• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of biochemjBJ Latest papers and much more!
Biochem J. Aug 1, 2001; 357(Pt 3): 593–615.
PMCID: PMC1221991

Nitric oxide synthases: structure, function and inhibition.


This review concentrates on advances in nitric oxide synthase (NOS) structure, function and inhibition made in the last seven years, during which time substantial advances have been made in our understanding of this enzyme family. There is now information on the enzyme structure at all levels from primary (amino acid sequence) to quaternary (dimerization, association with other proteins) structure. The crystal structures of the oxygenase domains of inducible NOS (iNOS) and vascular endothelial NOS (eNOS) allow us to interpret other information in the context of this important part of the enzyme, with its binding sites for iron protoporphyrin IX (haem), biopterin, L-arginine, and the many inhibitors which interact with them. The exact nature of the NOS reaction, its mechanism and its products continue to be sources of controversy. The role of the biopterin cofactor is now becoming clearer, with emerging data implicating one-electron redox cycling as well as the multiple allosteric effects on enzyme activity. Regulation of the NOSs has been described at all levels from gene transcription to covalent modification and allosteric regulation of the enzyme itself. A wide range of NOS inhibitors have been discussed, interacting with the enzyme in diverse ways in terms of site and mechanism of inhibition, time-dependence and selectivity for individual isoforms, although there are many pitfalls and misunderstandings of these aspects. Highly selective inhibitors of iNOS versus eNOS and neuronal NOS have been identified and some of these have potential in the treatment of a range of inflammatory and other conditions in which iNOS has been implicated.

Full Text

The Full Text of this article is available as a PDF (460K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Knowles RG, Moncada S. Nitric oxide synthases in mammals. Biochem J. 1994 Mar 1;298(Pt 2):249–258. [PMC free article] [PubMed]
  • Marletta MA. Nitric oxide synthase: aspects concerning structure and catalysis. Cell. 1994 Sep 23;78(6):927–930. [PubMed]
  • Nathan C, Xie QW. Nitric oxide synthases: roles, tolls, and controls. Cell. 1994 Sep 23;78(6):915–918. [PubMed]
  • Moncada S, Higgs A. The L-arginine-nitric oxide pathway. N Engl J Med. 1993 Dec 30;329(27):2002–2012. [PubMed]
  • Kröncke KD, Fehsel K, Kolb-Bachofen V. Inducible nitric oxide synthase in human diseases. Clin Exp Immunol. 1998 Aug;113(2):147–156. [PMC free article] [PubMed]
  • Hobbs AJ, Higgs A, Moncada S. Inhibition of nitric oxide synthase as a potential therapeutic target. Annu Rev Pharmacol Toxicol. 1999;39:191–220. [PubMed]
  • Muscará MN, Wallace JL. Nitric Oxide. V. therapeutic potential of nitric oxide donors and inhibitors. Am J Physiol. 1999 Jun;276(6 Pt 1):G1313–G1316. [PubMed]
  • Feelisch M. The use of nitric oxide donors in pharmacological studies. Naunyn Schmiedebergs Arch Pharmacol. 1998 Jul;358(1):113–122. [PubMed]
  • Cutruzzolà F. Bacterial nitric oxide synthesis. Biochim Biophys Acta. 1999 May 5;1411(2-3):231–249. [PubMed]
  • Watmough NJ, Butland G, Cheesman MR, Moir JW, Richardson DJ, Spiro S. Nitric oxide in bacteria: synthesis and consumption. Biochim Biophys Acta. 1999 May 5;1411(2-3):456–474. [PubMed]
