• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of biochemjBJ Latest papers and much more!
Biochem J. Nov 15, 2001; 360(Pt 1): 1–16.
PMCID: PMC1222196

Structure, function and evolution of glutathione transferases: implications for classification of non-mammalian members of an ancient enzyme superfamily.


The glutathione transferases (GSTs; also known as glutathione S-transferases) are major phase II detoxification enzymes found mainly in the cytosol. In addition to their role in catalysing the conjugation of electrophilic substrates to glutathione (GSH), these enzymes also carry out a range of other functions. They have peroxidase and isomerase activities, they can inhibit the Jun N-terminal kinase (thus protecting cells against H(2)O(2)-induced cell death), and they are able to bind non-catalytically a wide range of endogenous and exogenous ligands. Cytosolic GSTs of mammals have been particularly well characterized, and were originally classified into Alpha, Mu, Pi and Theta classes on the basis of a combination of criteria such as substrate/inhibitor specificity, primary and tertiary structure similarities and immunological identity. Non-mammalian GSTs have been much less well characterized, but have provided a disproportionately large number of three-dimensional structures, thus extending our structure-function knowledge of the superfamily as a whole. Moreover, several novel classes identified in non-mammalian species have been subsequently identified in mammals, sometimes carrying out functions not previously associated with GSTs. These studies have revealed that the GSTs comprise a widespread and highly versatile superfamily which show similarities to non-GST stress-related proteins. Independent classification systems have arisen for groups of organisms such as plants and insects. This review surveys the classification of GSTs in non-mammalian sources, such as bacteria, fungi, plants, insects and helminths, and attempts to relate them to the more mainstream classification system for mammalian enzymes. The implications of this classification with regard to the evolution of GSTs are discussed.

Full Text

The Full Text of this article is available as a PDF (497K).

Multimedia adjuncts

Multimedia adjunct for figure 2:
Multimedia adjunct for figure 3:
Multimedia adjunct for figure 4:

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Armstrong RN. Structure, catalytic mechanism, and evolution of the glutathione transferases. Chem Res Toxicol. 1997 Jan;10(1):2–18. [PubMed]
  • Dirr H, Reinemer P, Huber R. X-ray crystal structures of cytosolic glutathione S-transferases. Implications for protein architecture, substrate recognition and catalytic function. Eur J Biochem. 1994 Mar 15;220(3):645–661. [PubMed]
  • Wilce MC, Parker MW. Structure and function of glutathione S-transferases. Biochim Biophys Acta. 1994 Mar 16;1205(1):1–18. [PubMed]
  • Hayes JD, Pulford DJ. The glutathione S-transferase supergene family: regulation of GST and the contribution of the isoenzymes to cancer chemoprotection and drug resistance. Crit Rev Biochem Mol Biol. 1995;30(6):445–600. [PubMed]
  • Eaton DL, Bammler TK. Concise review of the glutathione S-transferases and their significance to toxicology. Toxicol Sci. 1999 Jun;49(2):156–164. [PubMed]
  • Salinas AE, Wong MG. Glutathione S-transferases--a review. Curr Med Chem. 1999 Apr;6(4):279–309. [PubMed]
  • Edwards R, Dixon DP, Walbot V. Plant glutathione S-transferases: enzymes with multiple functions in sickness and in health. Trends Plant Sci. 2000 May;5(5):193–198. [PubMed]
  • Ishikawa T. The ATP-dependent glutathione S-conjugate export pump. Trends Biochem Sci. 1992 Nov;17(11):463–468. [PubMed]
  • Mann M. A shortcut to interesting human genes: peptide sequence tags, expressed-sequence tags and computers. Trends Biochem Sci. 1996 Dec;21(12):494–495. [PubMed]
  • Board P, Blackburn A, Jermiin LS, Chelvanayagam G. Polymorphism of phase II enzymes: identification of new enzymes and polymorphic variants by database analysis. Toxicol Lett. 1998 Dec 28;102-103:149–154. [PubMed]
  • Ames BN, Profet M, Gold LS. Nature's chemicals and synthetic chemicals: comparative toxicology. Proc Natl Acad Sci U S A. 1990 Oct;87(19):7782–7786. [PMC free article] [PubMed]
  • Hayes JD, McLellan LI. Glutathione and glutathione-dependent enzymes represent a co-ordinately regulated defence against oxidative stress. Free Radic Res. 1999 Oct;31(4):273–300. [PubMed]
  • Guengerich FP. Enzymatic oxidation of xenobiotic chemicals. Crit Rev Biochem Mol Biol. 1990;25(2):97–153. [PubMed]
  • Heijn M, Oude Elferink RP, Jansen PL. ATP-dependent multispecific organic anion transport system in rat erythrocyte membrane vesicles. Am J Physiol. 1992 Jan;262(1 Pt 1):C104–C110. [PubMed]
  • Saxena M, Singhal SS, Awasthi S, Singh SV, Labelle EF, Zimniak P, Awasthi YC. Dinitrophenyl S-glutathione ATPase purified from human muscle catalyzes ATP hydrolysis in the presence of leukotrienes. Arch Biochem Biophys. 1992 Oct;298(1):231–237. [PubMed]
  • Gottesman MM, Pastan I. Biochemistry of multidrug resistance mediated by the multidrug transporter. Annu Rev Biochem. 1993;62:385–427. [PubMed]
