• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of biochemjBJ Latest papers and much more!
Biochem J. Feb 1, 2002; 361(Pt 3): 417–429.
PMCID: PMC1222323

Carnitine biosynthesis in mammals.


Carnitine is indispensable for energy metabolism, since it enables activated fatty acids to enter the mitochondria, where they are broken down via beta-oxidation. Carnitine is probably present in all animal species, and in numerous micro-organisms and plants. In mammals, carnitine homoeostasis is maintained by endogenous synthesis, absorption from dietary sources and efficient tubular reabsorption by the kidney. This review aims to cover the current knowledge of the enzymological, molecular, metabolic and regulatory aspects of mammalian carnitine biosynthesis, with an emphasis on the human and rat.

Full Text

The Full Text of this article is available as a PDF (427K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • McGarry JD, Brown NF. The mitochondrial carnitine palmitoyltransferase system. From concept to molecular analysis. Eur J Biochem. 1997 Feb 15;244(1):1–14. [PubMed]
  • Ramsay RR, Gandour RD, van der Leij FR. Molecular enzymology of carnitine transfer and transport. Biochim Biophys Acta. 2001 Mar 9;1546(1):21–43. [PubMed]
  • Jakobs BS, Wanders RJ. Fatty acid beta-oxidation in peroxisomes and mitochondria: the first, unequivocal evidence for the involvement of carnitine in shuttling propionyl-CoA from peroxisomes to mitochondria. Biochem Biophys Res Commun. 1995 Aug 24;213(3):1035–1041. [PubMed]
  • Verhoeven NM, Roe DS, Kok RM, Wanders RJ, Jakobs C, Roe CR. Phytanic acid and pristanic acid are oxidized by sequential peroxisomal and mitochondrial reactions in cultured fibroblasts. J Lipid Res. 1998 Jan;39(1):66–74. [PubMed]
  • Carter AL, Abney TO, Lapp DF. Biosynthesis and metabolism of carnitine. J Child Neurol. 1995 Nov;10 (Suppl 2):S3–S7. [PubMed]
  • Bremer J. Carnitine--metabolism and functions. Physiol Rev. 1983 Oct;63(4):1420–1480. [PubMed]
  • Duran M, Loof NE, Ketting D, Dorland L. Secondary carnitine deficiency. J Clin Chem Clin Biochem. 1990 May;28(5):359–363. [PubMed]
  • Panter RA, Mudd JB. Carnitine levels in some higher plants. FEBS Lett. 1969 Oct 21;5(2):169–170. [PubMed]
  • Rebouche CJ. Carnitine function and requirements during the life cycle. FASEB J. 1992 Dec;6(15):3379–3386. [PubMed]
  • Kleber HP. Bacterial carnitine metabolism. FEMS Microbiol Lett. 1997 Feb 1;147(1):1–9. [PubMed]
  • Rebouche CJ, Seim H. Carnitine metabolism and its regulation in microorganisms and mammals. Annu Rev Nutr. 1998;18:39–61. [PubMed]
  • Horne DW, Broquist HP. Role of lysine and -N-trimethyllysine in carnitine biosynthesis. I. Studies in Neurospora crassa. J Biol Chem. 1973 Mar 25;248(6):2170–2175. [PubMed]
  • Tanphaichitr V, Broquist HP. Role of lysine and -N-trimethyllysine in carnitine biosynthesis. II. Studies in the rat. J Biol Chem. 1973 Mar 25;248(6):2176–2181. [PubMed]
  • Tanphaichitr V, Horne DW, Broquist HP. Lysine, a precursor of carnitine in the rat. J Biol Chem. 1971 Oct 25;246(20):6364–6366. [PubMed]
  • Paik WK, Kim S. Protein methylation. Science. 1971 Oct 8;174(4005):114–119. [PubMed]
  • Huszar G. Tissue-specific biosynthesis of epsilon-N-monomethyllysine and epsilon-N-trimethyllysine in skeletal and cardiac muscle myosin: a model for the cell-free study of post-translational amino acid modifications in proteins. J Mol Biol. 1975 May 25;94(3):311–326. [PubMed]
  • Morse RK, Vergnes JP, Malloy J, McManus IR. Sites of biological methylation of proteins in cultured chick muscle cells. Biochemistry. 1975 Sep 23;14(19):4316–4325. [PubMed]
  • LaBadie J, Dunn WA, Aronson NN., Jr Hepatic synthesis of carnitine from protein-bound trimethyl-lysine. Lysosomal digestion of methyl-lysine-labelled asialo-fetuin. Biochem J. 1976 Oct 15;160(1):85–95. [PMC free article] [PubMed]
  • Dunn WA, Rettura G, Seifter E, Englard S. Carnitine biosynthesis from gamma-butyrobetaine and from exogenous protein-bound 6-N-trimethyl-L-lysine by the perfused guinea pig liver. Effect of ascorbate deficiency on the in situ activity of gamma-butyrobetaine hydroxylase. J Biol Chem. 1984 Sep 10;259(17):10764–10770. [PubMed]