  • Millar TM, Stevens CR, Benjamin N, Eisenthal R, Harrison R, Blake DR. Xanthine oxidoreductase catalyses the reduction of nitrates and nitrite to nitric oxide under hypoxic conditions. FEBS Lett. 1998 May 8;427(2):225–228. [PubMed]
  • Nakane M, Schmidt HH, Pollock JS, Förstermann U, Murad F. Cloned human brain nitric oxide synthase is highly expressed in skeletal muscle. FEBS Lett. 1993 Jan 25;316(2):175–180. [PubMed]
  • Hall AV, Antoniou H, Wang Y, Cheung AH, Arbus AM, Olson SL, Lu WC, Kau CL, Marsden PA. Structural organization of the human neuronal nitric oxide synthase gene (NOS1). J Biol Chem. 1994 Dec 30;269(52):33082–33090. [PubMed]
  • Geller DA, Lowenstein CJ, Shapiro RA, Nussler AK, Di Silvio M, Wang SC, Nakayama DK, Simmons RL, Snyder SH, Billiar TR. Molecular cloning and expression of inducible nitric oxide synthase from human hepatocytes. Proc Natl Acad Sci U S A. 1993 Apr 15;90(8):3491–3495. [PMC free article] [PubMed]
  • Sherman PA, Laubach VE, Reep BR, Wood ER. Purification and cDNA sequence of an inducible nitric oxide synthase from a human tumor cell line. Biochemistry. 1993 Nov 2;32(43):11600–11605. [PubMed]
  • Charles IG, Palmer RM, Hickery MS, Bayliss MT, Chubb AP, Hall VS, Moss DW, Moncada S. Cloning, characterization, and expression of a cDNA encoding an inducible nitric oxide synthase from the human chondrocyte. Proc Natl Acad Sci U S A. 1993 Dec 1;90(23):11419–11423. [PMC free article] [PubMed]
  • Janssens SP, Shimouchi A, Quertermous T, Bloch DB, Bloch KD. Cloning and expression of a cDNA encoding human endothelium-derived relaxing factor/nitric oxide synthase. J Biol Chem. 1992 Jul 25;267(21):14519–14522. [PubMed]
  • Marsden PA, Schappert KT, Chen HS, Flowers M, Sundell CL, Wilcox JN, Lamas S, Michel T. Molecular cloning and characterization of human endothelial nitric oxide synthase. FEBS Lett. 1992 Aug 3;307(3):287–293. [PubMed]
  • McMillan K, Masters BS. Prokaryotic expression of the heme- and flavin-binding domains of rat neuronal nitric oxide synthase as distinct polypeptides: identification of the heme-binding proximal thiolate ligand as cysteine-415. Biochemistry. 1995 Mar 21;34(11):3686–3693. [PubMed]
  • Richards MK, Marletta MA. Characterization of neuronal nitric oxide synthase and a C415H mutant, purified from a baculovirus overexpression system. Biochemistry. 1994 Dec 13;33(49):14723–14732. [PubMed]
  • Ghosh DK, Stuehr DJ. Macrophage NO synthase: characterization of isolated oxygenase and reductase domains reveals a head-to-head subunit interaction. Biochemistry. 1995 Jan 24;34(3):801–807. [PubMed]
  • Sheta EA, McMillan K, Masters BS. Evidence for a bidomain structure of constitutive cerebellar nitric oxide synthase. J Biol Chem. 1994 May 27;269(21):15147–15153. [PubMed]
  • Lowe PN, Smith D, Stammers DK, Riveros-Moreno V, Moncada S, Charles I, Boyhan A. Identification of the domains of neuronal nitric oxide synthase by limited proteolysis. Biochem J. 1996 Feb 15;314(Pt 1):55–62. [PMC free article] [PubMed]
  • Chen PF, Tsai AL, Berka V, Wu KK. Endothelial nitric-oxide synthase. Evidence for bidomain structure and successful reconstitution of catalytic activity from two separate domains generated by a baculovirus expression system. J Biol Chem. 1996 Jun 14;271(24):14631–14635. [PubMed]
  • Ghosh DK, Abu-Soud HM, Stuehr DJ. Reconstitution of the second step in NO synthesis using the isolated oxygenase and reductase domains of macrophage NO synthase. Biochemistry. 1995 Sep 12;34(36):11316–11320. [PubMed]
