Enslen H, Soderling TR. Characterization of a Ca2+/calmodulin-dependent protein kinase cascade. Molecular cloning and expression of calcium/calmodulin-dependent protein kinase kinase. J Biol Chem. 1995 Aug 18;270(33):19320–19324. [PubMed]
  • Hanson PI, Schulman H. Neuronal Ca2+/calmodulin-dependent protein kinases. Annu Rev Biochem. 1992;61:559–601. [PubMed]
  • Braun AP, Schulman H. The multifunctional calcium/calmodulin-dependent protein kinase: from form to function. Annu Rev Physiol. 1995;57:417–445. [PubMed]
  • Soderling TR. Calcium-dependent protein kinases in learning and memory. Adv Second Messenger Phosphoprotein Res. 1995;30:175–189. [PubMed]
  • Heist EK, Schulman H. The role of Ca2+/calmodulin-dependent protein kinases within the nucleus. Cell Calcium. 1998 Feb-Mar;23(2-3):103–114. [PubMed]
  • Soderling TR, Chang B, Brickey D. Cellular signaling through multifunctional Ca2+/calmodulin-dependent protein kinase II. J Biol Chem. 2001 Feb 9;276(6):3719–3722. [PubMed]
  • Erondu NE, Kennedy MB. Regional distribution of type II Ca2+/calmodulin-dependent protein kinase in rat brain. J Neurosci. 1985 Dec;5(12):3270–3277. [PubMed]
  • Ouimet CC, McGuinness TL, Greengard P. Immunocytochemical localization of calcium/calmodulin-dependent protein kinase II in rat brain. Proc Natl Acad Sci U S A. 1984 Sep;81(17):5604–5608. [PMC free article] [PubMed]
  • Kennedy MB, Bennett MK, Bulleit RF, Erondu NE, Jennings VR, Miller SG, Molloy SS, Patton BL, Schenker LJ. Structure and regulation of type II calcium/calmodulin-dependent protein kinase in central nervous system neurons. Cold Spring Harb Symp Quant Biol. 1990;55:101–110. [PubMed]
  • Schulman H, Greengard P. Ca2+-dependent protein phosphorylation system in membranes from various tissues, and its activation by "calcium-dependent regulator". Proc Natl Acad Sci U S A. 1978 Nov;75(11):5432–5436. [PMC free article] [PubMed]
  • Schulman H, Greengard P. Stimulation of brain membrane protein phosphorylation by calcium and an endogenous heat-stable protein. Nature. 1978 Feb 2;271(5644):478–479. [PubMed]
  • Yamauchi T, Fujisawa H. Evidence for three distinct forms of calmodulin-dependent protein kinases from rat brain. FEBS Lett. 1980 Jul 28;116(2):141–144. [PubMed]
  • Bennett MK, Erondu NE, Kennedy MB. Purification and characterization of a calmodulin-dependent protein kinase that is highly concentrated in brain. J Biol Chem. 1983 Oct 25;258(20):12735–12744. [PubMed]
  • Kuret J, Schulman H. Purification and characterization of a Ca2+/calmodulin-dependent protein kinase from rat brain. Biochemistry. 1984 Nov 6;23(23):5495–5504. [PubMed]
  • Tobimatsu T, Fujisawa H. Tissue-specific expression of four types of rat calmodulin-dependent protein kinase II mRNAs. J Biol Chem. 1989 Oct 25;264(30):17907–17912. [PubMed]
  • Vallano ML. Separation of isozymic forms of type II calcium/calmodulin-dependent protein kinase using cation-exchange chromatography. J Neurosci Methods. 1989 Oct;30(1):1–9. [PubMed]
  • Brocke L, Chiang LW, Wagner PD, Schulman H. Functional implications of the subunit composition of neuronal CaM kinase II. J Biol Chem. 1999 Aug 6;274(32):22713–22722. [PubMed]
  • Kelly PT. Calmodulin-dependent protein kinase II. Multifunctional roles in neuronal differentiation and synaptic plasticity. Mol Neurobiol. 1991;5(2-4):153–177. [PubMed]
  • Rostas JA, Dunkley PR. Multiple forms and distribution of calcium/calmodulin-stimulated protein kinase II in brain. J Neurochem. 1992 Oct;59(4):1191–1202. [PubMed]
  • Hanley RM, Means AR, Ono T, Kemp BE, Burgin KE, Waxham N, Kelly PT. Functional analysis of a complementary DNA for the 50-kilodalton subunit of calmodulin kinase II. Science. 1987 Jul 17;237(4812):293–297. [PubMed]
  • Lin CR, Kapiloff MS, Durgerian S, Tatemoto K, Russo AF, Hanson P, Schulman H, Rosenfeld MG. Molecular cloning of a brain-specific calcium/calmodulin-dependent protein kinase. Proc Natl Acad Sci U S A. 1987 Aug;84(16):5962–5966. [PMC free article] [PubMed]
  • Srinivasan M, Edman CF, Schulman H. Alternative splicing introduces a nuclear localization signal that targets multifunctional CaM kinase to the nucleus. J Cell Biol. 1994 Aug;126(4):839–852. [PMC free article] [PubMed]
  • Bayer KU, Löhler J, Harbers K. An alternative, nonkinase product of the brain-specifically expressed Ca2+/calmodulin-dependent kinase II alpha isoform gene in skeletal muscle. Mol Cell Biol. 1996 Jan;16(1):29–36. [PMC free article] [PubMed]
  • Bennett MK, Kennedy MB. Deduced primary structure of the beta subunit of brain type II Ca2+/calmodulin-dependent protein kinase determined by molecular cloning. Proc Natl Acad Sci U S A. 1987 Apr;84(7):1794–1798. [PMC free article] [PubMed]
  • Bulleit RF, Bennett MK, Molloy SS, Hurley JB, Kennedy MB. Conserved and variable regions in the subunits of brain type II Ca2+/calmodulin-dependent protein kinase. Neuron. 1988 Mar;1(1):63–72. [PubMed]
  • Brocke L, Srinivasan M, Schulman H. Developmental and regional expression of multifunctional Ca2+/calmodulin-dependent protein kinase isoforms in rat brain. J Neurosci. 1995 Oct;15(10):6797–6808. [PubMed]
  • Urquidi V, Ashcroft SJ. A novel pancreatic beta-cell isoform of calcium/calmodulin-dependent protein kinase II (beta 3 isoform) contains a proline-rich tandem repeat in the association domain. FEBS Lett. 1995 Jan 16;358(1):23–26. [PubMed]