  • Jedlitschky G, Leier I, Buchholz U, Center M, Keppler D. ATP-dependent transport of glutathione S-conjugates by the multidrug resistance-associated protein. Cancer Res. 1994 Sep 15;54(18):4833–4836. [PubMed]
  • Kavallaris M. The role of multidrug resistance-associated protein (MRP) expression in multidrug resistance. Anticancer Drugs. 1997 Jan;8(1):17–25. [PubMed]
  • van Veen HW, Konings WN. Multidrug transporters from bacteria to man: similarities in structure and function. Semin Cancer Biol. 1997 Jun;8(3):183–191. [PubMed]
  • Listowsky I, Abramovitz M, Homma H, Niitsu Y. Intracellular binding and transport of hormones and xenobiotics by glutathione-S-transferases. Drug Metab Rev. 1988;19(3-4):305–318. [PubMed]
  • Ketley JN, Habig WH, Jakoby WB. Binding of nonsubstrate ligands to the glutathione S-transferases. J Biol Chem. 1975 Nov 25;250(22):8670–8673. [PubMed]
  • Barycki JJ, Colman RF. Identification of the nonsubstrate steroid binding site of rat liver glutathione S-transferase, isozyme 1-1, by the steroid affinity label, 3beta-(iodoacetoxy)dehydroisoandrosterone. Arch Biochem Biophys. 1997 Sep 1;345(1):16–31. [PubMed]
  • Tew KD. Glutathione-associated enzymes in anticancer drug resistance. Cancer Res. 1994 Aug 15;54(16):4313–4320. [PubMed]
  • McLellan Lesley I, Wolf C Roland. Glutathione and glutathione-dependent enzymes in cancer drug resistance. Drug Resist Updat. 1999 Jun;2(3):153–164. [PubMed]
  • Tang AH, Tu CP. Biochemical characterization of Drosophila glutathione S-transferases D1 and D21. J Biol Chem. 1994 Nov 11;269(45):27876–27884. [PubMed]
  • Ranson H, Prapanthadara L a, Hemingway J. Cloning and characterization of two glutathione S-transferases from a DDT-resistant strain of Anopheles gambiae. Biochem J. 1997 May 15;324(Pt 1):97–102. [PMC free article] [PubMed]
  • Dixon DP, Cummins L, Cole DJ, Edwards R. Glutathione-mediated detoxification systems in plants. Curr Opin Plant Biol. 1998 Jun;1(3):258–266. [PubMed]
  • Arca P, Hardisson C, Suárez JE. Purification of a glutathione S-transferase that mediates fosfomycin resistance in bacteria. Antimicrob Agents Chemother. 1990 May;34(5):844–848. [PMC free article] [PubMed]
  • Jakobsson PJ, Morgenstern R, Mancini J, Ford-Hutchinson A, Persson B. Common structural features of MAPEG -- a widespread superfamily of membrane associated proteins with highly divergent functions in eicosanoid and glutathione metabolism. Protein Sci. 1999 Mar;8(3):689–692. [PMC free article] [PubMed]
  • Liu S, Zhang P, Ji X, Johnson WW, Gilliland GL, Armstrong RN. Contribution of tyrosine 6 to the catalytic mechanism of isoenzyme 3-3 of glutathione S-transferase. J Biol Chem. 1992 Mar 5;267(7):4296–4299. [PubMed]
  • Atkins WM, Wang RW, Bird AW, Newton DJ, Lu AY. The catalytic mechanism of glutathione S-transferase (GST). Spectroscopic determination of the pKa of Tyr-9 in rat alpha 1-1 GST. J Biol Chem. 1993 Sep 15;268(26):19188–19191. [PubMed]
  • Rowe JD, Patskovsky YV, Patskovska LN, Novikova E, Listowsky I. Rationale for reclassification of a distinctive subdivision of mammalian class Mu glutathione S-transferases that are primarily expressed in testis. J Biol Chem. 1998 Apr 17;273(16):9593–9601. [PubMed]
  • Mannervik B, Danielson UH. Glutathione transferases--structure and catalytic activity. CRC Crit Rev Biochem. 1988;23(3):283–337. [PubMed]
  • Webb G, Vaska V, Coggan M, Board P. Chromosomal localization of the gene for the human theta class glutathione transferase (GSTT1). Genomics. 1996 Apr 1;33(1):121–123. [PubMed]
  • Hayes JD, Mantle TJ. Use of immuno-blot techniques to discriminate between the glutathione S-transferase Yf, Yk, Ya, Yn/Yb and Yc subunits and to study their distribution in extrahepatic tissues. Evidence for three immunochemically distinct groups of transferase in the rat. Biochem J. 1986 Feb 1;233(3):779–788. [PMC free article] [PubMed]
  • Mannervik B, Alin P, Guthenberg C, Jensson H, Tahir MK, Warholm M, Jörnvall H. Identification of three classes of cytosolic glutathione transferase common to several mammalian species: correlation between structural data and enzymatic properties. Proc Natl Acad Sci U S A. 1985 Nov;82(21):7202–7206. [PMC free article] [PubMed]
  • Hayes JD, Strange RC, Percy-Robb IW. A study of the structures of the YaYa and YaYc glutathione S-transferases from rat liver cytosol. Evidence that the Ya monomer is responsible for lithocholate-binding activity. Biochem J. 1981 Aug 1;197(2):491–502. [PMC free article] [PubMed]
  • Board PG, Coggan M, Chelvanayagam G, Easteal S, Jermiin LS, Schulte GK, Danley DE, Hoth LR, Griffor MC, Kamath AV, et al. Identification, characterization, and crystal structure of the Omega class glutathione transferases. J Biol Chem. 2000 Aug 11;275(32):24798–24806. [PubMed]
  • Ji X, von Rosenvinge EC, Johnson WW, Tomarev SI, Piatigorsky J, Armstrong RN, Gilliland GL. Three-dimensional structure, catalytic properties, and evolution of a sigma class glutathione transferase from squid, a progenitor of the lens S-crystallins of cephalopods. Biochemistry. 1995 Apr 25;34(16):5317–5328. [PubMed]