  • Crane BR, Arvai AS, Gachhui R, Wu C, Ghosh DK, Getzoff ED, Stuehr DJ, Tainer JA. The structure of nitric oxide synthase oxygenase domain and inhibitor complexes. Science. 1997 Oct 17;278(5337):425–431. [PubMed]
  • Crane BR, Arvai AS, Ghosh DK, Wu C, Getzoff ED, Stuehr DJ, Tainer JA. Structure of nitric oxide synthase oxygenase dimer with pterin and substrate. Science. 1998 Mar 27;279(5359):2121–2126. [PubMed]
  • Fischmann TO, Hruza A, Niu XD, Fossetta JD, Lunn CA, Dolphin E, Prongay AJ, Reichert P, Lundell DJ, Narula SK, et al. Structural characterization of nitric oxide synthase isoforms reveals striking active-site conservation. Nat Struct Biol. 1999 Mar;6(3):233–242. [PubMed]
  • Li H, Raman CS, Glaser CB, Blasko E, Young TA, Parkinson JF, Whitlow M, Poulos TL. Crystal structures of zinc-free and -bound heme domain of human inducible nitric-oxide synthase. Implications for dimer stability and comparison with endothelial nitric-oxide synthase. J Biol Chem. 1999 Jul 23;274(30):21276–21284. [PubMed]
  • Raman CS, Li H, Martásek P, Král V, Masters BS, Poulos TL. Crystal structure of constitutive endothelial nitric oxide synthase: a paradigm for pterin function involving a novel metal center. Cell. 1998 Dec 23;95(7):939–950. [PubMed]
  • Cubberley RR, Alderton WK, Boyhan A, Charles IG, Lowe PN, Old RW. Cysteine-200 of human inducible nitric oxide synthase is essential for dimerization of haem domains and for binding of haem, nitroarginine and tetrahydrobiopterin. Biochem J. 1997 Apr 1;323(Pt 1):141–146. [PMC free article] [PubMed]
  • Chen PF, Tsai AL, Berka V, Wu KK. Mutation of Glu-361 in human endothelial nitric-oxide synthase selectively abolishes L-arginine binding without perturbing the behavior of heme and other redox centers. J Biol Chem. 1997 Mar 7;272(10):6114–6118. [PMC free article] [PubMed]
  • Gachhui R, Ghosh DK, Wu C, Parkinson J, Crane BR, Stuehr DJ. Mutagenesis of acidic residues in the oxygenase domain of inducible nitric-oxide synthase identifies a glutamate involved in arginine binding. Biochemistry. 1997 Apr 29;36(17):5097–5103. [PubMed]
  • Crane BR, Arvai AS, Ghosh S, Getzoff ED, Stuehr DJ, Tainer JA. Structures of the N(omega)-hydroxy-L-arginine complex of inducible nitric oxide synthase oxygenase dimer with active and inactive pterins. Biochemistry. 2000 Apr 25;39(16):4608–4621. [PubMed]
  • Ghosh S, Wolan D, Adak S, Crane BR, Kwon NS, Tainer JA, Getzoff ED, Stuehr DJ. Mutational analysis of the tetrahydrobiopterin-binding site in inducible nitric-oxide synthase. J Biol Chem. 1999 Aug 20;274(34):24100–24112. [PubMed]
  • Chen PF, Tsai AL, Wu KK. Cysteine 99 of endothelial nitric oxide synthase (NOS-III) is critical for tetrahydrobiopterin-dependent NOS-III stability and activity. Biochem Biophys Res Commun. 1995 Oct 24;215(3):1119–1129. [PubMed]
  • Hemmens B, Goessler W, Schmidt K, Mayer B. Role of bound zinc in dimer stabilization but not enzyme activity of neuronal nitric-oxide synthase. J Biol Chem. 2000 Nov 17;275(46):35786–35791. [PubMed]
  • Garvey EP, Oplinger JA, Tanoury GJ, Sherman PA, Fowler M, Marshall S, Harmon MF, Paith JE, Furfine ES. Potent and selective inhibition of human nitric oxide synthases. Inhibition by non-amino acid isothioureas. J Biol Chem. 1994 Oct 28;269(43):26669–26676. [PubMed]