  • Vaz FM, van Gool S, Ofman R, Ijlst L, Wanders RJ. Carnitine biosynthesis: identification of the cDNA encoding human gamma-butyrobetaine hydroxylase. Biochem Biophys Res Commun. 1998 Sep 18;250(2):506–510. [PubMed]
  • Galland S, Le Borgne F, Bouchard F, Georges B, Clouet P, Grand-Jean F, Demarquoy J. Molecular cloning and characterization of the cDNA encoding the rat liver gamma-butyrobetaine hydroxylase. Biochim Biophys Acta. 1999 Oct 18;1441(1):85–92. [PubMed]
  • Vaz FM, Fouchier SW, Ofman R, Sommer M, Wanders RJ. Molecular and biochemical characterization of rat gamma-trimethylaminobutyraldehyde dehydrogenase and evidence for the involvement of human aldehyde dehydrogenase 9 in carnitine biosynthesis. J Biol Chem. 2000 Mar 10;275(10):7390–7394. [PubMed]
  • Vaz FM, Ofman R, Westinga K, Back JW, Wanders RJ. Molecular and Biochemical Characterization of Rat epsilon -N-Trimethyllysine Hydroxylase, the First Enzyme of Carnitine Biosynthesis. J Biol Chem. 2001 Sep 7;276(36):33512–33517. [PubMed]
  • Hulse JD, Ellis SR, Henderson LM. Carnitine biosynthesis. beta-Hydroxylation of trimethyllysine by an alpha-ketoglutarate-dependent mitochondrial dioxygenase. J Biol Chem. 1978 Mar 10;253(5):1654–1659. [PubMed]
  • Sachan DS, Broquist HP. Synthesis of carnitine from epsilon-N-trimethyllysine in post mitochondrial fractions of Neurospora crassa. Biochem Biophys Res Commun. 1980 Sep 30;96(2):870–875. [PubMed]
  • Sachan DS, Hoppel CL. Carnitine biosynthesis. Hydroxylation of N6-trimethyl-lysine to 3-hydroxy-N6-trimethyl-lysine. Biochem J. 1980 May 15;188(2):529–534. [PMC free article] [PubMed]
  • Stein R, Englard S. Properties of rat 6-N-trimethyl-L-lysine hydroxylases: similarities among the kidney, liver, heart, and skeletal muscle activities. Arch Biochem Biophys. 1982 Aug;217(1):324–331. [PubMed]
  • Prescott AG, Lloyd MD. The iron(II) and 2-oxoacid-dependent dioxygenases and their role in metabolism. Nat Prod Rep. 2000 Aug;17(4):367–383. [PubMed]
  • Rebouche CJ, Engel AG. Tissue distribution of carnitine biosynthetic enzymes in man. Biochim Biophys Acta. 1980 Jun 5;630(1):22–29. [PubMed]
  • Stein R, Englard S. The use of a tritium release assay to measure 6-N-trimethyl-L-lysine hydroxylase activity: synthesis of 6-N-[3-3H]trimethyl-DL-lysine. Anal Biochem. 1981 Sep 1;116(1):230–236. [PubMed]
  • Henderson LM, Nelson PJ, Henderson L. Mammalian enzymes of trimethyllysine conversion to trimethylaminobutyrate. Fed Proc. 1982 Oct;41(12):2843–2847. [PubMed]
  • Girgis S, Nasrallah IM, Suh JR, Oppenheim E, Zanetti KA, Mastri MG, Stover PJ. Molecular cloning, characterization and alternative splicing of the human cytoplasmic serine hydroxymethyltransferase gene. Gene. 1998 Apr 14;210(2):315–324. [PubMed]
  • Ogawa H, Fujioka M. Purification and characterization of cytosolic and mitochondrial serine hydroxymethyltransferases from rat liver. J Biochem. 1981 Aug;90(2):381–390. [PubMed]
  • Garrow TA, Brenner AA, Whitehead VM, Chen XN, Duncan RG, Korenberg JR, Shane B. Cloning of human cDNAs encoding mitochondrial and cytosolic serine hydroxymethyltransferases and chromosomal localization. J Biol Chem. 1993 Jun 5;268(16):11910–11916. [PubMed]
  • Dunn WA, Aronson NN, Jr, Englard S. The effects of 1-amino-D-proline on the production of carnitine from exogenous protein-bound trimethyllysine by the perfused rat liver. J Biol Chem. 1982 Jul 25;257(14):7948–7951. [PubMed]
  • Cho YO, Leklem JE. In vivo evidence for a vitamin B-6 requirement in carnitine synthesis. J Nutr. 1990 Mar;120(3):258–265. [PubMed]
  • Hulse JD, Henderson LM. Carnitine biosynthesis. Purification of 4-N'-trimethylaminobutyraldehyde dehydrogenase from beef liver. J Biol Chem. 1980 Feb 10;255(3):1146–1151. [PubMed]
  • Abe T, Takada K, Ohkawa K, Matsuda M. Purification and characterization of a rat brain aldehyde dehydrogenase able to metabolize gamma-aminobutyraldehyde to gamma-aminobutyric acid. Biochem J. 1990 Jul 1;269(1):25–29. [PMC free article] [PubMed]
  • Kikonyogo A, Pietruszko R. Aldehyde dehydrogenase from adult human brain that dehydrogenates gamma-aminobutyraldehyde: purification, characterization, cloning and distribution. Biochem J. 1996 May 15;316(Pt 1):317–324. [PMC free article] [PubMed]
  • Lin SW, Chen JC, Hsu LC, Hsieh CL, Yoshida A. Human gamma-aminobutyraldehyde dehydrogenase (ALDH9): cDNA sequence, genomic organization, polymorphism, chromosomal localization, and tissue expression. Genomics. 1996 Jun 15;34(3):376–380. [PubMed]