  • Rossjohn J, Polekhina G, Feil SC, Allocati N, Masulli M, Di Illio C, Parker MW. A mixed disulfide bond in bacterial glutathione transferase: functional and evolutionary implications. Structure. 1998 Jun 15;6(6):721–734. [PubMed]
  • Mannervik B, Awasthi YC, Board PG, Hayes JD, Di Ilio C, Ketterer B, Listowsky I, Morgenstern R, Muramatsu M, Pearson WR, et al. Nomenclature for human glutathione transferases. Biochem J. 1992 Feb 15;282(Pt 1):305–306. [PMC free article] [PubMed]
  • Pemble SE, Taylor JB. An evolutionary perspective on glutathione transferases inferred from class-theta glutathione transferase cDNA sequences. Biochem J. 1992 Nov 1;287(Pt 3):957–963. [PMC free article] [PubMed]
  • Pemble SE, Wardle AF, Taylor JB. Glutathione S-transferase class Kappa: characterization by the cloning of rat mitochondrial GST and identification of a human homologue. Biochem J. 1996 Nov 1;319(Pt 3):749–754. [PMC free article] [PubMed]
  • Board PG, Baker RT, Chelvanayagam G, Jermiin LS. Zeta, a novel class of glutathione transferases in a range of species from plants to humans. Biochem J. 1997 Dec 15;328(Pt 3):929–935. [PMC free article] [PubMed]
  • Blocki FA, Ellis LB, Wackett LP. MIF protein are theta-class glutathione S-transferase homologs. Protein Sci. 1993 Dec;2(12):2095–2102. [PMC free article] [PubMed]
  • Fournier D, Bride JM, Poirie M, Bergé JB, Plapp FW., Jr Insect glutathione S-transferases. Biochemical characteristics of the major forms from houseflies susceptible and resistant to insecticides. J Biol Chem. 1992 Jan 25;267(3):1840–1845. [PubMed]
  • Creaney J, Wijffels GL, Sexton JL, Sandeman RM, Spithill TW, Parsons JC. Fasciola hepatica: localisation of glutathione S-transferase isoenzymes in adult and juvenile liver fluke. Exp Parasitol. 1995 Aug;81(1):106–116. [PubMed]
  • Meyer DJ. Significance of an unusually low Km for glutathione in glutathione transferases of the alpha, mu and pi classes. Xenobiotica. 1993 Aug;23(8):823–834. [PubMed]
  • Wilce MC, Board PG, Feil SC, Parker MW. Crystal structure of a theta-class glutathione transferase. EMBO J. 1995 May 15;14(10):2133–2143. [PMC free article] [PubMed]
  • Ji X, Zhang P, Armstrong RN, Gilliland GL. The three-dimensional structure of a glutathione S-transferase from the mu gene class. Structural analysis of the binary complex of isoenzyme 3-3 and glutathione at 2.2-A resolution. Biochemistry. 1992 Oct 27;31(42):10169–10184. [PubMed]
  • Kanaoka Y, Ago H, Inagaki E, Nanayama T, Miyano M, Kikuno R, Fujii Y, Eguchi N, Toh H, Urade Y, et al. Cloning and crystal structure of hematopoietic prostaglandin D synthase. Cell. 1997 Sep 19;90(6):1085–1095. [PubMed]
  • Forsberg L, de Faire U, Morgenstern R. Oxidative stress, human genetic variation, and disease. Arch Biochem Biophys. 2001 May 1;389(1):84–93. [PubMed]
  • Inskip A, Elexperu-Camiruaga J, Buxton N, Dias PS, MacIntosh J, Campbell D, Jones PW, Yengi L, Talbot JA, Strange RC, et al. Identification of polymorphism at the glutathione S-transferase, GSTM3 locus: evidence for linkage with GSTM1*A. Biochem J. 1995 Dec 15;312(Pt 3):713–716. [PMC free article] [PubMed]
  • Emahazion T, Jobs M, Howell WM, Siegfried M, Wyöni PI, Prince JA, Brookes AJ. Identification of 167 polymorphisms in 88 genes from candidate neurodegeneration pathways. Gene. 1999 Oct 1;238(2):315–324. [PubMed]
  • Nakajima T, Elovaara E, Anttila S, Hirvonen A, Camus AM, Hayes JD, Ketterer B, Vainio H. Expression and polymorphism of glutathione S-transferase in human lungs: risk factors in smoking-related lung cancer. Carcinogenesis. 1995 Apr;16(4):707–711. [PubMed]
  • Strange RC, Jones PW, Fryer AA. Glutathione S-transferase: genetics and role in toxicology. Toxicol Lett. 2000 Mar 15;112-113:357–363. [PubMed]
  • Patskovsky YV, Patskovska LN, Listowsky I. An asparagine-phenylalanine substitution accounts for catalytic differences between hGSTM3-3 and other human class mu glutathione S-transferases. Biochemistry. 1999 Dec 7;38(49):16187–16194. [PubMed]
  • Patskovsky YV, Patskovska LN, Listowsky I. The enhanced affinity for thiolate anion and activation of enzyme-bound glutathione is governed by an arginine residue of human Mu class glutathione S-transferases. J Biol Chem. 2000 Feb 4;275(5):3296–3304. [PubMed]
  • Hsieh CH, Tsai SP, Yeh HI, Sheu TC, Tam MF. Mass spectrometric analysis of rat ovary and testis cytosolic glutathione S-transferases (GSTs): identification of a novel class-alpha GST, rGSTA6*, in rat testis. Biochem J. 1997 Apr 15;323(Pt 2):503–510. [PMC free article] [PubMed]
  • Rhoads DM, Zarlengo RP, Tu CP. The basic glutathione S-transferases from human livers are products of separate genes. Biochem Biophys Res Commun. 1987 May 29;145(1):474–481. [PubMed]
  • Liu S, Stoesz SP, Pickett CB. Identification of a novel human glutathione S-transferase using bioinformatics. Arch Biochem Biophys. 1998 Apr 15;352(2):306–313. [PubMed]
  • Hubatsch I, Ridderström M, Mannervik B. Human glutathione transferase A4-4: an alpha class enzyme with high catalytic efficiency in the conjugation of 4-hydroxynonenal and other genotoxic products of lipid peroxidation. Biochem J. 1998 Feb 15;330(Pt 1):175–179. [PMC free article] [PubMed]