  • Crane BR, Rosenfeld RJ, Arvai AS, Ghosh DK, Ghosh S, Tainer JA, Stuehr DJ, Getzoff ED. N-terminal domain swapping and metal ion binding in nitric oxide synthase dimerization. EMBO J. 1999 Nov 15;18(22):6271–6281. [PMC free article] [PubMed]
  • Venema RC, Ju H, Zou R, Ryan JW, Venema VJ. Subunit interactions of endothelial nitric-oxide synthase. Comparisons to the neuronal and inducible nitric-oxide synthase isoforms. J Biol Chem. 1997 Jan 10;272(2):1276–1282. [PubMed]
  • Stuehr DJ. Mammalian nitric oxide synthases. Biochim Biophys Acta. 1999 May 5;1411(2-3):217–230. [PubMed]
  • Rusche KM, Spiering MM, Marletta MA. Reactions catalyzed by tetrahydrobiopterin-free nitric oxide synthase. Biochemistry. 1998 Nov 3;37(44):15503–15512. [PubMed]
  • Sennequier N, Wolan D, Stuehr DJ. Antifungal imidazoles block assembly of inducible NO synthase into an active dimer. J Biol Chem. 1999 Jan 8;274(2):930–938. [PubMed]
  • Klatt P, Schmidt K, Lehner D, Glatter O, Bächinger HP, Mayer B. Structural analysis of porcine brain nitric oxide synthase reveals a role for tetrahydrobiopterin and L-arginine in the formation of an SDS-resistant dimer. EMBO J. 1995 Aug 1;14(15):3687–3695. [PMC free article] [PubMed]
  • McMillan K, Adler M, Auld DS, Baldwin JJ, Blasko E, Browne LJ, Chelsky D, Davey D, Dolle RE, Eagen KA, et al. Allosteric inhibitors of inducible nitric oxide synthase dimerization discovered via combinatorial chemistry. Proc Natl Acad Sci U S A. 2000 Feb 15;97(4):1506–1511. [PMC free article] [PubMed]
  • Stuehr DJ, Kwon NS, Nathan CF, Griffith OW, Feldman PL, Wiseman J. N omega-hydroxy-L-arginine is an intermediate in the biosynthesis of nitric oxide from L-arginine. J Biol Chem. 1991 Apr 5;266(10):6259–6263. [PubMed]
  • Schmidt HH, Hofmann H, Schindler U, Shutenko ZS, Cunningham DD, Feelisch M. No .NO from NO synthase. Proc Natl Acad Sci U S A. 1996 Dec 10;93(25):14492–14497. [PMC free article] [PubMed]
  • Hobbs AJ, Fukuto JM, Ignarro LJ. Formation of free nitric oxide from l-arginine by nitric oxide synthase: direct enhancement of generation by superoxide dismutase. Proc Natl Acad Sci U S A. 1994 Nov 8;91(23):10992–10996. [PMC free article] [PubMed]
  • Murphy ME, Sies H. Reversible conversion of nitroxyl anion to nitric oxide by superoxide dismutase. Proc Natl Acad Sci U S A. 1991 Dec 1;88(23):10860–10864. [PMC free article] [PubMed]
  • Koppenol WH, Moreno JJ, Pryor WA, Ischiropoulos H, Beckman JS. Peroxynitrite, a cloaked oxidant formed by nitric oxide and superoxide. Chem Res Toxicol. 1992 Nov-Dec;5(6):834–842. [PubMed]
  • Miller RT, Martásek P, Roman LJ, Nishimura JS, Masters BS. Involvement of the reductase domain of neuronal nitric oxide synthase in superoxide anion production. Biochemistry. 1997 Dec 9;36(49):15277–15284. [PubMed]
  • Xia Y, Zweier JL. Direct measurement of nitric oxide generation from nitric oxide synthase. Proc Natl Acad Sci U S A. 1997 Nov 11;94(23):12705–12710. [PMC free article] [PubMed]
  • Vásquez-Vivar J, Hogg N, Martásek P, Karoui H, Pritchard KA, Jr, Kalyanaraman B. Tetrahydrobiopterin-dependent inhibition of superoxide generation from neuronal nitric oxide synthase. J Biol Chem. 1999 Sep 17;274(38):26736–26742. [PubMed]
  • Vásquez-Vivar J, Kalyanaraman B, Martásek P, Hogg N, Masters BS, Karoui H, Tordo P, Pritchard KA., Jr Superoxide generation by endothelial nitric oxide synthase: the influence of cofactors. Proc Natl Acad Sci U S A. 1998 Aug 4;95(16):9220–9225. [PMC free article] [PubMed]