  • Kurys G, Shah PC, Kikonygo A, Reed D, Ambroziak W, Pietruszko R. Human aldehyde dehydrogenase. cDNA cloning and primary structure of the enzyme that catalyzes dehydrogenation of 4-aminobutyraldehyde. Eur J Biochem. 1993 Dec 1;218(2):311–320. [PubMed]
  • Chern MK, Pietruszko R. Human aldehyde dehydrogenase E3 isozyme is a betaine aldehyde dehydrogenase. Biochem Biophys Res Commun. 1995 Aug 15;213(2):561–568. [PubMed]
  • Izaguirre G, Kikonyogo A, Pietruszko R. Tissue distribution of human aldehyde dehydrogenase E3 (ALDH9): comparison of enzyme activity with E3 protein and mRNA distribution. Comp Biochem Physiol B Biochem Mol Biol. 1997 Sep;118(1):59–64. [PubMed]
  • Englard S, Blanchard JS, Midelfort CF. Gamma-butyrobetaine hydroxylase: stereochemical course of the hydroxylation reaction. Biochemistry. 1985 Feb 26;24(5):1110–1116. [PubMed]
  • Lindstedt G. Hydroxylation of gamma-butyrobetaine to carnitine in rat liver. Biochemistry. 1967 May;6(5):1271–1282. [PubMed]
  • Lindstedt G, Lindstedt S, Olander B, Tofft M. Alpha-ketoglutarate and hydroxylation of gamma-butyrobetaine. Biochim Biophys Acta. 1968 Jun 24;158(3):503–505. [PubMed]
  • Lindstedt G, Lindstedt S. Cofactor requirements of gamma-butyrobetaine hydroxylase from rat liver. J Biol Chem. 1970 Aug 25;245(16):4178–4186. [PubMed]
  • Galland S, Le Borgne F, Guyonnet D, Clouet P, Demarquoy J. Purification and characterization of the rat liver gamma-butyrobetaine hydroxylase. Mol Cell Biochem. 1998 Jan;178(1-2):163–168. [PubMed]
  • Vaz FM, van Gool S, Ofman R, IJlst L, Wanders RJ. Carnitine biosynthesis. Purification of gamma-butyrobetaine hydroxylase from rat liver. Adv Exp Med Biol. 1999;466:117–124. [PubMed]
  • Kondo A, Blanchard JS, Englard S. Purification and properties of calf liver gamma-butyrobetaine hydroxylase. Arch Biochem Biophys. 1981 Dec;212(2):338–346. [PubMed]
  • Lindstedt G, Lindstedt S, Nordin I. Gamma-butyrobetaine hydroxylase in human kidney. Scand J Clin Lab Invest. 1982 Oct;42(6):477–485. [PubMed]
  • Lindstedt G, Lindstedt S, Nordin I. Purification and properties of gamma-butyrobetaine hydroxylase from Pseudomonas sp AK 1. Biochemistry. 1977 May 17;16(10):2181–2188. [PubMed]
  • Rüetschi U, Nordin I, Odelhög B, Jörnvall H, Lindstedt S. gamma-Butyrobetaine hydroxylase. Structural characterization of the Pseudomonas enzyme. Eur J Biochem. 1993 May 1;213(3):1075–1080. [PubMed]
  • Lindstedt S, Nordin I. Multiple forms of gamma-butyrobetaine hydroxylase (EC Biochem J. 1984 Oct 1;223(1):119–127. [PMC free article] [PubMed]
  • Erfle JD. Hydroxylation of gamma-butyrobetaine by rat and ovine tissues. Biochem Biophys Res Commun. 1975 May 19;64(2):553–557. [PubMed]
  • Paul HS, Sekas G, Adibi SA. Carnitine biosynthesis in hepatic peroxisomes. Demonstration of gamma-butyrobetaine hydroxylase activity. Eur J Biochem. 1992 Feb 1;203(3):599–605. [PubMed]
  • Simkhovich BZ, Shutenko ZV, Meirena DV, Khagi KB, Mezapuķe RJ, Molodchina TN, Kalviņs IJ, Lukevics E. 3-(2,2,2-Trimethylhydrazinium)propionate (THP)--a novel gamma-butyrobetaine hydroxylase inhibitor with cardioprotective properties. Biochem Pharmacol. 1988 Jan 15;37(2):195–202. [PubMed]
  • Hayashi Y, Muranaka Y, Kirimoto T, Asaka N, Miyake H, Matsuura N. Effects of MET-88, a gamma-butyrobetaine hydroxylase inhibitor, on tissue carnitine and lipid levels in rats. Biol Pharm Bull. 2000 Jun;23(6):770–773. [PubMed]
  • Hayashi Y, Tajima K, Kirimoto T, Miyake H, Matsuura N. Cardioprotective effects of MET-88, a gamma-butyrobetaine hydroxylase inhibitor, on cardiac dysfunction induced by ischemia/reperfusion in isolated rat hearts. Pharmacology. 2000 Nov;61(4):238–243. [PubMed]
  • Kuwajima M, Harashima H, Hayashi M, Ise S, Sei M, Lu K m, Kiwada H, Sugiyama Y, Shima K. Pharmacokinetic analysis of the cardioprotective effect of 3-(2,2, 2-trimethylhydrazinium) propionate in mice: inhibition of carnitine transport in kidney. J Pharmacol Exp Ther. 1999 Apr;289(1):93–102. [PubMed]
  • Georges B, Le Borgne F, Galland S, Isoir M, Ecosse D, Grand-Jean F, Demarquoy J. Carnitine transport into muscular cells. Inhibition of transport and cell growth by mildronate. Biochem Pharmacol. 2000 Jun 1;59(11):1357–1363. [PubMed]