  • Chen H, Juchau MR. Recombinant human glutathione S-transferases catalyse enzymic isomerization of 13-cis-retinoic acid to all-trans-retinoic acid in vitro. Biochem J. 1998 Nov 15;336(Pt 1):223–226. [PMC free article] [PubMed]
  • Blackburn AC, Woollatt E, Sutherland GR, Board PG. Characterization and chromosome location of the gene GSTZ1 encoding the human Zeta class glutathione transferase and maleylacetoacetate isomerase. Cytogenet Cell Genet. 1998;83(1-2):109–114. [PubMed]
  • Marrs KA, Alfenito MR, Lloyd AM, Walbot V. A glutathione S-transferase involved in vacuolar transfer encoded by the maize gene Bronze-2. Nature. 1995 Jun 1;375(6530):397–400. [PubMed]
  • Alfenito MR, Souer E, Goodman CD, Buell R, Mol J, Koes R, Walbot V. Functional complementation of anthocyanin sequestration in the vacuole by widely divergent glutathione S-transferases. Plant Cell. 1998 Jul;10(7):1135–1149. [PMC free article] [PubMed]
  • Cotton SC, Sharp L, Little J, Brockton N. Glutathione S-transferase polymorphisms and colorectal cancer: a HuGE review. Am J Epidemiol. 2000 Jan 1;151(1):7–32. [PubMed]
  • Hayes JD, Strange RC. Glutathione S-transferase polymorphisms and their biological consequences. Pharmacology. 2000 Sep;61(3):154–166. [PubMed]
  • Hayes JD, Kerr LA, Cronshaw AD. Evidence that glutathione S-transferases B1B1 and B2B2 are the products of separate genes and that their expression in human liver is subject to inter-individual variation. Molecular relationships between the B1 and B2 subunits and other Alpha class glutathione S-transferases. Biochem J. 1989 Dec 1;264(2):437–445. [PMC free article] [PubMed]
  • Hu X, Xia H, Srivastava SK, Herzog C, Awasthi YC, Ji X, Zimniak P, Singh SV. Activity of four allelic forms of glutathione S-transferase hGSTP1-1 for diol epoxides of polycyclic aromatic hydrocarbons. Biochem Biophys Res Commun. 1997 Sep 18;238(2):397–402. [PubMed]
  • Ali-Osman F, Akande O, Antoun G, Mao JX, Buolamwini J. Molecular cloning, characterization, and expression in Escherichia coli of full-length cDNAs of three human glutathione S-transferase Pi gene variants. Evidence for differential catalytic activity of the encoded proteins. J Biol Chem. 1997 Apr 11;272(15):10004–10012. [PubMed]
  • Harris MJ, Coggan M, Langton L, Wilson SR, Board PG. Polymorphism of the Pi class glutathione S-transferase in normal populations and cancer patients. Pharmacogenetics. 1998 Feb;8(1):27–31. [PubMed]
  • Zhao T, Singhal SS, Piper JT, Cheng J, Pandya U, Clark-Wronski J, Awasthi S, Awasthi YC. The role of human glutathione S-transferases hGSTA1-1 and hGSTA2-2 in protection against oxidative stress. Arch Biochem Biophys. 1999 Jul 15;367(2):216–224. [PubMed]
  • Adler V, Yin Z, Fuchs SY, Benezra M, Rosario L, Tew KD, Pincus MR, Sardana M, Henderson CJ, Wolf CR, et al. Regulation of JNK signaling by GSTp. EMBO J. 1999 Mar 1;18(5):1321–1334. [PMC free article] [PubMed]
  • Yin Z, Ivanov VN, Habelhah H, Tew K, Ronai Z. Glutathione S-transferase p elicits protection against H2O2-induced cell death via coordinated regulation of stress kinases. Cancer Res. 2000 Aug 1;60(15):4053–4057. [PubMed]
  • Sinning I, Kleywegt GJ, Cowan SW, Reinemer P, Dirr HW, Huber R, Gilliland GL, Armstrong RN, Ji X, Board PG, et al. Structure determination and refinement of human alpha class glutathione transferase A1-1, and a comparison with the Mu and Pi class enzymes. J Mol Biol. 1993 Jul 5;232(1):192–212. [PubMed]
  • Reinemer P, Dirr HW, Ladenstein R, Huber R, Lo Bello M, Federici G, Parker MW. Three-dimensional structure of class pi glutathione S-transferase from human placenta in complex with S-hexylglutathione at 2.8 A resolution. J Mol Biol. 1992 Sep 5;227(1):214–226. [PubMed]
  • Xiao G, Liu S, Ji X, Johnson WW, Chen J, Parsons JF, Stevens WJ, Gilliland GL, Armstrong RN. First-sphere and second-sphere electrostatic effects in the active site of a class mu gluthathione transferase. Biochemistry. 1996 Apr 16;35(15):4753–4765. [PubMed]
  • Rossjohn J, McKinstry WJ, Oakley AJ, Verger D, Flanagan J, Chelvanayagam G, Tan KL, Board PG, Parker MW. Human theta class glutathione transferase: the crystal structure reveals a sulfate-binding pocket within a buried active site. Structure. 1998 Mar 15;6(3):309–322. [PubMed]
  • Rossjohn J, Feil SC, Wilce MC, Sexton JL, Spithill TW, Parker MW. Crystallization, structural determination and analysis of a novel parasite vaccine candidate: Fasciola hepatica glutathione S-transferase. J Mol Biol. 1997 Nov 7;273(4):857–872. [PubMed]
  • Katti SK, LeMaster DM, Eklund H. Crystal structure of thioredoxin from Escherichia coli at 1.68 A resolution. J Mol Biol. 1990 Mar 5;212(1):167–184. [PubMed]
  • Martin JL. Thioredoxin--a fold for all reasons. Structure. 1995 Mar 15;3(3):245–250. [PubMed]
  • Martin JL, Bardwell JC, Kuriyan J. Crystal structure of the DsbA protein required for disulphide bond formation in vivo. Nature. 1993 Sep 30;365(6445):464–468. [PubMed]
  • Bushweller JH, Billeter M, Holmgren A, Wüthrich K. The nuclear magnetic resonance solution structure of the mixed disulfide between Escherichia coli glutaredoxin(C14S) and glutathione. J Mol Biol. 1994 Feb 4;235(5):1585–1597. [PubMed]