  • Bayer KU, Harbers K, Schulman H. alphaKAP is an anchoring protein for a novel CaM kinase II isoform in skeletal muscle. EMBO J. 1998 Oct 1;17(19):5598–5605. [PMC free article] [PubMed]
  • Tobimatsu T, Kameshita I, Fujisawa H. Molecular cloning of the cDNA encoding the third polypeptide (gamma) of brain calmodulin-dependent protein kinase II. J Biol Chem. 1988 Nov 5;263(31):16082–16086. [PubMed]
  • Nghiem P, Saati SM, Martens CL, Gardner P, Schulman H. Cloning and analysis of two new isoforms of multifunctional Ca2+/calmodulin-dependent protein kinase. Expression in multiple human tissues. J Biol Chem. 1993 Mar 15;268(8):5471–5479. [PubMed]
  • Kwiatkowski AP, McGill JM. Human biliary epithelial cell line Mz-ChA-1 expresses new isoforms of calmodulin-dependent protein kinase II. Gastroenterology. 1995 Oct;109(4):1316–1323. [PubMed]
  • Tombes RM, Krystal GW. Identification of novel human tumor cell-specific CaMK-II variants. Biochim Biophys Acta. 1997 Mar 1;1355(3):281–292. [PubMed]
  • Schworer CM, Rothblum LI, Thekkumkara TJ, Singer HA. Identification of novel isoforms of the delta subunit of Ca2+/calmodulin-dependent protein kinase II. Differential expression in rat brain and aorta. J Biol Chem. 1993 Jul 5;268(19):14443–14449. [PubMed]
  • Hudmon Andy, Schulman Howard. Neuronal CA2+/calmodulin-dependent protein kinase II: the role of structure and autoregulation in cellular function. Annu Rev Biochem. 2002;71:473–510. [PubMed]
  • Heist EK, Srinivasan M, Schulman H. Phosphorylation at the nuclear localization signal of Ca2+/calmodulin-dependent protein kinase II blocks its nuclear targeting. J Biol Chem. 1998 Jul 31;273(31):19763–19771. [PubMed]
  • Kemp BE, Parker MW, Hu S, Tiganis T, House C. Substrate and pseudosubstrate interactions with protein kinases: determinants of specificity. Trends Biochem Sci. 1994 Nov;19(11):440–444. [PubMed]
  • Payne ME, Fong YL, Ono T, Colbran RJ, Kemp BE, Soderling TR, Means AR. Calcium/calmodulin-dependent protein kinase II. Characterization of distinct calmodulin binding and inhibitory domains. J Biol Chem. 1988 May 25;263(15):7190–7195. [PubMed]
  • Colbran RJ, Smith MK, Schworer CM, Fong YL, Soderling TR. Regulatory domain of calcium/calmodulin-dependent protein kinase II. Mechanism of inhibition and regulation by phosphorylation. J Biol Chem. 1989 Mar 25;264(9):4800–4804. [PubMed]
  • Kelly PT, Weinberger RP, Waxham MN. Active site-directed inhibition of Ca2+/calmodulin-dependent protein kinase type II by a bifunctional calmodulin-binding peptide. Proc Natl Acad Sci U S A. 1988 Jul;85(14):4991–4995. [PMC free article] [PubMed]
  • Smith MK, Colbran RJ, Brickey DA, Soderling TR. Functional determinants in the autoinhibitory domain of calcium/calmodulin-dependent protein kinase II. Role of His282 and multiple basic residues. J Biol Chem. 1992 Jan 25;267(3):1761–1768. [PubMed]
  • Brickey DA, Bann JG, Fong YL, Perrino L, Brennan RG, Soderling TR. Mutational analysis of the autoinhibitory domain of calmodulin kinase II. J Biol Chem. 1994 Nov 18;269(46):29047–29054. [PubMed]
  • Cruzalegui FH, Kapiloff MS, Morfin JP, Kemp BE, Rosenfeld MG, Means AR. Regulation of intrasteric inhibition of the multifunctional calcium/calmodulin-dependent protein kinase. Proc Natl Acad Sci U S A. 1992 Dec 15;89(24):12127–12131. [PMC free article] [PubMed]
  • Farver O, Bendahl L, Skov LK, Pecht I. Human ceruloplasmin. Intramolecular electron transfer kinetics and equilibration. J Biol Chem. 1999 Sep 10;274(37):26135–26140. [PubMed]
  • Gallagher PJ, Herring BP, Trafny A, Sowadski J, Stull JT. A molecular mechanism for autoinhibition of myosin light chain kinases. J Biol Chem. 1993 Dec 15;268(35):26578–26582. [PMC free article] [PubMed]
  • Gibbs CS, Zoller MJ. Identification of electrostatic interactions that determine the phosphorylation site specificity of the cAMP-dependent protein kinase. Biochemistry. 1991 Jun 4;30(22):5329–5334. [PubMed]
  • Gibbs CS, Knighton DR, Sowadski JM, Taylor SS, Zoller MJ. Systematic mutational analysis of cAMP-dependent protein kinase identifies unregulated catalytic subunits and defines regions important for the recognition of the regulatory subunit. J Biol Chem. 1992 Mar 5;267(7):4806–4814. [PubMed]
  • Mukherji S, Soderling TR. Mutational analysis of Ca(2+)-independent autophosphorylation of calcium/calmodulin-dependent protein kinase II. J Biol Chem. 1995 Jun 9;270(23):14062–14067. [PubMed]
  • Waxham MN, Tsai AL, Putkey JA. A mechanism for calmodulin (CaM) trapping by CaM-kinase II defined by a family of CaM-binding peptides. J Biol Chem. 1998 Jul 10;273(28):17579–17584. [PubMed]
  • Fong YL, Taylor WL, Means AR, Soderling TR. Studies of the regulatory mechanism of Ca2+/calmodulin-dependent protein kinase II. Mutation of threonine 286 to alanine and aspartate. J Biol Chem. 1989 Oct 5;264(28):16759–16763. [PubMed]
  • Waldmann R, Hanson PI, Schulman H. Multifunctional Ca2+/calmodulin-dependent protein kinase made Ca2+ independent for functional studies. Biochemistry. 1990 Feb 20;29(7):1679–1684. [PubMed]
  • Lengyel I, Nairn A, McCluskey A, Tóth G, Penke B, Rostas J. Auto-inhibition of Ca(2+)/calmodulin-dependent protein kinase II by its ATP-binding domain. J Neurochem. 2001 Feb;76(4):1066–1072. [PubMed]