  • Spaniol M, Brooks H, Auer L, Zimmermann A, Solioz M, Stieger B, Krähenbühl S. Development and characterization of an animal model of carnitine deficiency. Eur J Biochem. 2001 Mar;268(6):1876–1887. [PubMed]
  • Englard S, Horwitz LJ, Mills JT. A simplified method for the measurement of gamma-butyrobetaine hydroxylase activity. J Lipid Res. 1978 Nov;19(8):1057–1063. [PubMed]
  • Barth PG, Scholte HR, Berden JA, Van der Klei-Van Moorsel JM, Luyt-Houwen IE, Van 't Veer-Korthof ET, Van der Harten JJ, Sobotka-Plojhar MA. An X-linked mitochondrial disease affecting cardiac muscle, skeletal muscle and neutrophil leucocytes. J Neurol Sci. 1983 Dec;62(1-3):327–355. [PubMed]
  • Englard S, Carnicero HH. gamma-Butyrobetaine hydroxylation to carnitine in mammalian kidney. Arch Biochem Biophys. 1978 Sep;190(1):361–364. [PubMed]
  • Englard S. Hydroxylation of gamma-butyrobetaine to carnitine in human and monkey tissues. FEBS Lett. 1979 Jun 15;102(2):297–300. [PubMed]
  • Cederblad G, Holm J, Lindstedt G, Lindstedt S, Nordin I, Scherstén T. gamma-Butyrobetaine hydroxylase activity in human and ovine liver and skeletal muscle tissue. FEBS Lett. 1979 Feb 1;98(1):57–60. [PubMed]
  • Cox RA, Hoppel CL. Carnitine and trimethylaminobutyrate synthesis in rat tissues. Biochem J. 1974 Sep;142(3):699–701. [PMC free article] [PubMed]
  • Haigler HT, Broquist HP. Carnitine synthesis in rat tissue slices. Biochem Biophys Res Commun. 1974 Feb 4;56(3):676–681. [PubMed]
  • Tanphaichitr V, Broquist HP. Site of carnitine biosynthesis in the rat. J Nutr. 1974 Dec;104(12):1669–1673. [PubMed]
  • Bohmer T, Hansson V. Androgen-dependent accumulation of carnitine by rat epididymis after injection of [3H]butyrobetaine in vivo. Mol Cell Endocrinol. 1975 Aug;3(2):103–115. [PubMed]
  • Carter AL, Abney TO, Braver H, Chuang AH. Localization of gamma-butyrobetaine hydroxylase in the rat testis. Biol Reprod. 1987 Aug;37(1):68–72. [PubMed]
  • Casillas ER, Erickson BJ. Studies on carnitine synthesis in the rat epididymis. J Reprod Fertil. 1975 Aug;44(2):287–291. [PubMed]
  • Hahn P. The development of carnitine synthesis from gamma-butyrobetaine in the rat. Life Sci. 1981 Mar 2;28(9):1057–1060. [PubMed]
  • Olson AL, Rebouche CJ. gamma-Butyrobetaine hydroxylase activity is not rate limiting for carnitine biosynthesis in the human infant. J Nutr. 1987 Jun;117(6):1024–1031. [PubMed]
  • Claros MG, Vincens P. Computational method to predict mitochondrially imported proteins and their targeting sequences. Eur J Biochem. 1996 Nov 1;241(3):779–786. [PubMed]
  • Kakimoto Y, Akazawa S. Isolation and identification of N-G,N-G- and N-G,N'-G-dimethyl-arginine, N-epsilon-mono-, di-, and trimethyllysine, and glucosylgalactosyl- and galactosyl-delta-hydroxylysine from human urine. J Biol Chem. 1970 Nov 10;245(21):5751–5758. [PubMed]
  • Hoppel CL, Weir DE, Gibbons AP, Ingalls ST, Brittain AT, Brown FM. Determination of 6-N-trimethyllysine in urine by high-performance liquid chromatography. J Chromatogr. 1983 Jan 14;272(1):43–50. [PubMed]
  • Davis AT, Ingalls ST, Hoppel CL. Determination of free trimethyllysine in plasma and tissue specimens by high-performance liquid chromatography. J Chromatogr. 1984 Mar 9;306:79–87. [PubMed]
  • Minkler PE, Erdos EA, Ingalls ST, Griffin RL, Hoppel CL. Improved high-performance liquid chromatographic method for the determination of 6-N,N,N-trimethyllysine in plasma and urine: biomedical application of chromatographic figures of merit and amine mobile phase modifiers. J Chromatogr. 1986 Aug 2;380(2):285–299. [PubMed]
  • Lehman LJ, Olson AL, Rebouche CJ. Measurement of epsilon-N-trimethyllysine in human blood plasma and urine. Anal Biochem. 1987 Apr;162(1):137–142. [PubMed]
  • Park KS, Lee HW, Hong SY, Shin S, Kim S, Paik WK. Determination of methylated amino acids in human serum by high-performance liquid chromatography. J Chromatogr. 1988 May 25;440:225–230. [PubMed]
  • Terada N, Inoue F, Okochi M, Nakajima H, Kizaki Z, Kinugasa A, Sawada T. Measurement of carnitine precursors, epsilon-trimethyllysine and gamma-butyrobetaine in human serum by tandem mass spectrometry. J Chromatogr B Biomed Sci Appl. 1999 Aug 6;731(1):89–95. [PubMed]
  • Kohse KP, Graser TA, Fürst P, Franz HE. Plasma levels of carnitine precursor 6-N-trimethyllysine and maintenance hemodialysis. Kidney Int Suppl. 1987 Oct;22:S128–S131. [PubMed]