  • Komarov AM, Wink DA, Feelisch M, Schmidt HH. Electron-paramagnetic resonance spectroscopy using N-methyl-D-glucamine dithiocarbamate iron cannot discriminate between nitric oxide and nitroxyl: implications for the detection of reaction products for nitric oxide synthase. Free Radic Biol Med. 2000 Mar 1;28(5):739–742. [PubMed]
  • Pufahl RA, Wishnok JS, Marletta MA. Hydrogen peroxide-supported oxidation of NG-hydroxy-L-arginine by nitric oxide synthase. Biochemistry. 1995 Feb 14;34(6):1930–1941. [PubMed]
  • List BM, Klösch B, Völker C, Gorren AC, Sessa WC, Werner ER, Kukovetz WR, Schmidt K, Mayer B. Characterization of bovine endothelial nitric oxide synthase as a homodimer with down-regulated uncoupled NADPH oxidase activity: tetrahydrobiopterin binding kinetics and role of haem in dimerization. Biochem J. 1997 Apr 1;323(Pt 1):159–165. [PMC free article] [PubMed]
  • Stroes E, Hijmering M, van Zandvoort M, Wever R, Rabelink TJ, van Faassen EE. Origin of superoxide production by endothelial nitric oxide synthase. FEBS Lett. 1998 Nov 6;438(3):161–164. [PubMed]
  • Xia Y, Roman LJ, Masters BS, Zweier JL. Inducible nitric-oxide synthase generates superoxide from the reductase domain. J Biol Chem. 1998 Aug 28;273(35):22635–22639. [PubMed]
  • Beckman JS, Beckman TW, Chen J, Marshall PA, Freeman BA. Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci U S A. 1990 Feb;87(4):1620–1624. [PMC free article] [PubMed]
  • Sharpe MA, Cooper CE. Reactions of nitric oxide with mitochondrial cytochrome c: a novel mechanism for the formation of nitroxyl anion and peroxynitrite. Biochem J. 1998 May 15;332(Pt 1):9–19. [PMC free article] [PubMed]
  • Polte T, Abate A, Dennery PA, Schröder H. Heme oxygenase-1 is a cGMP-inducible endothelial protein and mediates the cytoprotective action of nitric oxide. Arterioscler Thromb Vasc Biol. 2000 May;20(5):1209–1215. [PubMed]
  • Wink DA, Feelisch M, Fukuto J, Chistodoulou D, Jourd'heuil D, Grisham MB, Vodovotz Y, Cook JA, Krishna M, DeGraff WG, et al. The cytotoxicity of nitroxyl: possible implications for the pathophysiological role of NO. Arch Biochem Biophys. 1998 Mar 1;351(1):66–74. [PubMed]
  • Ma XL, Gao F, Liu GL, Lopez BL, Christopher TA, Fukuto JM, Wink DA, Feelisch M. Opposite effects of nitric oxide and nitroxyl on postischemic myocardial injury. Proc Natl Acad Sci U S A. 1999 Dec 7;96(25):14617–14622. [PMC free article] [PubMed]
  • Chabrier PE, Demerlé-Pallardy C, Auguet M. Nitric oxide synthases: targets for therapeutic strategies in neurological diseases. Cell Mol Life Sci. 1999 Jul;55(8-9):1029–1035. [PubMed]
  • Heinzel B, John M, Klatt P, Böhme E, Mayer B. Ca2+/calmodulin-dependent formation of hydrogen peroxide by brain nitric oxide synthase. Biochem J. 1992 Feb 1;281(Pt 3):627–630. [PMC free article] [PubMed]
  • Adak S, Ghosh S, Abu-Soud HM, Stuehr DJ. Role of reductase domain cluster 1 acidic residues in neuronal nitric-oxide synthase. Characterization of the FMN-FREE enzyme. J Biol Chem. 1999 Aug 6;274(32):22313–22320. [PubMed]
  • Matsuda H, Iyanagi T. Calmodulin activates intramolecular electron transfer between the two flavins of neuronal nitric oxide synthase flavin domain. Biochim Biophys Acta. 1999 Dec 27;1473(2-3):345–355. [PubMed]