  • Goldberg J, Nairn AC, Kuriyan J. Structural basis for the autoinhibition of calcium/calmodulin-dependent protein kinase I. Cell. 1996 Mar 22;84(6):875–887. [PubMed]
  • Schulman H. Phosphorylation of microtubule-associated proteins by a Ca2+/calmodulin-dependent protein kinase. J Cell Biol. 1984 Jul;99(1 Pt 1):11–19. [PMC free article] [PubMed]
  • Brickey DA, Colbran RJ, Fong YL, Soderling TR. Expression and characterization of the alpha-subunit of Ca2+/calmodulin-dependent protein kinase II using the baculovirus expression system. Biochem Biophys Res Commun. 1990 Dec 14;173(2):578–584. [PubMed]
  • Katoh T, Fujisawa H. Calmodulin-dependent protein kinase II. Kinetic studies on the interaction with substrates and calmodulin. Biochim Biophys Acta. 1991 Jan 31;1091(2):205–212. [PubMed]
  • Miller SG, Kennedy MB. Regulation of brain type II Ca2+/calmodulin-dependent protein kinase by autophosphorylation: a Ca2+-triggered molecular switch. Cell. 1986 Mar 28;44(6):861–870. [PubMed]
  • Lickteig R, Shenolikar S, Denner L, Kelly PT. Regulation of Ca2+/calmodulin-dependent protein kinase II by Ca2+/calmodulin-independent autophosphorylation. J Biol Chem. 1988 Dec 15;263(35):19232–19239. [PubMed]
  • Meyer T, Hanson PI, Stryer L, Schulman H. Calmodulin trapping by calcium-calmodulin-dependent protein kinase. Science. 1992 May 22;256(5060):1199–1202. [PubMed]
  • Le Vine H, 3rd, Sahyoun NE, Cuatrecasas P. Binding of calmodulin to the neuronal cytoskeletal protein kinase type II cooperatively stimulates autophosphorylation. Proc Natl Acad Sci U S A. 1986 Apr;83(7):2253–2257. [PMC free article] [PubMed]
  • O'Neil KT, DeGrado WF. How calmodulin binds its targets: sequence independent recognition of amphiphilic alpha-helices. Trends Biochem Sci. 1990 Feb;15(2):59–64. [PubMed]
  • Finn BE, Forsén S. The evolving model of calmodulin structure, function and activation. Structure. 1995 Jan 15;3(1):7–11. [PubMed]
  • Hanley RM, Means AR, Kemp BE, Shenolikar S. Mapping of calmodulin-binding domain of Ca2+/calmodulin-dependent protein kinase II from rat brain. Biochem Biophys Res Commun. 1988 Apr 15;152(1):122–128. [PubMed]
  • Meador WE, Means AR, Quiocho FA. Modulation of calmodulin plasticity in molecular recognition on the basis of x-ray structures. Science. 1993 Dec 10;262(5140):1718–1721. [PubMed]
  • Putkey JA, Waxham MN. A peptide model for calmodulin trapping by calcium/calmodulin-dependent protein kinase II. J Biol Chem. 1996 Nov 22;271(47):29619–29623. [PubMed]
  • Sugiura H, Yamauchi T. Effect of ATP on binding of Ca2+/calmodulin-dependent protein kinase II with calmodulin. Biochim Biophys Acta. 1993 Jun 30;1177(3):270–274. [PubMed]
  • Török K, Tzortzopoulos A, Grabarek Z, Best SL, Thorogate R. Dual effect of ATP in the activation mechanism of brain Ca(2+)/calmodulin-dependent protein kinase II by Ca(2+)/calmodulin. Biochemistry. 2001 Dec 11;40(49):14878–14890. [PubMed]
  • Hanson PI, Schulman H. Inhibitory autophosphorylation of multifunctional Ca2+/calmodulin-dependent protein kinase analyzed by site-directed mutagenesis. J Biol Chem. 1992 Aug 25;267(24):17216–17224. [PubMed]
  • Colbran RJ. Inactivation of Ca2+/calmodulin-dependent protein kinase II by basal autophosphorylation. J Biol Chem. 1993 Apr 5;268(10):7163–7170. [PubMed]
  • King MM. Conformation-sensitive modification of the type II calmodulin-dependent protein kinase by phenylglyoxal. J Biol Chem. 1988 Apr 5;263(10):4754–4757. [PubMed]
  • King MM, Shell DJ, Kwiatkowski AP. Affinity labeling of the ATP-binding site of type II calmodulin-dependent protein kinase by 5'-p-fluorosulfonylbenzoyl adenosine. Arch Biochem Biophys. 1988 Dec;267(2):467–473. [PubMed]
  • Adams JA, Taylor SS. Divalent metal ions influence catalysis and active-site accessibility in the cAMP-dependent protein kinase. Protein Sci. 1993 Dec;2(12):2177–2186. [PMC free article] [PubMed]
  • Herberg FW, Doyle ML, Cox S, Taylor SS. Dissection of the nucleotide and metal-phosphate binding sites in cAMP-dependent protein kinase. Biochemistry. 1999 May 11;38(19):6352–6360. [PubMed]
  • Vallano ML, Goldenring JR, Buckholz TM, Larson RE, DeLorenzo RJ. Separation of endogenous calmodulin- and cAMP-dependent kinases from microtubule preparations. Proc Natl Acad Sci U S A. 1985 May;82(10):3202–3206. [PMC free article] [PubMed]
  • Vallano ML, Buckholz TM, DeLorenzo RJ. Phosphorylation of neurofilament proteins by endogenous calcium/calmodulin-dependent protein kinase. Biochem Biophys Res Commun. 1985 Aug 15;130(3):957–963. [PubMed]
  • Yamauchi T, Fujisawa H. Phosphorylation of microtubule-associated protein 2 by calmodulin-dependent protein kinase (Kinase II) which occurs only in the brain tissues. Biochem Biophys Res Commun. 1982 Dec 15;109(3):975–981. [PubMed]
  • Wandosell F, Serrano L, Hernández MA, Avila J. Phosphorylation of tubulin by a calmodulin-dependent protein kinase. J Biol Chem. 1986 Aug 5;261(22):10332–10339. [PubMed]
  • Geuss U, Mayr GW, Heilmeyer LM., Jr Steady-state kinetics of skeletal muscle myosin light chain kinase indicate a strong down regulation by products. Eur J Biochem. 1985 Dec 2;153(2):327–334. [PubMed]