  • Epp O, Ladenstein R, Wendel A. The refined structure of the selenoenzyme glutathione peroxidase at 0.2-nm resolution. Eur J Biochem. 1983 Jun 1;133(1):51–69. [PubMed]
  • Allocati N, Casalone E, Masulli M, Ceccarelli I, Carletti E, Parker MW, Di Ilio C. Functional analysis of the evolutionarily conserved proline 53 residue in Proteus mirabilis glutathione transferase B1-1. FEBS Lett. 1999 Feb 26;445(2-3):347–350. [PubMed]
  • Reinemer P, Dirr HW, Ladenstein R, Schäffer J, Gallay O, Huber R. The three-dimensional structure of class pi glutathione S-transferase in complex with glutathione sulfonate at 2.3 A resolution. EMBO J. 1991 Aug;10(8):1997–2005. [PMC free article] [PubMed]
  • Koonin EV, Mushegian AR, Tatusov RL, Altschul SF, Bryant SH, Bork P, Valencia A. Eukaryotic translation elongation factor 1 gamma contains a glutathione transferase domain--study of a diverse, ancient protein superfamily using motif search and structural modeling. Protein Sci. 1994 Nov;3(11):2045–2054. [PMC free article] [PubMed]
  • Dirr HW, Wallace LA. Role of the C-terminal helix 9 in the stability and ligandin function of class alpha glutathione transferase A1-1. Biochemistry. 1999 Nov 23;38(47):15631–15640. [PubMed]
  • Gustafsson A, Etahadieh M, Jemth P, Mannervik B. The C-terminal region of human glutathione transferase A1-1 affects the rate of glutathione binding and the ionization of the active-site Tyr9. Biochemistry. 1999 Dec 7;38(49):16268–16275. [PubMed]
  • Meyer DJ, Coles B, Pemble SE, Gilmore KS, Fraser GM, Ketterer B. Theta, a new class of glutathione transferases purified from rat and man. Biochem J. 1991 Mar 1;274(Pt 2):409–414. [PMC free article] [PubMed]
  • Reinemer P, Prade L, Hof P, Neuefeind T, Huber R, Zettl R, Palme K, Schell J, Koelln I, Bartunik HD, et al. Three-dimensional structure of glutathione S-transferase from Arabidopsis thaliana at 2.2 A resolution: structural characterization of herbicide-conjugating plant glutathione S-transferases and a novel active site architecture. J Mol Biol. 1996 Jan 19;255(2):289–309. [PubMed]
  • Board PG, Coggan M, Wilce MC, Parker MW. Evidence for an essential serine residue in the active site of the Theta class glutathione transferases. Biochem J. 1995 Oct 1;311(Pt 1):247–250. [PMC free article] [PubMed]
  • Lopez MF, Patton WF, Sawlivich WB, Erdjument-Bromage H, Barry P, Gmyrek K, Hines T, Tempst P, Skea WM. A glutathione S-transferase (GST) isozyme from broccoli with significant sequence homology to the mammalian theta-class of GSTs. Biochim Biophys Acta. 1994 Mar 16;1205(1):29–38. [PubMed]
  • Pemble S, Schroeder KR, Spencer SR, Meyer DJ, Hallier E, Bolt HM, Ketterer B, Taylor JB. Human glutathione S-transferase theta (GSTT1): cDNA cloning and the characterization of a genetic polymorphism. Biochem J. 1994 May 15;300(Pt 1):271–276. [PMC free article] [PubMed]
  • Schröder KR, Hallier E, Meyer DJ, Wiebel FA, Müller AM, Bolt HM. Purification and characterization of a new glutathione S-transferase, class theta, from human erythrocytes. Arch Toxicol. 1996;70(9):559–566. [PubMed]
  • Chenevix-Trench G, Young J, Coggan M, Board P. Glutathione S-transferase M1 and T1 polymorphisms: susceptibility to colon cancer and age of onset. Carcinogenesis. 1995 Jul;16(7):1655–1657. [PubMed]
  • Landi S. Mammalian class theta GST and differential susceptibility to carcinogens: a review. Mutat Res. 2000 Oct;463(3):247–283. [PubMed]
  • Chen H, Sandler DP, Taylor JA, Shore DL, Liu E, Bloomfield CD, Bell DA. Increased risk for myelodysplastic syndromes in individuals with glutathione transferase theta 1 (GSTT1) gene defect. Lancet. 1996 Feb 3;347(8997):295–297. [PubMed]
  • Caccuri AM, Lo Bello M, Nuccetelli M, Nicotra M, Rossi P, Antonini G, Federici G, Ricci G. Proton release upon glutathione binding to glutathione transferase P1-1: kinetic analysis of a multistep glutathione binding process. Biochemistry. 1998 Mar 3;37(9):3028–3034. [PubMed]
  • Caccuri AM, Antonini G, Board PG, Parker MW, Nicotra M, Lo Bello M, Federici G, Ricci G. Proton release on binding of glutathione to alpha, Mu and Delta class glutathione transferases. Biochem J. 1999 Dec 1;344(Pt 2):419–425. [PMC free article] [PubMed]
  • Rossjohn J, Board PG, Parker MW, Wilce MC. A structurally derived consensus pattern for theta class glutathione transferases. Protein Eng. 1996 Apr;9(4):327–332. [PubMed]
  • Taylor JL, Fritzemeier KH, Häuser I, Kombrink E, Rohwer F, Schröder M, Strittmatter G, Hahlbrock K. Structural analysis and activation by fungal infection of a gene encoding a pathogenesis-related protein in potato. Mol Plant Microbe Interact. 1990 Mar-Apr;3(2):72–77. [PubMed]
  • Dominov JA, Stenzler L, Lee S, Schwarz JJ, Leisner S, Howell SH. Cytokinins and auxins control the expression of a gene in Nicotiana plumbaginifolia cells by feedback regulation. Plant Cell. 1992 Apr;4(4):451–461. [PMC free article] [PubMed]
  • Flanagan JU, Rossjohn J, Parker MW, Board PG, Chelvanayagam G. Mutagenic analysis of conserved arginine residues in and around the novel sulfate binding pocket of the human Theta class glutathione transferase T2-2. Protein Sci. 1999 Oct;8(10):2205–2212. [PMC free article] [PubMed]