  • Davis AT, Hoppel CL. Effect of starvation on the disposition of free and peptide-linked trimethyllysine in the rat. J Nutr. 1986 May;116(5):760–767. [PubMed]
  • Lange HW, Löwer R, Hempel K. Quantitative determination of N epsilon-methylated lysines in human plasma and urine. Hoppe Seylers Z Physiol Chem. 1973 Feb;354(2):117–120. [PubMed]
  • Lange HW, Löwer R, Hempel K. Verbesserte säulenchromatographische Bestimmung N -methylierter Lysine in physiologischen Flüssigkeiten. J Chromatogr. 1973 Feb 7;76(1):252–254. [PubMed]
  • Rebouche CJ, Lehman LJ, Olson L. epsilon-N-trimethyllysine availability regulates the rate of carnitine biosynthesis in the growing rat. J Nutr. 1986 May;116(5):751–759. [PubMed]
  • Löwer R, Lange HW, Hempel K. N epsilon-Methylierte Lysine: Abbau und Ausscheidung. Hoppe Seylers Z Physiol Chem. 1972 Oct;353(10):1545–1546. [PubMed]
  • Rebouche CJ, Bosch EP, Chenard CA, Schabold KJ, Nelson SE. Utilization of dietary precursors for carnitine synthesis in human adults. J Nutr. 1989 Dec;119(12):1907–1913. [PubMed]
  • Noël H, Parvin R, Pande SV. gamma-butyrobetaine in tissues and serum of fed and starved rats determined by an enzymic radioisotopic procedure. Biochem J. 1984 Jun 15;220(3):701–706. [PMC free article] [PubMed]
  • Sandor A, Minkler PE, Ingalls ST, Hoppel CL. An enzymatic method for the determination of butyrobetaine via conversion to carnitine after isolation by high performance liquid chromatography. Clin Chim Acta. 1988 Aug 15;176(1):17–27. [PubMed]
  • Minkler PE, Ingalls ST, Kormos LS, Weir DE, Hoppel CL. Determination of carnitine, butyrobetaine, and betaine as 4'-bromophenacyl ester derivatives by high-performance liquid chromatography. J Chromatogr. 1984 Dec 12;336(2):271–283. [PubMed]
  • Krahenbuhl S, Minkler PE, Hoppel CL. Derivatization of isolated endogenous butyrobetaine with 4'-bromophenacyl trifluoromethanesulfonate followed by high-performance liquid chromatography. J Chromatogr. 1992 Jan 3;573(1):3–10. [PubMed]
  • Inoue F, Terada N, Nakajima H, Okochi M, Kodo N, Kizaki Z, Kinugasa A, Sawada T. Effect of sports activity on carnitine metabolism. Measurement of free carnitine, gamma-butyrobetaine and acylcarnitines by tandem mass spectrometry. J Chromatogr B Biomed Sci Appl. 1999 Aug 6;731(1):83–88. [PubMed]
  • Marzo A, Curti S. L-Carnitine moiety assay: an up-to-date reappraisal covering the commonest methods for various applications. J Chromatogr B Biomed Sci Appl. 1997 Nov 21;702(1-2):1–20. [PubMed]
  • Millington DS, Kodo N, Norwood DL, Roe CR. Tandem mass spectrometry: a new method for acylcarnitine profiling with potential for neonatal screening for inborn errors of metabolism. J Inherit Metab Dis. 1990;13(3):321–324. [PubMed]
  • Vreken P, van Lint AE, Bootsma AH, Overmars H, Wanders RJ, van Gennip AH. Rapid diagnosis of organic acidemias and fatty-acid oxidation defects by quantitative electrospray tandem-MS acyl-carnitine analysis in plasma. Adv Exp Med Biol. 1999;466:327–337. [PubMed]
  • Borum PR. Variation in tissue carnitine concentrations with age and sex in the rat. Biochem J. 1978 Dec 15;176(3):677–681. [PMC free article] [PubMed]
  • Schmidt-Sommerfeld E, Werner D, Penn D. Carnitine plasma concentrations in 353 metabolically healthy children. Eur J Pediatr. 1988 May;147(4):356–360. [PubMed]
  • Buchta R, Nyhan WL, Broock R, Schragg P. Carnitine in adolescents. J Adolesc Health. 1993 Sep;14(6):440–441. [PubMed]
  • Güneral F. Serum and urine total, free and acylcarnitine levels related to age: assessment of renal handling of carnitine. Turk J Pediatr. 1995 Jul-Sep;37(3):217–222. [PubMed]
  • Giannacopoulou C, Evangeliou A, Matalliotakis I, Relakis K, Sbirakis N, Hatzidaki E, Koumandakis E. Effects of gestation age and of birth weight in the concentration of carnitine in the umbilical plasma. Clin Exp Obstet Gynecol. 1998;25(1-2):42–45. [PubMed]
  • Cederblad G. Plasma carnitine and body composition. Clin Chim Acta. 1976 Mar 1;67(2):207–212. [PubMed]
  • Takiyama N, Matsumoto K. Age-and sex-related differences of serum carnitine in a Japanese population. J Am Coll Nutr. 1998 Feb;17(1):71–74. [PubMed]
  • Rebouche CJ, Lombard KA, Chenard CA. Renal adaptation to dietary carnitine in humans. Am J Clin Nutr. 1993 Nov;58(5):660–665. [PubMed]