  • Tabatabai LB, Graves DJ. Kinetic mechanism and specificity of the phosphorylase kinase reaction. J Biol Chem. 1978 Apr 10;253(7):2196–2202. [PubMed]
  • Kwiatkowski AP, Huang CY, King MM. Kinetic mechanism of the type II calmodulin-dependent protein kinase: studies of the forward and reverse reactions and observation of apparent rapid-equilibrium ordered binding. Biochemistry. 1990 Jan 9;29(1):153–159. [PubMed]
  • Woodgett JR, Davison MT, Cohen P. The calmodulin-dependent glycogen synthase kinase from rabbit skeletal muscle. Purification, subunit structure and substrate specificity. Eur J Biochem. 1983 Nov 15;136(3):481–487. [PubMed]
  • Kanaseki T, Ikeuchi Y, Sugiura H, Yamauchi T. Structural features of Ca2+/calmodulin-dependent protein kinase II revealed by electron microscopy. J Cell Biol. 1991 Nov;115(4):1049–1060. [PMC free article] [PubMed]
  • Dosemeci A, Reese TS, Petersen JD, Choi C, Beushausen S. Localization of the linker domain of Ca2+/calmodulin-dependent protein kinase II. Biochem Biophys Res Commun. 1999 Oct 5;263(3):657–662. [PubMed]
  • Kolodziej SJ, Hudmon A, Waxham MN, Stoops JK. Three-dimensional reconstructions of calcium/calmodulin-dependent (CaM) kinase IIalpha and truncated CaM kinase IIalpha reveal a unique organization for its structural core and functional domains. J Biol Chem. 2000 May 12;275(19):14354–14359. [PubMed]
  • Yamauchi T, Ohsako S, Deguchi T. Expression and characterization of calmodulin-dependent protein kinase II from cloned cDNAs in Chinese hamster ovary cells. J Biol Chem. 1989 Nov 15;264(32):19108–19116. [PubMed]
  • Kolb SJ, Hudmon A, Ginsberg TR, Waxham MN. Identification of domains essential for the assembly of calcium/calmodulin-dependent protein kinase II holoenzymes. J Biol Chem. 1998 Nov 20;273(47):31555–31564. [PubMed]
  • Shen K, Meyer T. In vivo and in vitro characterization of the sequence requirement for oligomer formation of Ca2+/calmodulin-dependent protein kinase IIalpha. J Neurochem. 1998 Jan;70(1):96–104. [PubMed]
  • Levine H, 3rd, Sahyoun NE. Characterization of a soluble Mr-30,000 catalytic fragment of the neuronal calmodulin-dependent protein kinase II. Eur J Biochem. 1987 Nov 2;168(3):481–486. [PubMed]
  • Kwiatkowski AP, King MM. Autophosphorylation of the type II calmodulin-dependent protein kinase is essential for formation of a proteolytic fragment with catalytic activity. Implications for long-term synaptic potentiation. Biochemistry. 1989 Jun 27;28(13):5380–5385. [PubMed]
  • Colbran RJ, Fong YL, Schworer CM, Soderling TR. Regulatory interactions of the calmodulin-binding, inhibitory, and autophosphorylation domains of Ca2+/calmodulin-dependent protein kinase II. J Biol Chem. 1988 Dec 5;263(34):18145–18151. [PubMed]
  • Lai Y, Nairn AC, Gorelick F, Greengard P. Ca2+/calmodulin-dependent protein kinase II: identification of autophosphorylation sites responsible for generation of Ca2+/calmodulin-independence. Proc Natl Acad Sci U S A. 1987 Aug;84(16):5710–5714. [PMC free article] [PubMed]
  • Schworer CM, Colbran RJ, Keefer JR, Soderling TR. Ca2+/calmodulin-dependent protein kinase II. Identification of a regulatory autophosphorylation site adjacent to the inhibitory and calmodulin-binding domains. J Biol Chem. 1988 Sep 25;263(27):13486–13489. [PubMed]
  • Lou LL, Schulman H. Distinct autophosphorylation sites sequentially produce autonomy and inhibition of the multifunctional Ca2+/calmodulin-dependent protein kinase. J Neurosci. 1989 Jun;9(6):2020–2032. [PubMed]
  • Miller SG, Patton BL, Kennedy MB. Sequences of autophosphorylation sites in neuronal type II CaM kinase that control Ca2(+)-independent activity. Neuron. 1988 Sep;1(7):593–604. [PubMed]
  • Thiel G, Czernik AJ, Gorelick F, Nairn AC, Greengard P. Ca2+/calmodulin-dependent protein kinase II: identification of threonine-286 as the autophosphorylation site in the alpha subunit associated with the generation of Ca2+-independent activity. Proc Natl Acad Sci U S A. 1988 Sep;85(17):6337–6341. [PMC free article] [PubMed]
  • Lai Y, Nairn AC, Greengard P. Autophosphorylation reversibly regulates the Ca2+/calmodulin-dependence of Ca2+/calmodulin-dependent protein kinase II. Proc Natl Acad Sci U S A. 1986 Jun;83(12):4253–4257. [PMC free article] [PubMed]
  • Schworer CM, Colbran RJ, Soderling TR. Reversible generation of a Ca2+-independent form of Ca2+(calmodulin)-dependent protein kinase II by an autophosphorylation mechanism. J Biol Chem. 1986 Jul 5;261(19):8581–8584. [PubMed]
  • Hanson PI, Kapiloff MS, Lou LL, Rosenfeld MG, Schulman H. Expression of a multifunctional Ca2+/calmodulin-dependent protein kinase and mutational analysis of its autoregulation. Neuron. 1989 Jul;3(1):59–70. [PubMed]
  • Waxham MN, Aronowski J, Westgate SA, Kelly PT. Mutagenesis of Thr-286 in monomeric Ca2+/calmodulin-dependent protein kinase II eliminates Ca2+/calmodulin-independent activity. Proc Natl Acad Sci U S A. 1990 Feb;87(4):1273–1277. [PMC free article] [PubMed]
  • Fong YL, Soderling TR. Studies on the regulatory domain of Ca2+/calmodulin-dependent protein kinase II. Functional analyses of arginine 283 using synthetic inhibitory peptides and site-directed mutagenesis of the alpha subunit. J Biol Chem. 1990 Jul 5;265(19):11091–11097. [PubMed]
  • Hanson PI, Meyer T, Stryer L, Schulman H. Dual role of calmodulin in autophosphorylation of multifunctional CaM kinase may underlie decoding of calcium signals. Neuron. 1994 May;12(5):943–956. [PubMed]