  • Blocki FA, Schlievert PM, Wackett LP. Rat liver protein linking chemical and immunological detoxification systems. Nature. 1992 Nov 19;360(6401):269–270. [PubMed]
  • Harris JM, Meyer DJ, Coles B, Ketterer B. A novel glutathione transferase (13-13) isolated from the matrix of rat liver mitochondria having structural similarity to class theta enzymes. Biochem J. 1991 Aug 15;278(Pt 1):137–141. [PMC free article] [PubMed]
  • Kodym R, Calkins P, Story M. The cloning and characterization of a new stress response protein. A mammalian member of a family of theta class glutathione s-transferase-like proteins. J Biol Chem. 1999 Feb 19;274(8):5131–5137. [PubMed]
  • Ishikawa T, Casini AF, Nishikimi M. Molecular cloning and functional expression of rat liver glutathione-dependent dehydroascorbate reductase. J Biol Chem. 1998 Oct 30;273(44):28708–28712. [PubMed]
  • Dulhunty A, Gage P, Curtis S, Chelvanayagam G, Board P. The glutathione transferase structural family includes a nuclear chloride channel and a ryanodine receptor calcium release channel modulator. J Biol Chem. 2001 Feb 2;276(5):3319–3323. [PubMed]
  • Snyder MJ, Maddison DR. Molecular phylogeny of glutathione-S-transferases. DNA Cell Biol. 1997 Nov;16(11):1373–1384. [PubMed]
  • Harris J, Coles B, Meyer DJ, Ketterer B. The isolation and characterization of the major glutathione S-transferase from the squid Loligo vulgaris. Comp Biochem Physiol B. 1991;98(4):511–515. [PubMed]
  • Tomarev SI, Zinovieva RD, Guo K, Piatigorsky J. Squid glutathione S-transferase. Relationships with other glutathione S-transferases and S-crystallins of cephalopods. J Biol Chem. 1993 Feb 25;268(6):4534–4542. [PubMed]
  • Tomarev SI, Chung S, Piatigorsky J. Glutathione S-transferase and S-crystallins of cephalopods: evolution from active enzyme to lens-refractive proteins. J Mol Evol. 1995 Dec;41(6):1048–1056. [PubMed]
  • Stevens JM, Hornby JA, Armstrong RN, Dirr HW. Class sigma glutathione transferase unfolds via a dimeric and a monomeric intermediate: impact of subunit interface on conformational stability in the superfamily. Biochemistry. 1998 Nov 3;37(44):15534–15541. [PubMed]
  • Stevens JM, Armstrong RN, Dirr HW. Electrostatic interactions affecting the active site of class sigma glutathione S-transferase. Biochem J. 2000 Apr 1;347(Pt 1):193–197. [PMC free article] [PubMed]
  • Ji X, von Rosenvinge EC, Johnson WW, Armstrong RN, Gilliland GL. Location of a potential transport binding site in a sigma class glutathione transferase by x-ray crystallography. Proc Natl Acad Sci U S A. 1996 Aug 6;93(16):8208–8213. [PMC free article] [PubMed]
  • Chuang CC, Wu SH, Chiou SH, Chang GG. Homology modeling of cephalopod lens S-crystallin: a natural mutant of sigma-class glutathione transferase with diminished endogenous activity. Biophys J. 1999 Feb;76(2):679–690. [PMC free article] [PubMed]
  • Meyer DJ, Thomas M. Characterization of rat spleen prostaglandin H D-isomerase as a sigma-class GSH transferase. Biochem J. 1995 Nov 1;311(Pt 3):739–742. [PMC free article] [PubMed]
  • Meyer DJ, Muimo R, Thomas M, Coates D, Isaac RE. Purification and characterization of prostaglandin-H E-isomerase, a sigma-class glutathione S-transferase, from Ascaridia galli. Biochem J. 1996 Jan 1;313(Pt 1):223–227. [PMC free article] [PubMed]
  • Thomson AM, Meyer DJ, Hayes JD. Sequence, catalytic properties and expression of chicken glutathione-dependent prostaglandin D2 synthase, a novel class Sigma glutathione S-transferase. Biochem J. 1998 Jul 15;333(Pt 2):317–325. [PMC free article] [PubMed]
  • Urade Y, Hayaishi O. Prostaglandin D synthase: structure and function. Vitam Horm. 2000;58:89–120. [PubMed]
  • Kanaoka Y, Fujimori K, Kikuno R, Sakaguchi Y, Urade Y, Hayaishi O. Structure and chromosomal localization of human and mouse genes for hematopoietic prostaglandin D synthase. Conservation of the ancestral genomic structure of sigma-class glutathione S-transferase. Eur J Biochem. 2000 Jun;267(11):3315–3322. [PubMed]
  • Subramaniam K, Ye Z, Buechley G, Shaner G, Solomos T, Ueng PP. Isolation of a zeta class wheat glutathione S-transferase gene. Biochim Biophys Acta. 1999 Oct 28;1447(2-3):348–356. [PubMed]
  • Tong Z, Board PG, Anders MW. Glutathione transferase zeta catalyses the oxygenation of the carcinogen dichloroacetic acid to glyoxylic acid. Biochem J. 1998 Apr 15;331(Pt 2):371–374. [PMC free article] [PubMed]
  • Tzeng HF, Blackburn AC, Board PG, Anders MW. Polymorphism- and species-dependent inactivation of glutathione transferase zeta by dichloroacetate. Chem Res Toxicol. 2000 Apr;13(4):231–236. [PubMed]
  • Fernández-Cañn JM, Peñalva MA. Characterization of a fungal maleylacetoacetate isomerase gene and identification of its human homologue. J Biol Chem. 1998 Jan 2;273(1):329–337. [PubMed]
  • Cornett R, James MO, Henderson GN, Cheung J, Shroads AL, Stacpoole PW. Inhibition of glutathione S-transferase zeta and tyrosine metabolism by dichloroacetate: a potential unifying mechanism for its altered biotransformation and toxicity. Biochem Biophys Res Commun. 1999 Sep 7;262(3):752–756. [PubMed]