  • Krähenbühl S, Reichen J. Carnitine metabolism in patients with chronic liver disease. Hepatology. 1997 Jan;25(1):148–153. [PubMed]
  • Bohmer T. Conversion of butyrobetaine to carnitine in the rat in vivo. Biochim Biophys Acta. 1974 May 24;343(3):551–557. [PubMed]
  • Carter AL, Frenkel R. The role of the kidney in the biosynthesis of carnitine in the rat. J Biol Chem. 1979 Nov 10;254(21):10670–10674. [PubMed]
  • Zaspel BJ, Sheridan KJ, Henderson LM. Transport and metabolism of carnitine precursors in various organs of the rat. Biochim Biophys Acta. 1980 Aug 1;631(1):192–202. [PubMed]
  • Christiansen RZ, Bremer J. Active transport of butyrobetaine and carnitine into isolated liver cells. Biochim Biophys Acta. 1976 Nov 2;448(4):562–577. [PubMed]
  • Sandor A, Cseko J, Kispal G, Alkonyi I. Surplus acylcarnitines in the plasma of starved rats derive from the liver. J Biol Chem. 1990 Dec 25;265(36):22313–22316. [PubMed]
  • Rebouche CJ, Engel AG. Significance of renal gamma-butyrobetaine hydroxylase for carnitine biosynthesis in man. J Biol Chem. 1980 Sep 25;255(18):8700–8705. [PubMed]
  • Rebouche CJ. Sites and regulation of carnitine biosynthesis in mammals. Fed Proc. 1982 Oct;41(12):2848–2852. [PubMed]
  • Rebouche CJ. Effect of dietary carnitine isomers and gamma-butyrobetaine on L-carnitine biosynthesis and metabolism in the rat. J Nutr. 1983 Oct;113(10):1906–1913. [PubMed]
  • McGarry JD, Robles-Valdes C, Foster DW. Role of carnitine in hepatic ketogenesis. Proc Natl Acad Sci U S A. 1975 Nov;72(11):4385–4388. [PMC free article] [PubMed]
  • Robles-Valdes C, McGarry JD, Foster DW. Maternal-fetal carnitine relationship and neonatal ketosis in the rat. J Biol Chem. 1976 Oct 10;251(19):6007–6012. [PubMed]
  • Sandor A, Hoppel CL. Butyrobetaine availability in liver is a regulatory factor for carnitine biosynthesis in rat. Flux through butyrobetaine hydroxylase in fasting state. Eur J Biochem. 1989 Nov 20;185(3):671–675. [PubMed]
  • Paul HS, Gleditsch CE, Adibi SA. Mechanism of increased hepatic concentration of carnitine by clofibrate. Am J Physiol. 1986 Sep;251(3 Pt 1):E311–E315. [PubMed]
  • Paul HS, Adibi SA. Leucine oxidation and protein turnover in clofibrate-induced muscle protein degradation in rats. J Clin Invest. 1980 Jun;65(6):1285–1293. [PMC free article] [PubMed]
  • Kersten S, Seydoux J, Peters JM, Gonzalez FJ, Desvergne B, Wahli W. Peroxisome proliferator-activated receptor alpha mediates the adaptive response to fasting. J Clin Invest. 1999 Jun;103(11):1489–1498. [PMC free article] [PubMed]
  • Fernández Ortega MF. Effect of dietary lysine level and protein restriction on the lipids and carnitine levels in the liver of pregnant rats. Ann Nutr Metab. 1989;33(3):162–169. [PubMed]
  • Pande SV, Parvin R. Clofibrate enhancement of mitochondrial carnitine transport system of rat liver and augmentation of liver carnitine and gamma-butyrobetaine hydroxylase activity by thyroxine. Biochim Biophys Acta. 1980 Mar 21;617(3):363–370. [PubMed]
  • Parvin R, Gianoulakis C, Pande SV, Chrétien M. Effect of pituitary tumor MtT-F4 on carnitine levels in the serum, liver and heart of rats. Life Sci. 1981 Sep 7;29(10):1047–1049. [PubMed]
  • Henderson GD, Xue GP, Snoswell AM. Carnitine and creatine content of tissues of normal and alloxan-diabetic sheep and rats. Comp Biochem Physiol B. 1983;76(2):295–298. [PubMed]
  • Tein I, Bukovac SW, Xie ZW. Characterization of the human plasmalemmal carnitine transporter in cultured skin fibroblasts. Arch Biochem Biophys. 1996 May 15;329(2):145–155. [PubMed]
  • Lombard KA, Olson AL, Nelson SE, Rebouche CJ. Carnitine status of lactoovovegetarians and strict vegetarian adults and children. Am J Clin Nutr. 1989 Aug;50(2):301–306. [PubMed]
  • Krajcovicová-Kudlácková M, Simoncic R, Béderová A, Babinská K, Béder I. Correlation of carnitine levels to methionine and lysine intake. Physiol Res. 2000;49(3):399–402. [PubMed]
  • Vijayasarathy C, Khan-Siddiqui L, Murthy SN, Bamji MS. Rise in plasma trimethyllysine levels in humans after oral lysine load. Am J Clin Nutr. 1987 Nov;46(5):772–777. [PubMed]
  • Melegh B, Hermann R, Bock I. Generation of hydroxytrimethyllysine from trimethyllysine limits the carnitine biosynthesis in premature infants. Acta Paediatr. 1996 Mar;85(3):345–350. [PubMed]