  • Mukherji S, Soderling TR. Regulation of Ca2+/calmodulin-dependent protein kinase II by inter- and intrasubunit-catalyzed autophosphorylations. J Biol Chem. 1994 May 13;269(19):13744–13747. [PubMed]
  • Rich RC, Schulman H. Substrate-directed function of calmodulin in autophosphorylation of Ca2+/calmodulin-dependent protein kinase II. J Biol Chem. 1998 Oct 23;273(43):28424–28429. [PubMed]
  • Kuret J, Schulman H. Mechanism of autophosphorylation of the multifunctional Ca2+/calmodulin-dependent protein kinase. J Biol Chem. 1985 May 25;260(10):6427–6433. [PubMed]
  • Hudmon A, Aronowski J, Kolb SJ, Waxham MN. Inactivation and self-association of Ca2+/calmodulin-dependent protein kinase II during autophosphorylation. J Biol Chem. 1996 Apr 12;271(15):8800–8808. [PubMed]
  • Dosemeci A, Reese TS, Petersen J, Tao-Cheng JH. A novel particulate form of Ca(2+)/calmodulin-dependent [correction of Ca(2+)/CaMKII-dependent] protein kinase II in neurons. J Neurosci. 2000 May 1;20(9):3076–3084. [PubMed]
  • Hudmon A, Kim SA, Kolb SJ, Stoops JK, Waxham MN. Light scattering and transmission electron microscopy studies reveal a mechanism for calcium/calmodulin-dependent protein kinase II self-association. J Neurochem. 2001 Mar;76(5):1364–1375. [PubMed]
  • Tao-Cheng JH, Vinade L, Smith C, Winters CA, Ward R, Brightman MW, Reese TS, Dosemeci A. Sustained elevation of calcium induces Ca(2+)/calmodulin-dependent protein kinase II clusters in hippocampal neurons. Neuroscience. 2001;106(1):69–78. [PubMed]
  • Kim SA, Hudmon A, Volmer A, Waxham MN. CaM-kinase II dephosphorylates Thr(286) by a reversal of the autophosphorylation reaction. Biochem Biophys Res Commun. 2001 Apr 6;282(3):773–780. [PubMed]
  • Fukunaga K, Stoppini L, Miyamoto E, Muller D. Long-term potentiation is associated with an increased activity of Ca2+/calmodulin-dependent protein kinase II. J Biol Chem. 1993 Apr 15;268(11):7863–7867. [PubMed]
  • Fukunaga K, Muller D, Miyamoto E. Increased phosphorylation of Ca2+/calmodulin-dependent protein kinase II and its endogenous substrates in the induction of long-term potentiation. J Biol Chem. 1995 Mar 17;270(11):6119–6124. [PubMed]
  • Barria A, Muller D, Derkach V, Griffith LC, Soderling TR. Regulatory phosphorylation of AMPA-type glutamate receptors by CaM-KII during long-term potentiation. Science. 1997 Jun 27;276(5321):2042–2045. [PubMed]
  • Ouyang Y, Kantor D, Harris KM, Schuman EM, Kennedy MB. Visualization of the distribution of autophosphorylated calcium/calmodulin-dependent protein kinase II after tetanic stimulation in the CA1 area of the hippocampus. J Neurosci. 1997 Jul 15;17(14):5416–5427. [PubMed]
  • McGlade-McCulloh E, Yamamoto H, Tan SE, Brickey DA, Soderling TR. Phosphorylation and regulation of glutamate receptors by calcium/calmodulin-dependent protein kinase II. Nature. 1993 Apr 15;362(6421):640–642. [PubMed]
  • Lledo PM, Hjelmstad GO, Mukherji S, Soderling TR, Malenka RC, Nicoll RA. Calcium/calmodulin-dependent kinase II and long-term potentiation enhance synaptic transmission by the same mechanism. Proc Natl Acad Sci U S A. 1995 Nov 21;92(24):11175–11179. [PMC free article] [PubMed]
  • Pettit DL, Perlman S, Malinow R. Potentiated transmission and prevention of further LTP by increased CaMKII activity in postsynaptic hippocampal slice neurons. Science. 1994 Dec 16;266(5192):1881–1885. [PubMed]
  • Lledo PM, Hjelmstad GO, Mukherji S, Soderling TR, Malenka RC, Nicoll RA. Calcium/calmodulin-dependent kinase II and long-term potentiation enhance synaptic transmission by the same mechanism. Proc Natl Acad Sci U S A. 1995 Nov 21;92(24):11175–11179. [PMC free article] [PubMed]
  • Giese KP, Fedorov NB, Filipkowski RK, Silva AJ. Autophosphorylation at Thr286 of the alpha calcium-calmodulin kinase II in LTP and learning. Science. 1998 Feb 6;279(5352):870–873. [PubMed]
  • Mayford M, Wang J, Kandel ER, O'Dell TJ. CaMKII regulates the frequency-response function of hippocampal synapses for the production of both LTD and LTP. Cell. 1995 Jun 16;81(6):891–904. [PubMed]
  • Bach ME, Hawkins RD, Osman M, Kandel ER, Mayford M. Impairment of spatial but not contextual memory in CaMKII mutant mice with a selective loss of hippocampal LTP in the range of the theta frequency. Cell. 1995 Jun 16;81(6):905–915. [PubMed]
  • Saitoh T, Schwartz JH. Phosphorylation-dependent subcellular translocation of a Ca2+/calmodulin-dependent protein kinase produces an autonomous enzyme in Aplysia neurons. J Cell Biol. 1985 Mar;100(3):835–842. [PMC free article] [PubMed]
  • Gorelick FS, Wang JK, Lai Y, Nairn AC, Greengard P. Autophosphorylation and activation of Ca2+/calmodulin-dependent protein kinase II in intact nerve terminals. J Biol Chem. 1988 Nov 25;263(33):17209–17212. [PubMed]
  • MacNicol M, Jefferson AB, Schulman H. Ca2+/calmodulin kinase is activated by the phosphatidylinositol signaling pathway and becomes Ca2(+)-independent in PC12 cells. J Biol Chem. 1990 Oct 25;265(30):18055–18058. [PubMed]
  • Scholz WK, Palfrey HC. Activation of Ca2+/calmodulin-dependent protein kinase II by extracellular calcium in cultured hippocampal pyramidal neurons. J Neurochem. 1998 Aug;71(2):580–591. [PubMed]
  • Molloy SS, Kennedy MB. Autophosphorylation of type II Ca2+/calmodulin-dependent protein kinase in cultures of postnatal rat hippocampal slices. Proc Natl Acad Sci U S A. 1991 Jun 1;88(11):4756–4760. [PMC free article] [PubMed]
  • Ocorr KA, Schulman H. Activation of multifunctional Ca2+/calmodulin-dependent kinase in intact hippocampal slices. Neuron. 1991 Jun;6(6):907–914. [PubMed]
  • Lengyel I, Cammarota M, Brent VA, Rostas JA. Autonomous activity and autophosphorylation of CAMPK-II in rat hippocampal slices: effects of tissue preparation. J Neurochem. 2001 Jan;76(1):149–154. [PubMed]
  • Lisman JE. A mechanism for memory storage insensitive to molecular turnover: a bistable autophosphorylating kinase. Proc Natl Acad Sci U S A. 1985 May;82(9):3055–3057. [PMC free article] [PubMed]
  • Lisman JE, Goldring MA. Feasibility of long-term storage of graded information by the Ca2+/calmodulin-dependent protein kinase molecules of the postsynaptic density. Proc Natl Acad Sci U S A. 1988 Jul;85(14):5320–5324. [PMC free article] [PubMed]
  • Lisman J, Goldring M. Evaluation of a model of long-term memory based on the properties of the Ca2+/calmodulin-dependent protein kinase. J Physiol (Paris) 1988;83(3):187–197. [PubMed]
  • Lisman J. A mechanism for the Hebb and the anti-Hebb processes underlying learning and memory. Proc Natl Acad Sci U S A. 1989 Dec;86(23):9574–9578. [PMC free article] [PubMed]
  • Lisman J. The CaM kinase II hypothesis for the storage of synaptic memory. Trends Neurosci. 1994 Oct;17(10):406–412. [PubMed]
  • Lisman JE, Zhabotinsky AM. A model of synaptic memory: a CaMKII/PP1 switch that potentiates transmission by organizing an AMPA receptor anchoring assembly. Neuron. 2001 Aug 2;31(2):191–201. [PubMed]
  • Singla SI, Hudmon A, Goldberg JM, Smith JL, Schulman H. Molecular characterization of calmodulin trapping by calcium/calmodulin-dependent protein kinase II. J Biol Chem. 2001 Aug 3;276(31):29353–29360. [PubMed]
  • Rhoads AR, Friedberg F. Sequence motifs for calmodulin recognition. FASEB J. 1997 Apr;11(5):331–340. [PubMed]
  • De Koninck P, Schulman H. Sensitivity of CaM kinase II to the frequency of Ca2+ oscillations. Science. 1998 Jan 9;279(5348):227–230. [PubMed]
  • Dosemeci A, Albers RW. A mechanism for synaptic frequency detection through autophosphorylation of CaM kinase II. Biophys J. 1996 Jun;70(6):2493–2501. [PMC free article] [PubMed]
  • Coomber C. Current theories of neuronal information processing performed by Ca2+/calmodulin-dependent protein kinase II with support and insights from computer modelling and simulation. Comput Chem. 1998;22(2-3):251–263. [PubMed]
  • Coomber CJ. Site-selective autophosphorylation of Ca2+/calmodulin-dependent protein kinase II as a synaptic encoding mechanism. Neural Comput. 1998 Oct 1;10(7):1653–1678. [PubMed]
  • Bhalla US, Iyengar R. Emergent properties of networks of biological signaling pathways. Science. 1999 Jan 15;283(5400):381–387. [PubMed]
  • Holmes WR. Models of calmodulin trapping and CaM kinase II activation in a dendritic spine. J Comput Neurosci. 2000 Jan-Feb;8(1):65–85. [PubMed]
  • Okamoto H, Ichikawa K. A model for molecular mechanisms of synaptic competition for a finite resource. Biosystems. 2000 Feb;55(1-3):65–71. [PubMed]
  • Okamoto H, Ichikawa K. Switching characteristics of a model for biochemical-reaction networks describing autophosphorylation versus dephosphorylation of Ca2+/calmodulin-dependent protein kinase II. Biol Cybern. 2000 Jan;82(1):35–47. [PubMed]
  • Zhabotinsky AM. Bistability in the Ca(2+)/calmodulin-dependent protein kinase-phosphatase system. Biophys J. 2000 Nov;79(5):2211–2221. [PMC free article] [PubMed]
  • Kubota Y, Bower JM. Transient versus asymptotic dynamics of CaM kinase II: possible roles of phosphatase. J Comput Neurosci. 2001 Nov-Dec;11(3):263–279. [PubMed]
  • Eshete F, Fields RD. Spike frequency decoding and autonomous activation of Ca2+-calmodulin-dependent protein kinase II in dorsal root ganglion neurons. J Neurosci. 2001 Sep 1;21(17):6694–6705. [PubMed]
  • Liu YC, Storm DR. Regulation of free calmodulin levels by neuromodulin: neuron growth and regeneration. Trends Pharmacol Sci. 1990 Mar;11(3):107–111. [PubMed]
  • Skene JH. GAP-43 as a 'calmodulin sponge' and some implications for calcium signalling in axon terminals. Neurosci Res Suppl. 1990;13:S112–S125. [PubMed]
  • Coghlan VM, Bergeson SE, Langeberg L, Nilaver G, Scott JD. A-kinase anchoring proteins: a key to selective activation of cAMP-responsive events? Mol Cell Biochem. 1993 Nov;127-128:309–319. [PubMed]
  • Colledge M, Scott JD. AKAPs: from structure to function. Trends Cell Biol. 1999 Jun;9(6):216–221. [PubMed]
  • Mochly-Rosen D, Khaner H, Lopez J, Smith BL. Intracellular receptors for activated protein kinase C. Identification of a binding site for the enzyme. J Biol Chem. 1991 Aug 15;266(23):14866–14868. [PubMed]
  • Mochly-Rosen D, Khaner H, Lopez J. Identification of intracellular receptor proteins for activated protein kinase C. Proc Natl Acad Sci U S A. 1991 May 1;88(9):3997–4000. [PMC free article] [PubMed]
  • Bayer KU, Schulman H. Regulation of signal transduction by protein targeting: the case for CaMKII. Biochem Biophys Res Commun. 2001 Dec 21;289(5):917–923. [PubMed]
  • Bayer KU, De Koninck P, Leonard AS, Hell JW, Schulman H. Interaction with the NMDA receptor locks CaMKII in an active conformation. Nature. 2001 Jun 14;411(6839):801–805. [PubMed]
  • McNeill RB, Colbran RJ. Interaction of autophosphorylated Ca2+/calmodulin-dependent protein kinase II with neuronal cytoskeletal proteins. Characterization of binding to a 190-kDa postsynaptic density protein. J Biol Chem. 1995 Apr 28;270(17):10043–10049. [PubMed]
  • Strack S, Colbran RJ. Autophosphorylation-dependent targeting of calcium/ calmodulin-dependent protein kinase II by the NR2B subunit of the N-methyl- D-aspartate receptor. J Biol Chem. 1998 Aug 14;273(33):20689–20692. [PubMed]
  • Gardoni F, Caputi A, Cimino M, Pastorino L, Cattabeni F, Di Luca M. Calcium/calmodulin-dependent protein kinase II is associated with NR2A/B subunits of NMDA receptor in postsynaptic densities. J Neurochem. 1998 Oct;71(4):1733–1741. [PubMed]
  • Gardoni F, Schrama LH, van Dalen JJ, Gispen WH, Cattabeni F, Di Luca M. AlphaCaMKII binding to the C-terminal tail of NMDA receptor subunit NR2A and its modulation by autophosphorylation. FEBS Lett. 1999 Aug 13;456(3):394–398. [PubMed]
  • Leonard AS, Lim IA, Hemsworth DE, Horne MC, Hell JW. Calcium/calmodulin-dependent protein kinase II is associated with the N-methyl-D-aspartate receptor. Proc Natl Acad Sci U S A. 1999 Mar 16;96(6):3239–3244. [PMC free article] [PubMed]
  • Strack S, McNeill RB, Colbran RJ. Mechanism and regulation of calcium/calmodulin-dependent protein kinase II targeting to the NR2B subunit of the N-methyl-D-aspartate receptor. J Biol Chem. 2000 Aug 4;275(31):23798–23806. [PubMed]
  • Gardoni F, Bellone C, Cattabeni F, Di Luca M. Protein kinase C activation modulates alpha-calmodulin kinase II binding to NR2A subunit of N-methyl-D-aspartate receptor complex. J Biol Chem. 2001 Mar 9;276(10):7609–7613. [PubMed]
  • Gardoni F, Schrama LH, Kamal A, Gispen WH, Cattabeni F, Di Luca M. Hippocampal synaptic plasticity involves competition between Ca2+/calmodulin-dependent protein kinase II and postsynaptic density 95 for binding to the NR2A subunit of the NMDA receptor. J Neurosci. 2001 Mar 1;21(5):1501–1509. [PubMed]
  • Shen K, Teruel MN, Subramanian K, Meyer T. CaMKIIbeta functions as an F-actin targeting module that localizes CaMKIIalpha/beta heterooligomers to dendritic spines. Neuron. 1998 Sep;21(3):593–606. [PubMed]
  • Shen K, Meyer T. Dynamic control of CaMKII translocation and localization in hippocampal neurons by NMDA receptor stimulation. Science. 1999 Apr 2;284(5411):162–166. [PubMed]
  • Shen K, Teruel MN, Connor JH, Shenolikar S, Meyer T. Molecular memory by reversible translocation of calcium/calmodulin-dependent protein kinase II. Nat Neurosci. 2000 Sep;3(9):881–886. [PubMed]
  • Lou LL, Lloyd SJ, Schulman H. Activation of the multifunctional Ca2+/calmodulin-dependent protein kinase by autophosphorylation: ATP modulates production of an autonomous enzyme. Proc Natl Acad Sci U S A. 1986 Dec;83(24):9497–9501. [PMC free article] [PubMed]
  • Ishida A, Kitani T, Okuno S, Fujisawa H. Inactivation of Ca2+/calmodulin-dependent protein kinase II by Ca2+/calmodulin. J Biochem. 1994 Jun;115(6):1075–1082. [PubMed]
  • Ishida A, Fujisawa H. Stabilization of calmodulin-dependent protein kinase II through the autoinhibitory domain. J Biol Chem. 1995 Feb 3;270(5):2163–2170. [PubMed]
  • Suzuki T, Okumura-Noji K, Tanaka R, Tada T. Rapid translocation of cytosolic Ca2+/calmodulin-dependent protein kinase II into postsynaptic density after decapitation. J Neurochem. 1994 Oct;63(4):1529–1537. [PubMed]
  • Margrie TW, Rostas JA. Subcellular translocation of Ca2+/calmodulin-dependent protein kinase II: fact or artifact? J Neurochem. 1997 Jul;69(1):435–437. [PubMed]
  • Aronowski J, Grotta JC. Ca2+/calmodulin-dependent protein kinase II in postsynaptic densities after reversible cerebral ischemia in rats. Brain Res. 1996 Feb 12;709(1):103–110. [PubMed]
  • Dosemeci A, Tao-Cheng JH, Vinade L, Winters CA, Pozzo-Miller L, Reese TS. Glutamate-induced transient modification of the postsynaptic density. Proc Natl Acad Sci U S A. 2001 Aug 28;98(18):10428–10432. [PMC free article] [PubMed]
  • Walsh DA, Perkins JP, Krebs EG. An adenosine 3',5'-monophosphate-dependant protein kinase from rabbit skeletal muscle. J Biol Chem. 1968 Jul 10;243(13):3763–3765. [PubMed]
  • Xiong Y, Hannon GJ, Zhang H, Casso D, Kobayashi R, Beach D. p21 is a universal inhibitor of cyclin kinases. Nature. 1993 Dec 16;366(6456):701–704. [PubMed]
  • Serrano M, Hannon GJ, Beach D. A new regulatory motif in cell-cycle control causing specific inhibition of cyclin D/CDK4. Nature. 1993 Dec 16;366(6456):704–707. [PubMed]
  • Dickens M, Rogers JS, Cavanagh J, Raitano A, Xia Z, Halpern JR, Greenberg ME, Sawyers CL, Davis RJ. A cytoplasmic inhibitor of the JNK signal transduction pathway. Science. 1997 Aug 1;277(5326):693–696. [PubMed]
  • Johanson RA, Sarau HM, Foley JJ, Slemmon JR. Calmodulin-binding peptide PEP-19 modulates activation of calmodulin kinase II In situ. J Neurosci. 2000 Apr 15;20(8):2860–2866. [PubMed]
  • Chang BH, Mukherji S, Soderling TR. Characterization of a calmodulin kinase II inhibitor protein in brain. Proc Natl Acad Sci U S A. 1998 Sep 1;95(18):10890–10895. [PMC free article] [PubMed]
  • Chang BH, Mukherji S, Soderling TR. Calcium/calmodulin-dependent protein kinase II inhibitor protein: localization of isoforms in rat brain. Neuroscience. 2001;102(4):767–777. [PubMed]
  • White RR, Kwon YG, Taing M, Lawrence DS, Edelman AM. Definition of optimal substrate recognition motifs of Ca2+-calmodulin-dependent protein kinases IV and II reveals shared and distinctive features. J Biol Chem. 1998 Feb 6;273(6):3166–3172. [PubMed]
  • Kennelly PJ, Krebs EG. Consensus sequences as substrate specificity determinants for protein kinases and protein phosphatases. J Biol Chem. 1991 Aug 25;266(24):15555–15558. [PubMed]
  • Songyang Z, Lu KP, Kwon YT, Tsai LH, Filhol O, Cochet C, Brickey DA, Soderling TR, Bartleson C, Graves DJ, et al. A structural basis for substrate specificities of protein Ser/Thr kinases: primary sequence preference of casein kinases I and II, NIMA, phosphorylase kinase, calmodulin-dependent kinase II, CDK5, and Erk1. Mol Cell Biol. 1996 Nov;16(11):6486–6493. [PMC free article] [PubMed]
  • Pearson RB, Woodgett JR, Cohen P, Kemp BE. Substrate specificity of a multifunctional calmodulin-dependent protein kinase. J Biol Chem. 1985 Nov 25;260(27):14471–14476. [PubMed]
  • Stokoe D, Caudwell B, Cohen PT, Cohen P. The substrate specificity and structure of mitogen-activated protein (MAP) kinase-activated protein kinase-2. Biochem J. 1993 Dec 15;296(Pt 3):843–849. [PMC free article] [PubMed]
  • Ando S, Tokui T, Yamauchi T, Sugiura H, Tanabe K, Inagaki M. Evidence that Ser-82 is a unique phosphorylation site on vimentin for Ca2(+)-calmodulin-dependent protein kinase II. Biochem Biophys Res Commun. 1991 Mar 29;175(3):955–962. [PubMed]
  • Tokumitsu H, Chijiwa T, Hagiwara M, Mizutani A, Terasawa M, Hidaka H. KN-62, 1-[N,O-bis(5-isoquinolinesulfonyl)-N-methyl-L-tyrosyl]-4-phenylpiperazi ne, a specific inhibitor of Ca2+/calmodulin-dependent protein kinase II. J Biol Chem. 1990 Mar 15;265(8):4315–4320. [PubMed]
  • Sumi M, Kiuchi K, Ishikawa T, Ishii A, Hagiwara M, Nagatsu T, Hidaka H. The newly synthesized selective Ca2+/calmodulin dependent protein kinase II inhibitor KN-93 reduces dopamine contents in PC12h cells. Biochem Biophys Res Commun. 1991 Dec 31;181(3):968–975. [PubMed]
  • Malenka RC, Kauer JA, Perkel DJ, Mauk MD, Kelly PT, Nicoll RA, Waxham MN. An essential role for postsynaptic calmodulin and protein kinase activity in long-term potentiation. Nature. 1989 Aug 17;340(6234):554–557. [PubMed]
  • Malinow R, Schulman H, Tsien RW. Inhibition of postsynaptic PKC or CaMKII blocks induction but not expression of LTP. Science. 1989 Aug 25;245(4920):862–866. [PubMed]
  • Ishida A, Kameshita I, Okuno S, Kitani T, Fujisawa H. A novel highly specific and potent inhibitor of calmodulin-dependent protein kinase II. Biochem Biophys Res Commun. 1995 Jul 26;212(3):806–812. [PubMed]
  • Ishida A, Shigeri Y, Tatsu Y, Uegaki K, Kameshita I, Okuno S, Kitani T, Yumoto N, Fujisawa H. Critical amino acid residues of AIP, a highly specific inhibitory peptide of calmodulin-dependent protein kinase II. FEBS Lett. 1998 May 1;427(1):115–118. [PubMed]
  • Kemp BE, Pearson RB, House CM. Pseudosubstrate-based peptide inhibitors. Methods Enzymol. 1991;201:287–304. [PubMed]
  • Smith MK, Colbran RJ, Soderling TR. Specificities of autoinhibitory domain peptides for four protein kinases. Implications for intact cell studies of protein kinase function. J Biol Chem. 1990 Feb 5;265(4):1837–1840. [PubMed]
  • Hvalby O, Hemmings HC, Jr, Paulsen O, Czernik AJ, Nairn AC, Godfraind JM, Jensen V, Raastad M, Storm JF, Andersen P, et al. Specificity of protein kinase inhibitor peptides and induction of long-term potentiation. Proc Natl Acad Sci U S A. 1994 May 24;91(11):4761–4765. [PMC free article] [PubMed]
  • Bishop AC, Ubersax JA, Petsch DT, Matheos DP, Gray NS, Blethrow J, Shimizu E, Tsien JZ, Schultz PG, Rose MD, et al. A chemical switch for inhibitor-sensitive alleles of any protein kinase. Nature. 2000 Sep 21;407(6802):395–401. [PubMed]
  • Bishop A, Buzko O, Heyeck-Dumas S, Jung I, Kraybill B, Liu Y, Shah K, Ulrich S, Witucki L, Yang F, et al. Unnatural ligands for engineered proteins: new tools for chemical genetics. Annu Rev Biophys Biomol Struct. 2000;29:577–606. [PubMed]
  • Bishop AC, Buzko O, Shokat KM. Magic bullets for protein kinases. Trends Cell Biol. 2001 Apr;11(4):167–172. [PubMed]
  • Alaimo PJ, Shogren-Knaak MA, Shokat KM. Chemical genetic approaches for the elucidation of signaling pathways. Curr Opin Chem Biol. 2001 Aug;5(4):360–367. [PubMed]
  • Bishop AC, Shah K, Liu Y, Witucki L, Kung C, Shokat KM. Design of allele-specific inhibitors to probe protein kinase signaling. Curr Biol. 1998 Feb 26;8(5):257–266. [PubMed]
  • Liu Y, Shah K, Yang F, Witucki L, Shokat KM. Engineering Src family protein kinases with unnatural nucleotide specificity. Chem Biol. 1998 Feb;5(2):91–101. [PubMed]
  • Shah K, Liu Y, Deirmengian C, Shokat KM. Engineering unnatural nucleotide specificity for Rous sarcoma virus tyrosine kinase to uniquely label its direct substrates. Proc Natl Acad Sci U S A. 1997 Apr 15;94(8):3565–3570. [PMC free article] [PubMed]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

  • PubMed
    PubMed
    PubMed citations for these articles

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...