  • Blackburn AC, Tzeng HF, Anders MW, Board PG. Discovery of a functional polymorphism in human glutathione transferase zeta by expressed sequence tag database analysis. Pharmacogenetics. 2000 Feb;10(1):49–57. [PubMed]
  • Polekhina G, Board PG, Blackburn AC, Parker MW. Crystal structure of maleylacetoacetate isomerase/glutathione transferase zeta reveals the molecular basis for its remarkable catalytic promiscuity. Biochemistry. 2001 Feb 13;40(6):1567–1576. [PubMed]
  • Oakley AJ, Lo Bello M, Battistoni A, Ricci G, Rossjohn J, Villar HO, Parker MW. The structures of human glutathione transferase P1-1 in complex with glutathione and various inhibitors at high resolution. J Mol Biol. 1997 Nov 21;274(1):84–100. [PubMed]
  • Vuilleumier S. Bacterial glutathione S-transferases: what are they good for? J Bacteriol. 1997 Mar;179(5):1431–1441. [PMC free article] [PubMed]
  • Favaloro B, Tamburro A, Angelucci S, Luca AD, Melino S, di Ilio C, Rotilio D. Molecular cloning, expression and site-directed mutagenesis of glutathione S-transferase from Ochrobactrum anthropi. Biochem J. 1998 Nov 1;335(Pt 3):573–579. [PMC free article] [PubMed]
  • Casalone E, Allocati N, Ceccarelli I, Masulli M, Rossjohn J, Parker MW, Di Ilio C. Site-directed mutagenesis of the Proteus mirabilis glutathione transferase B1-1 G-site. FEBS Lett. 1998 Feb 20;423(2):122–124. [PubMed]
  • Sheehan D, Casey JP. Microbial glutathione S-transferases. Comp Biochem Physiol B. 1993 Jan;104(1):1–6. [PubMed]
  • Tamaki H, Yamamoto K, Kumagai H. Expression of two glutathione S-transferase genes in the yeast Issatchenkia orientalis is induced by o-dinitrobenzene during cell growth arrest. J Bacteriol. 1999 May;181(9):2958–2962. [PMC free article] [PubMed]
  • Dowd CA, Sheehan D. Variable expression of glutathione S-transferase isoenzymes in the fungus, Mucor circinelloides. FEMS Microbiol Lett. 1999 Jan 1;170(1):13–17. [PubMed]
  • Choi JH, Lou W, Vancura A. A novel membrane-bound glutathione S-transferase functions in the stationary phase of the yeast Saccharomyces cerevisiae. J Biol Chem. 1998 Nov 6;273(45):29915–29922. [PubMed]
  • Dowd CA, Buckley CM, Sheehan D. Glutathione S-transferases from the white-rot fungus, Phanerochaete chrysosporium. Biochem J. 1997 May 15;324(Pt 1):243–248. [PMC free article] [PubMed]
  • Foley V, Sheehan D. Glutathione S-transferases of the yeast Yarrowia lipolytica have unusually large molecular mass. Biochem J. 1998 Aug 1;333(Pt 3):839–845. [PMC free article] [PubMed]
  • Coschigano PW, Magasanik B. The URE2 gene product of Saccharomyces cerevisiae plays an important role in the cellular response to the nitrogen source and has homology to glutathione s-transferases. Mol Cell Biol. 1991 Feb;11(2):822–832. [PMC free article] [PubMed]
  • Roy A, Lu CF, Marykwas DL, Lipke PN, Kurjan J. The AGA1 product is involved in cell surface attachment of the Saccharomyces cerevisiae cell adhesion glycoprotein a-agglutinin. Mol Cell Biol. 1991 Aug;11(8):4196–4206. [PMC free article] [PubMed]
  • Marrs Kathleen A. THE FUNCTIONS AND REGULATION OF GLUTATHIONE S-TRANSFERASES IN PLANTS. Annu Rev Plant Physiol Plant Mol Biol. 1996 Jun;47(NaN):127–158. [PubMed]
  • Droog FNJ, Hooykaas PJJ, Van Der Zaal BJ. 2,4-Dichlorophenoxyacetic Acid and Related Chlorinated Compounds Inhibit Two Auxin-Regulated Type-III Tobacco Glutathione S-Transferases. Plant Physiol. 1995 Apr;107(4):1139–1146. [PMC free article] [PubMed]
  • Meyer RC, Jr, Goldsbrough PB, Woodson WR. An ethylene-responsive flower senescence-related gene from carnation encodes a protein homologous to glutathione S-transferases. Plant Mol Biol. 1991 Aug;17(2):277–281. [PubMed]
  • Itzhaki H, Woodson WR. Characterization of an ethylene-responsive glutathione S-transferase gene cluster in carnation. Plant Mol Biol. 1993 Apr;22(1):43–58. [PubMed]
  • Zettl R, Schell J, Palme K. Photoaffinity labeling of Arabidopsis thaliana plasma membrane vesicles by 5-azido-[7-3H]indole-3-acetic acid: identification of a glutathione S-transferase. Proc Natl Acad Sci U S A. 1994 Jan 18;91(2):689–693. [PMC free article] [PubMed]
  • Pichersky E, Gang DR. Genetics and biochemistry of secondary metabolites in plants: an evolutionary perspective. Trends Plant Sci. 2000 Oct;5(10):439–445. [PubMed]
  • Pflugmacher S, Schröder P, Sandermann H., Jr Taxonomic distribution of plant glutathione S-transferases acting on xenobiotics. Phytochemistry. 2000 Jun;54(3):267–273. [PubMed]
  • Dixon DP, Cole DJ, Edwards R. Dimerisation of maize glutathione transferases in recombinant bacteria. Plant Mol Biol. 1999 Aug;40(6):997–1008. [PubMed]
  • Neuefeind T, Huber R, Dasenbrock H, Prade L, Bieseler B. Crystal structure of herbicide-detoxifying maize glutathione S-transferase-I in complex with lactoylglutathione: evidence for an induced-fit mechanism. J Mol Biol. 1997 Dec 12;274(4):446–453. [PubMed]
  • Prade L, Huber R, Bieseler B. Structures of herbicides in complex with their detoxifying enzyme glutathione S-transferase - explanations for the selectivity of the enzyme in plants. Structure. 1998 Nov 15;6(11):1445–1452. [PubMed]