  • Noble MA, Munro AW, Rivers SL, Robledo L, Daff SN, Yellowlees LJ, Shimizu T, Sagami I, Guillemette JG, Chapman SK. Potentiometric analysis of the flavin cofactors of neuronal nitric oxide synthase. Biochemistry. 1999 Dec 14;38(50):16413–16418. [PubMed]
  • Siddhanta U, Wu C, Abu-Soud HM, Zhang J, Ghosh DK, Stuehr DJ. Heme iron reduction and catalysis by a nitric oxide synthase heterodimer containing one reductase and two oxygenase domains. J Biol Chem. 1996 Mar 29;271(13):7309–7312. [PubMed]
  • Pou S, Pou WS, Bredt DS, Snyder SH, Rosen GM. Generation of superoxide by purified brain nitric oxide synthase. J Biol Chem. 1992 Dec 5;267(34):24173–24176. [PubMed]
  • Stuehr DJ, Cho HJ, Kwon NS, Weise MF, Nathan CF. Purification and characterization of the cytokine-induced macrophage nitric oxide synthase: an FAD- and FMN-containing flavoprotein. Proc Natl Acad Sci U S A. 1991 Sep 1;88(17):7773–7777. [PMC free article] [PubMed]
  • Schmidt HH, Murad F. Purification and characterization of a human NO synthase. Biochem Biophys Res Commun. 1991 Dec 31;181(3):1372–1377. [PubMed]
  • Baek KJ, Thiel BA, Lucas S, Stuehr DJ. Macrophage nitric oxide synthase subunits. Purification, characterization, and role of prosthetic groups and substrate in regulating their association into a dimeric enzyme. J Biol Chem. 1993 Oct 5;268(28):21120–21129. [PubMed]
  • Lee CM, Robinson LJ, Michel T. Oligomerization of endothelial nitric oxide synthase. Evidence for a dominant negative effect of truncation mutants. J Biol Chem. 1995 Nov 17;270(46):27403–27406. [PubMed]
  • Giovanelli J, Campos KL, Kaufman S. Tetrahydrobiopterin, a cofactor for rat cerebellar nitric oxide synthase, does not function as a reactant in the oxygenation of arginine. Proc Natl Acad Sci U S A. 1991 Aug 15;88(16):7091–7095. [PMC free article] [PubMed]
  • Klatt P, Schmid M, Leopold E, Schmidt K, Werner ER, Mayer B. The pteridine binding site of brain nitric oxide synthase. Tetrahydrobiopterin binding kinetics, specificity, and allosteric interaction with the substrate domain. J Biol Chem. 1994 May 13;269(19):13861–13866. [PubMed]
  • Alderton WK, Boyhan A, Lowe PN. Nitroarginine and tetrahydrobiopterin binding to the haem domain of neuronal nitric oxide synthase using a scintillation proximity assay. Biochem J. 1998 May 15;332(Pt 1):195–201. [PMC free article] [PubMed]
  • McMillan K, Masters BS. Optical difference spectrophotometry as a probe of rat brain nitric oxide synthase heme-substrate interaction. Biochemistry. 1993 Sep 28;32(38):9875–9880. [PubMed]
  • Wang J, Stuehr DJ, Ikeda-Saito M, Rousseau DL. Heme coordination and structure of the catalytic site in nitric oxide synthase. J Biol Chem. 1993 Oct 25;268(30):22255–22258. [PubMed]
  • Wang J, Stuehr DJ, Rousseau DL. Tetrahydrobiopterin-deficient nitric oxide synthase has a modified heme environment and forms a cytochrome P-420 analogue. Biochemistry. 1995 May 30;34(21):7080–7087. [PubMed]
  • Reif A, Fröhlich LG, Kotsonis P, Frey A, Bömmel HM, Wink DA, Pfleiderer W, Schmidt HH. Tetrahydrobiopterin inhibits monomerization and is consumed during catalysis in neuronal NO synthase. J Biol Chem. 1999 Aug 27;274(35):24921–24929. [PubMed]
  • Bec N, Gorren AC, Voelker C, Mayer B, Lange R. Reaction of neuronal nitric-oxide synthase with oxygen at low temperature. Evidence for reductive activation of the oxy-ferrous complex by tetrahydrobiopterin. J Biol Chem. 1998 May 29;273(22):13502–13508. [PubMed]