  • Melegh B, Tóth G, Adamovich K, Szekely G, Gage DA, Bieber LL. Labeled trimethyllysine load depletes unlabeled carnitine in premature infants without evidence of incorporation. Biol Neonate. 1999 Jul;76(1):19–25. [PubMed]
  • Stanley CA. New genetic defects in mitochondrial fatty acid oxidation and carnitine deficiency. Adv Pediatr. 1987;34:59–88. [PubMed]
  • Rebouche CJ. Carnitine movement across muscle cell membranes. Studies in isolated rat muscle. Biochim Biophys Acta. 1977 Nov 15;471(1):145–155. [PubMed]
  • Willner JH, Ginsburg S, Dimauro S. Active transport of carnitine into skeletal muscle. Neurology. 1978 Jul;28(7):721–724. [PubMed]
  • Rebouche CJ, Engel AG. Carnitine transport in cultured muscle cells and skin fibroblasts from patients with primary systemic carnitine deficiency. In Vitro. 1982 May;18(5):495–500. [PubMed]
  • Böhmer T, Eiklid K, Jonsen J. Carnitine uptake into human heart cells in culture. Biochim Biophys Acta. 1977 Mar 17;465(3):627–633. [PubMed]
  • Bahl J, Navin T, Manian AA, Bressler R. Carnitine transport in isolated adult rat heart myocytes and the effect of 7,8-diOH chlorpromazine. Circ Res. 1981 Mar;48(3):378–385. [PubMed]
  • Prasad PD, Huang W, Ramamoorthy S, Carter AL, Leibach FH, Ganapathy V. Sodium-dependent carnitine transport in human placental choriocarcinoma cells. Biochim Biophys Acta. 1996 Oct 2;1284(1):109–117. [PubMed]
  • Treem WR, Stanley CA, Finegold DN, Hale DE, Coates PM. Primary carnitine deficiency due to a failure of carnitine transport in kidney, muscle, and fibroblasts. N Engl J Med. 1988 Nov 17;319(20):1331–1336. [PubMed]
  • Tein I, De Vivo DC, Bierman F, Pulver P, De Meirleir LJ, Cvitanovic-Sojat L, Pagon RA, Bertini E, Dionisi-Vici C, Servidei S, et al. Impaired skin fibroblast carnitine uptake in primary systemic carnitine deficiency manifested by childhood carnitine-responsive cardiomyopathy. Pediatr Res. 1990 Sep;28(3):247–255. [PubMed]
  • Burckhardt G, Wolff NA. Structure of renal organic anion and cation transporters. Am J Physiol Renal Physiol. 2000 Jun;278(6):F853–F866. [PubMed]
  • Wu X, Prasad PD, Leibach FH, Ganapathy V. cDNA sequence, transport function, and genomic organization of human OCTN2, a new member of the organic cation transporter family. Biochem Biophys Res Commun. 1998 May 29;246(3):589–595. [PubMed]
  • Tamai I, Ohashi R, Nezu J, Yabuuchi H, Oku A, Shimane M, Sai Y, Tsuji A. Molecular and functional identification of sodium ion-dependent, high affinity human carnitine transporter OCTN2. J Biol Chem. 1998 Aug 7;273(32):20378–20382. [PubMed]
  • Wu X, Huang W, Prasad PD, Seth P, Rajan DP, Leibach FH, Chen J, Conway SJ, Ganapathy V. Functional characteristics and tissue distribution pattern of organic cation transporter 2 (OCTN2), an organic cation/carnitine transporter. J Pharmacol Exp Ther. 1999 Sep;290(3):1482–1492. [PubMed]
  • Tamai I, China K, Sai Y, Kobayashi D, Nezu J, Kawahara E, Tsuji A. Na(+)-coupled transport of L-carnitine via high-affinity carnitine transporter OCTN2 and its subcellular localization in kidney. Biochim Biophys Acta. 2001 Jun 6;1512(2):273–284. [PubMed]
  • Bieber LL. Carnitine. Annu Rev Biochem. 1988;57:261–283. [PubMed]
  • Yabuuchi H, Tamai I, Nezu J, Sakamoto K, Oku A, Shimane M, Sai Y, Tsuji A. Novel membrane transporter OCTN1 mediates multispecific, bidirectional, and pH-dependent transport of organic cations. J Pharmacol Exp Ther. 1999 May;289(2):768–773. [PubMed]
  • Wu X, George RL, Huang W, Wang H, Conway SJ, Leibach FH, Ganapathy V. Structural and functional characteristics and tissue distribution pattern of rat OCTN1, an organic cation transporter, cloned from placenta. Biochim Biophys Acta. 2000 Jun 1;1466(1-2):315–327. [PubMed]
  • Nakanishi T, Hatanaka T, Huang W, Prasad PD, Leibach FH, Ganapathy ME, Ganapathy V. Na+- and Cl--coupled active transport of carnitine by the amino acid transporter ATB(0,+) from mouse colon expressed in HRPE cells and Xenopus oocytes. J Physiol. 2001 Apr 15;532(Pt 2):297–304. [PMC free article] [PubMed]
  • Berardi S, Stieger B, Wachter S, O'Neill B, Krahenbühl S. Characterization of a sodium-dependent transport system for butyrobetaine into rat liver plasma membrane vesicles. Hepatology. 1998 Aug;28(2):521–525. [PubMed]
  • Karpati G, Carpenter S, Engel AG, Watters G, Allen J, Rothman S, Klassen G, Mamer OA. The syndrome of systemic carnitine deficiency. Clinical, morphologic, biochemical, and pathophysiologic features. Neurology. 1975 Jan;25(1):16–24. [PubMed]
  • Eriksson BO, Lindstedt S, Nordin I. Hereditary defect in carnitine membrane transport is expressed in skin fibroblasts. Eur J Pediatr. 1988 Aug;147(6):662–663. [PubMed]
  • Scholte HR, Rodrigues Pereira R, de Jonge PC, Luyt-Houwen IE, Hedwig M, Verduin M, Ross JD. Primary carnitine deficiency. J Clin Chem Clin Biochem. 1990 May;28(5):351–357. [PubMed]
  • Stanley CA, DeLeeuw S, Coates PM, Vianey-Liaud C, Divry P, Bonnefont JP, Saudubray JM, Haymond M, Trefz FK, Breningstall GN, et al. Chronic cardiomyopathy and weakness or acute coma in children with a defect in carnitine uptake. Ann Neurol. 1991 Nov;30(5):709–716. [PubMed]
  • Shoji Y, Koizumi A, Kayo T, Ohata T, Takahashi T, Harada K, Takada G. Evidence for linkage of human primary systemic carnitine deficiency with D5S436: a novel gene locus on chromosome 5q. Am J Hum Genet. 1998 Jul;63(1):101–108. [PMC free article] [PubMed]
  • Burwinkel B, Kreuder J, Schweitzer S, Vorgerd M, Gempel K, Gerbitz KD, Kilimann MW. Carnitine transporter OCTN2 mutations in systemic primary carnitine deficiency: a novel Arg169Gln mutation and a recurrent Arg282ter mutation associated with an unconventional splicing abnormality. Biochem Biophys Res Commun. 1999 Aug 2;261(2):484–487. [PubMed]
  • Nezu J, Tamai I, Oku A, Ohashi R, Yabuuchi H, Hashimoto N, Nikaido H, Sai Y, Koizumi A, Shoji Y, et al. Primary systemic carnitine deficiency is caused by mutations in a gene encoding sodium ion-dependent carnitine transporter. Nat Genet. 1999 Jan;21(1):91–94. [PubMed]
  • Tang NL, Ganapathy V, Wu X, Hui J, Seth P, Yuen PM, Wanders RJ, Fok TF, Hjelm NM. Mutations of OCTN2, an organic cation/carnitine transporter, lead to deficient cellular carnitine uptake in primary carnitine deficiency. Hum Mol Genet. 1999 Apr;8(4):655–660. [PubMed]
  • Vaz FM, Scholte HR, Ruiter J, Hussaarts-Odijk LM, Pereira RR, Schweitzer S, de Klerk JB, Waterham HR, Wanders RJ. Identification of two novel mutations in OCTN2 of three patients with systemic carnitine deficiency. Hum Genet. 1999 Jul-Aug;105(1-2):157–161. [PubMed]
  • Wang Y, Ye J, Ganapathy V, Longo N. Mutations in the organic cation/carnitine transporter OCTN2 in primary carnitine deficiency. Proc Natl Acad Sci U S A. 1999 Mar 2;96(5):2356–2360. [PMC free article] [PubMed]
  • Horiuchi M, Kobayashi K, Yamaguchi S, Shimizu N, Koizumi T, Nikaido H, Hayakawa J, Kuwajima M, Saheki T. Primary defect of juvenile visceral steatosis (jvs) mouse with systemic carnitine deficiency is probably in renal carnitine transport system. Biochim Biophys Acta. 1994 Apr 12;1226(1):25–30. [PubMed]
  • Kuwajima M, Lu K, Harashima H, Ono A, Sato I, Mizuno A, Murakami T, Nakajima H, Miyagawa J, Namba M, et al. Carnitine transport defect in fibroblasts of juvenile visceral steatosis (JVS) mouse. Biochem Biophys Res Commun. 1996 Jun 14;223(2):283–287. [PubMed]
  • Horiuchi M, Kobayashi K, Asaka N, Saheki T. Secondary abnormality of carnitine biosynthesis results from carnitine reabsorptional system defect in juvenile visceral steatosis mice. Biochim Biophys Acta. 1997 Dec 31;1362(2-3):263–268. [PubMed]
  • Lu K m, Nishimori H, Nakamura Y, Shima K, Kuwajima M. A missense mutation of mouse OCTN2, a sodium-dependent carnitine cotransporter, in the juvenile visceral steatosis mouse. Biochem Biophys Res Commun. 1998 Nov 27;252(3):590–594. [PubMed]
  • Higashi Y, Yokogawa K, Takeuchi N, Tamai I, Nomura M, Hashimoto N, Hayakawa JI, Miyamoto KI, Tsuji A. Effect of gamma-butyrobetaine on fatty liver in juvenile visceral steatosis mice. J Pharm Pharmacol. 2001 Apr;53(4):527–533. [PubMed]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society


Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...


  • Compound
    PubChem Compound links
  • MedGen
    Related information in MedGen
  • Pathways + GO
    Pathways + GO
    Pathways, annotations and biological systems (BioSystems) that cite the current article.
  • PubMed
    PubMed citations for these articles
  • Substance
    PubChem Substance links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...