  • Neuefeind T, Huber R, Reinemer P, Knäblein J, Prade L, Mann K, Bieseler B. Cloning, sequencing, crystallization and X-ray structure of glutathione S-transferase-III from Zea mays var. mutin: a leading enzyme in detoxification of maize herbicides. J Mol Biol. 1997 Dec 12;274(4):577–587. [PubMed]
  • Li ZS, Zhao Y, Rea PA. Magnesium Adenosine 5[prime]-Triphosphate-Energized Transport of Glutathione-S-Conjugates by Plant Vacuolar Membrane Vesicles. Plant Physiol. 1995 Apr;107(4):1257–1268. [PMC free article] [PubMed]
  • Mol J, Cornish E, Mason J, Koes R. Novel coloured flowers. Curr Opin Biotechnol. 1999 Apr;10(2):198–201. [PubMed]
  • Zhou ZH, Syvanen M. A complex glutathione transferase gene family in the housefly Musca domestica. Mol Gen Genet. 1997 Sep;256(2):187–194. [PubMed]
  • Brogdon WG, McAllister JC. Insecticide resistance and vector control. Emerg Infect Dis. 1998 Oct-Dec;4(4):605–613. [PMC free article] [PubMed]
  • Hemingway J. The molecular basis of two contrasting metabolic mechanisms of insecticide resistance. Insect Biochem Mol Biol. 2000 Nov;30(11):1009–1015. [PubMed]
  • Hemingway J, Ranson H. Insecticide resistance in insect vectors of human disease. Annu Rev Entomol. 2000;45:371–391. [PubMed]
  • Brown AW. Insecticide resistance in mosquitoes: a pragmatic review. J Am Mosq Control Assoc. 1986 Jun;2(2):123–140. [PubMed]
  • Syvanen M, Zhou ZH, Wang JY. Glutathione transferase gene family from the housefly Musca domestica. Mol Gen Genet. 1994 Oct 17;245(1):25–31. [PubMed]
  • Prapanthadara L, Ranson H, Somboon P, Hemingway J. Cloning, expression and characterization of an insect class I glutathione S-transferase from Anopheles dirus species B. Insect Biochem Mol Biol. 1998 May-Jun;28(5-6):321–329. [PubMed]
  • Lougarre A, Bride JM, Fournier D. Is the insect glutathione S-transferase I gene family intronless? Insect Mol Biol. 1999 Feb;8(1):141–143. [PubMed]
  • Ranson H, Collins F, Hemingway J. The role of alternative mRNA splicing in generating heterogeneity within the Anopheles gambiae class I glutathione S-transferase family. Proc Natl Acad Sci U S A. 1998 Nov 24;95(24):14284–14289. [PMC free article] [PubMed]
  • Beall C, Fyrberg C, Song S, Fyrberg E. Isolation of a Drosophila gene encoding glutathione S-transferase. Biochem Genet. 1992 Oct;30(9-10):515–527. [PubMed]
  • Brophy PM, Barrett J. Glutathione transferase in helminths. Parasitology. 1990 Apr;100(Pt 2):345–349. [PubMed]
  • Lim K, Ho JX, Keeling K, Gilliland GL, Ji X, Rüker F, Carter DC. Three-dimensional structure of Schistosoma japonicum glutathione S-transferase fused with a six-amino acid conserved neutralizing epitope of gp41 from HIV. Protein Sci. 1994 Dec;3(12):2233–2244. [PMC free article] [PubMed]
  • McTigue MA, Williams DR, Tainer JA. Crystal structures of a schistosomal drug and vaccine target: glutathione S-transferase from Schistosoma japonica and its complex with the leading antischistosomal drug praziquantel. J Mol Biol. 1995 Feb 10;246(1):21–27. [PubMed]
  • Liebau E, Eckelt VH, Wildenburg G, Teesdale-Spittle P, Brophy PM, Walter RD, Henkle-Dührsen K. Structural and functional analysis of a glutathione S-transferase from Ascaris suum. Biochem J. 1997 Jun 1;324(Pt 2):659–666. [PMC free article] [PubMed]
  • Salvatore L, Wijffels G, Sexton JL, Panaccio M, Mailer S, McCauley I, Spithill TW. Biochemical analysis of recombinant glutathione S-transferase of Fasciola hepatica. Mol Biochem Parasitol. 1995 Feb;69(2):281–288. [PubMed]
  • Nebert DW. Drug-metabolizing enzymes in ligand-modulated transcription. Biochem Pharmacol. 1994 Jan 13;47(1):25–37. [PubMed]
  • Nebert DW, Dieter MZ. The evolution of drug metabolism. Pharmacology. 2000 Sep;61(3):124–135. [PubMed]
  • Armstrong RN. Mechanistic imperatives for the evolution of glutathione transferases. Curr Opin Chem Biol. 1998 Oct;2(5):618–623. [PubMed]
  • Hansson LO, Bolton-Grob R, Massoud T, Mannervik B. Evolution of differential substrate specificities in Mu class glutathione transferases probed by DNA shuffling. J Mol Biol. 1999 Mar 26;287(2):265–276. [PubMed]
  • Henikoff S, Greene EA, Pietrokovski S, Bork P, Attwood TK, Hood L. Gene families: the taxonomy of protein paralogs and chimeras. Science. 1997 Oct 24;278(5338):609–614. [PubMed]
  • Rouimi P, Debrauwer L, Tulliez J. Electrospray ionization-mass spectrometry as a tool for characterization of glutathione S-transferase isozymes. Anal Biochem. 1995 Aug 10;229(2):304–312. [PubMed]
  • Coles BF, Anderson KE, Doerge DR, Churchwell MI, Lang NP, Kadlubar FF. Quantitative analysis of interindividual variation of glutathione S-transferase expression in human pancreas and the ambiguity of correlating genotype with phenotype. Cancer Res. 2000 Feb 1;60(3):573–579. [PubMed]
  • Ranson H, Rossiter L, Ortelli F, Jensen B, Wang X, Roth CW, Collins FH, Hemingway J. Identification of a novel class of insect glutathione S-transferases involved in resistance to DDT in the malaria vector Anopheles gambiae. Biochem J. 2001 Oct 15;359(Pt 2):295–304. [PMC free article] [PubMed]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society


Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...


Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...