  • Hurshman AR, Krebs C, Edmondson DE, Huynh BH, Marletta MA. Formation of a pterin radical in the reaction of the heme domain of inducible nitric oxide synthase with oxygen. Biochemistry. 1999 Nov 30;38(48):15689–15696. [PubMed]
  • Witteveen CF, Giovanelli J, Kaufman S. Reactivity of tetrahydrobiopterin bound to nitric-oxide synthase. J Biol Chem. 1999 Oct 15;274(42):29755–29762. [PubMed]
  • Presta A, Siddhanta U, Wu C, Sennequier N, Huang L, Abu-Soud HM, Erzurum S, Stuehr DJ. Comparative functioning of dihydro- and tetrahydropterins in supporting electron transfer, catalysis, and subunit dimerization in inducible nitric oxide synthase. Biochemistry. 1998 Jan 6;37(1):298–310. [PubMed]
  • Kaufman S. The phenylalanine hydroxylating system. Adv Enzymol Relat Areas Mol Biol. 1993;67:77–264. [PubMed]
  • Mayer B, Wu C, Gorren AC, Pfeiffer S, Schmidt K, Clark P, Stuehr DJ, Werner ER. Tetrahydrobiopterin binding to macrophage inducible nitric oxide synthase: heme spin shift and dimer stabilization by the potent pterin antagonist 4-amino-tetrahydrobiopterin. Biochemistry. 1997 Jul 8;36(27):8422–8427. [PubMed]
  • Pfeiffer S, Gorren AC, Pitters E, Schmidt K, Werner ER, Mayer B. Allosteric modulation of rat brain nitric oxide synthase by the pterin-site enzyme inhibitor 4-aminotetrahydrobiopterin. Biochem J. 1997 Dec 1;328(Pt 2):349–352. [PMC free article] [PubMed]
  • Presta A, Siddhanta U, Wu C, Sennequier N, Huang L, Abu-Soud HM, Erzurum S, Stuehr DJ. Comparative functioning of dihydro- and tetrahydropterins in supporting electron transfer, catalysis, and subunit dimerization in inducible nitric oxide synthase. Biochemistry. 1998 Jan 6;37(1):298–310. [PubMed]
  • Sono Masanori, Roach Mark P, Coulter Eric D, Dawson John H. Heme-Containing Oxygenases. Chem Rev. 1996 Nov 7;96(7):2841–2888. [PubMed]
  • Poulos TL, Li H, Raman CS. Heme-mediated oxygen activation in biology: cytochrome c oxidase and nitric oxide synthase. Curr Opin Chem Biol. 1999 Apr;3(2):131–137. [PubMed]
  • Adams DR, Brochwicz-Lewinski M, Butler AR. Nitric oxide: physiological roles, biosynthesis and medical uses. Fortschr Chem Org Naturst. 1999;76:1–211. [PubMed]
  • Griffith OW, Stuehr DJ. Nitric oxide synthases: properties and catalytic mechanism. Annu Rev Physiol. 1995;57:707–736. [PubMed]
  • Kerwin JF, Jr, Lancaster JR, Jr, Feldman PL. Nitric oxide: a new paradigm for second messengers. J Med Chem. 1995 Oct 27;38(22):4343–4362. [PubMed]
  • Abu-Soud HM, Gachhui R, Raushel FM, Stuehr DJ. The ferrous-dioxy complex of neuronal nitric oxide synthase. Divergent effects of L-arginine and tetrahydrobiopterin on its stability. J Biol Chem. 1997 Jul 11;272(28):17349–17353. [PubMed]
  • Boggs S, Huang L, Stuehr DJ. Formation and reactions of the heme-dioxygen intermediate in the first and second steps of nitric oxide synthesis as studied by stopped-flow spectroscopy under single-turnover conditions. Biochemistry. 2000 Mar 7;39(9):2332–2339. [PubMed]
  • Korth HG, Sustmann R, Thater C, Butler AR, Ingold KU. On the mechanism of the nitric oxide synthase-catalyzed conversion of N omega-hydroxyl-L-arginine to citrulline and nitric oxide. J Biol Chem. 1994 Jul 8;269(27):17776–17779. [PubMed]
  • Clague MJ, Wishnok JS, Marletta MA. Formation of N delta-cyanoornithine from NG-hydroxy-L-arginine and hydrogen peroxide by neuronal nitric oxide synthase: implications for mechanism. Biochemistry. 1997 Nov 25;36(47):14465–14473. [PubMed]
  • Cooper CE. Nitric oxide and iron proteins. