• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of biochemjBJ Latest papers and much more!
Biochem J. Feb 1, 2002; 361(Pt 3): 525–536.
PMCID: PMC1222335

Evidence that the tandem-pleckstrin-homology-domain-containing protein TAPP1 interacts with Ptd(3,4)P2 and the multi-PDZ-domain-containing protein MUPP1 in vivo.

Abstract

PtdIns(3,4,5)P3 is an established second messenger of growth-factor and insulin-induced signalling pathways. There is increasing evidence that one of the immediate breakdown products of PtdIns(3,4,5)P3, namely PtdIns(3,4)P2, whose levels are elevated by numerous extracellular agonists, might also function as a signalling molecule. Recently, we identified two related pleckstrin-homology (PH)-domain-containing proteins, termed 'tandem-PH-domain-containing protein-1' (TAPP1) and TAPP2, which interacted in vitro with high affinity with PtdIns(3,4)P2, but did not bind PtdIns(3,4,5)P3 or other phosphoinositides. In the present study we demonstrate that stimulation of Swiss 3T3 or 293 cells with agonists that stimulate PtdIns(3,4)P2 production results in the marked translocation of TAPP1 to the plasma membrane. This recruitment is dependent on a functional PtdIns(3,4)P2-binding PH domain and is inhibited by wortmannin, a phosphoinositide 3-kinase inhibitor that prevents PtdIns(3,4)P2 generation. A search for proteins that interact with TAPP1 identified the multi-PDZ-containing protein termed 'MUPP1', a protein possessing 13 PDZ domains and no other known modular or catalytic domains [PDZ is postsynaptic density protein (PSD-95)/Drosophila disc large tumour suppressor (dlg)/tight junction protein (ZO1)]. We demonstrate that immunoprecipitation of endogenously expressed TAPP1 from 293-cell lysates results in the co-immunoprecipitation of endogenous MUPP1, indicating that these proteins are likely to interact with each other physiologically. We show that TAPP1 and TAPP2 interact with the 10th and 13th PDZ domain of MUPP1 through their C-terminal amino acids. The results of the present study suggest that TAPP1 and TAPP2 could function in cells as adapter proteins to recruit MUPP1, or other proteins that they may interact with, to the plasma membrane in response to signals that elevate PtdIns(3,4)P2.

Full Text

The Full Text of this article is available as a PDF (476K).

Multimedia adjuncts

Multimedia adjunct for figure 1A:
Multimedia adjunct for figure 1B:
Multimedia adjunct for figure 1C:
Multimedia adjunct for figure 1D:
Multimedia adjunct for figure 1E:
Multimedia adjunct for figure 1F:
Multimedia adjunct for figure 3A:
Multimedia adjunct for figure 3B:

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Vanhaesebroeck B, Leevers SJ, Ahmadi K, Timms J, Katso R, Driscoll PC, Woscholski R, Parker PJ, Waterfield MD. Synthesis and function of 3-phosphorylated inositol lipids. Annu Rev Biochem. 2001;70:535–602. [PubMed]
  • Lemmon MA, Ferguson KM. Signal-dependent membrane targeting by pleckstrin homology (PH) domains. Biochem J. 2000 Aug 15;350(Pt 1):1–18. [PMC free article] [PubMed]
  • Vanhaesebroeck B, Alessi DR. The PI3K-PDK1 connection: more than just a road to PKB. Biochem J. 2000 Mar 15;346(Pt 3):561–576. [PMC free article] [PubMed]
  • Leslie NR, Biondi RM, Alessi DR. Phosphoinositide-regulated kinases and phosphoinositide phosphatases. Chem Rev. 2001 Aug;101(8):2365–2380. [PubMed]
  • Pesesse X, Dewaste V, De Smedt F, Laffargue M, Giuriato S, Moreau C, Payrastre B, Erneux C. The Src homology 2 domain containing inositol 5-phosphatase SHIP2 is recruited to the epidermal growth factor (EGF) receptor and dephosphorylates phosphatidylinositol 3,4,5-trisphosphate in EGF-stimulated COS-7 cells. J Biol Chem. 2001 Jul 27;276(30):28348–28355. [PubMed]
  • James SR, Downes CP, Gigg R, Grove SJ, Holmes AB, Alessi DR. Specific binding of the Akt-1 protein kinase to phosphatidylinositol 3,4,5-trisphosphate without subsequent activation. Biochem J. 1996 May 1;315(Pt 3):709–713. [PMC free article] [PubMed]
  • Stephens L, Anderson K, Stokoe D, Erdjument-Bromage H, Painter GF, Holmes AB, Gaffney PR, Reese CB, McCormick F, Tempst P, et al. Protein kinase B kinases that mediate phosphatidylinositol 3,4,5-trisphosphate-dependent activation of protein kinase B. Science. 1998 Jan 30;279(5351):710–714. [PubMed]
  • Walker KS, Deak M, Paterson A, Hudson K, Cohen P, Alessi DR. Activation of protein kinase B beta and gamma isoforms by insulin in vivo and by 3-phosphoinositide-dependent protein kinase-1 in vitro: comparison with protein kinase B alpha. Biochem J. 1998 Apr 1;331(Pt 1):299–308. [PMC free article] [PubMed]
  • Anderson KE, Lipp P, Bootman M, Ridley SH, Coadwell J, Rönnstrand L, Lennartsson J, Holmes AB, Painter GF, Thuring J, et al. DAPP1 undergoes a PI 3-kinase-dependent cycle of plasma-membrane recruitment and endocytosis upon cell stimulation. Curr Biol. 2000 Nov 16;10(22):1403–1412. [PubMed]
  • Dowler S, Currie RA, Downes CP, Alessi DR. DAPP1: a dual adaptor for phosphotyrosine and 3-phosphoinositides. Biochem J. 1999 Aug 15;342(Pt 1):7–12. [PMC free article] [PubMed]
  • Ferguson KM, Kavran JM, Sankaran VG, Fournier E, Isakoff SJ, Skolnik EY, Lemmon MA. Structural basis for discrimination of 3-phosphoinositides by pleckstrin homology domains. Mol Cell. 2000 Aug;6(2):373–384. [PubMed]
  • Banfić H, Downes CP, Rittenhouse SE. Biphasic activation of PKBalpha/Akt in platelets. Evidence for stimulation both by phosphatidylinositol 3,4-bisphosphate, produced via a novel pathway, and by phosphatidylinositol 3,4,5-trisphosphate. J Biol Chem. 1998 May 8;273(19):11630–11637. [PubMed]
  • Banfić H, Tang X, Batty IH, Downes CP, Chen C, Rittenhouse SE. A novel integrin-activated pathway forms PKB/Akt-stimulatory phosphatidylinositol 3,4-bisphosphate via phosphatidylinositol 3-phosphate in platelets. J Biol Chem. 1998 Jan 2;273(1):13–16. [PubMed]
  • Van der Kaay J, Beck M, Gray A, Downes CP. Distinct phosphatidylinositol 3-kinase lipid products accumulate upon oxidative and osmotic stress and lead to different cellular responses. J Biol Chem. 1999 Dec 10;274(50):35963–35968. [PubMed]
  • Dowler S, Currie RA, Campbell DG, Deak M, Kular G, Downes CP, Alessi DR. Identification of pleckstrin-homology-domain-containing proteins with novel phosphoinositide-binding specificities. Biochem J. 2000 Oct 1;351(Pt 1):19–31. [PMC free article] [PubMed]
  • Thomas CC, Dowler S, Deak M, Alessi DR, van Aalten DM. Crystal structure of the phosphatidylinositol 3,4-bisphosphate-binding pleckstrin homology (PH) domain of tandem PH-domain-containing protein 1 (TAPP1): molecular basis of lipid specificity. Biochem J. 2001 Sep 1;358(Pt 2):287–294. [PMC free article] [PubMed]
  • Ullmer C, Schmuck K, Figge A, Lübbert H. Cloning and characterization of MUPP1, a novel PDZ domain protein. FEBS Lett. 1998 Mar 6;424(1-2):63–68. [PubMed]
  • Sapkota GP, Kieloch A, Lizcano JM, Lain S, Arthur JS, Williams MR, Morrice N, Deak M, Alessi DR. Phosphorylation of the protein kinase mutated in Peutz-Jeghers cancer syndrome, LKB1/STK11, at Ser431 by p90(RSK) and cAMP-dependent protein kinase, but not its farnesylation at Cys(433), is essential for LKB1 to suppress cell vrowth. J Biol Chem. 2001 Jun 1;276(22):19469–19482. [PubMed]
  • Lee SS, Glaunsinger B, Mantovani F, Banks L, Javier RT. Multi-PDZ domain protein MUPP1 is a cellular target for both adenovirus E4-ORF1 and high-risk papillomavirus type 18 E6 oncoproteins. J Virol. 2000 Oct;74(20):9680–9693. [PMC free article] [PubMed]
  • Agard DA, Hiraoka Y, Shaw P, Sedat JW. Fluorescence microscopy in three dimensions. Methods Cell Biol. 1989;30:353–377. [PubMed]
  • Liou W, Geuze HJ, Slot JW. Improving structural integrity of cryosections for immunogold labeling. Histochem Cell Biol. 1996 Jul;106(1):41–58. [PubMed]
  • Griffiths G, McDowall A, Back R, Dubochet J. On the preparation of cryosections for immunocytochemistry. J Ultrastruct Res. 1984 Oct;89(1):65–78. [PubMed]
  • Lucocq J. Quantitation of gold labelling and antigens in immunolabelled ultrathin sections. J Anat. 1994 Feb;184(Pt 1):1–13. [PMC free article] [PubMed]
  • Alessi DR, Andjelkovic M, Caudwell B, Cron P, Morrice N, Cohen P, Hemmings BA. Mechanism of activation of protein kinase B by insulin and IGF-1. EMBO J. 1996 Dec 2;15(23):6541–6551. [PMC free article] [PubMed]
  • Gray A, Van Der Kaay J, Downes CP. The pleckstrin homology domains of protein kinase B and GRP1 (general receptor for phosphoinositides-1) are sensitive and selective probes for the cellular detection of phosphatidylinositol 3,4-bisphosphate and/or phosphatidylinositol 3,4,5-trisphosphate in vivo. Biochem J. 1999 Dec 15;344(Pt 3):929–936. [PMC free article] [PubMed]
  • Lietzke SE, Bose S, Cronin T, Klarlund J, Chawla A, Czech MP, Lambright DG. Structural basis of 3-phosphoinositide recognition by pleckstrin homology domains. Mol Cell. 2000 Aug;6(2):385–394. [PubMed]
  • Kornau HC, Schenker LT, Kennedy MB, Seeburg PH. Domain interaction between NMDA receptor subunits and the postsynaptic density protein PSD-95. Science. 1995 Sep 22;269(5231):1737–1740. [PubMed]
  • Songyang Z, Fanning AS, Fu C, Xu J, Marfatia SM, Chishti AH, Crompton A, Chan AC, Anderson JM, Cantley LC. Recognition of unique carboxyl-terminal motifs by distinct PDZ domains. Science. 1997 Jan 3;275(5296):73–77. [PubMed]
  • Dowler S, Montalvo L, Cantrell D, Morrice N, Alessi DR. Phosphoinositide 3-kinase-dependent phosphorylation of the dual adaptor for phosphotyrosine and 3-phosphoinositides by the Src family of tyrosine kinase. Biochem J. 2000 Jul 15;349(Pt 2):605–610. [PMC free article] [PubMed]
  • Venkateswarlu K, Gunn-Moore F, Oatey PB, Tavaré JM, Cullen PJ. Nerve growth factor- and epidermal growth factor-stimulated translocation of the ADP-ribosylation factor-exchange factor GRP1 to the plasma membrane of PC12 cells requires activation of phosphatidylinositol 3-kinase and the GRP1 pleckstrin homology domain. Biochem J. 1998 Oct 1;335(Pt 1):139–146. [PMC free article] [PubMed]
  • Klarlund JK, Guilherme A, Holik JJ, Virbasius JV, Chawla A, Czech MP. Signaling by phosphoinositide-3,4,5-trisphosphate through proteins containing pleckstrin and Sec7 homology domains. Science. 1997 Mar 28;275(5308):1927–1930. [PubMed]
  • Várnai P, Rother KI, Balla T. Phosphatidylinositol 3-kinase-dependent membrane association of the Bruton's tyrosine kinase pleckstrin homology domain visualized in single living cells. J Biol Chem. 1999 Apr 16;274(16):10983–10989. [PubMed]
  • Kanai F, Liu H, Field SJ, Akbary H, Matsuo T, Brown GE, Cantley LC, Yaffe MB. The PX domains of p47phox and p40phox bind to lipid products of PI(3)K. Nat Cell Biol. 2001 Jul;3(7):675–678. [PubMed]
  • Liu Q, Sasaki T, Kozieradzki I, Wakeham A, Itie A, Dumont DJ, Penninger JM. SHIP is a negative regulator of growth factor receptor-mediated PKB/Akt activation and myeloid cell survival. Genes Dev. 1999 Apr 1;13(7):786–791. [PMC free article] [PubMed]
  • Clément S, Krause U, Desmedt F, Tanti JF, Behrends J, Pesesse X, Sasaki T, Penninger J, Doherty M, Malaisse W, et al. The lipid phosphatase SHIP2 controls insulin sensitivity. Nature. 2001 Jan 4;409(6816):92–97. [PubMed]
  • Stenmark H, Aasland R. FYVE-finger proteins--effectors of an inositol lipid. J Cell Sci. 1999 Dec;112(Pt 23):4175–4183. [PubMed]
  • Yokogawa T, Nagata S, Nishio Y, Tsutsumi T, Ihara S, Shirai R, Morita K, Umeda M, Shirai Y, Saitoh N, et al. Evidence that 3'-phosphorylated polyphosphoinositides are generated at the nuclear surface: use of immunostaining technique with monoclonal antibodies specific for PI 3,4-P(2). FEBS Lett. 2000 May 12;473(2):222–226. [PubMed]
  • Glaunsinger BA, Lee SS, Thomas M, Banks L, Javier R. Interactions of the PDZ-protein MAGI-1 with adenovirus E4-ORF1 and high-risk papillomavirus E6 oncoproteins. Oncogene. 2000 Nov 2;19(46):5270–5280. [PMC free article] [PubMed]
  • Becamel C, Figge A, Poliak S, Dumuis A, Peles E, Bockaert J, Lubbert H, Ullmer C. Interaction of serotonin 5-hydroxytryptamine type 2C receptors with PDZ10 of the multi-PDZ domain protein MUPP1. J Biol Chem. 2001 Apr 20;276(16):12974–12982. [PubMed]
  • Mancini A, Koch A, Stefan M, Niemann H, Tamura T. The direct association of the multiple PDZ domain containing proteins (MUPP-1) with the human c-Kit C-terminus is regulated by tyrosine kinase activity. FEBS Lett. 2000 Sep 29;482(1-2):54–58. [PubMed]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

  • Compound
    Compound
    PubChem Compound links
  • Gene
    Gene
    Gene links
  • Gene (nucleotide)
    Gene (nucleotide)
    Records in Gene identified from shared sequence links
  • GEO Profiles
    GEO Profiles
    Related GEO records
  • HomoloGene
    HomoloGene
    HomoloGene links
  • MedGen
    MedGen
    Related information in MedGen
  • Nucleotide
    Nucleotide
    Published Nucleotide sequences
  • Pathways + GO
    Pathways + GO
    Pathways, annotations and biological systems (BioSystems) that cite the current article.
  • Protein
    Protein
    Published protein sequences
  • PubMed
    PubMed
    PubMed citations for these articles
  • Substance
    Substance
    PubChem Substance links
  • Taxonomy
    Taxonomy
    Related taxonomy entry
  • Taxonomy Tree
    Taxonomy Tree

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...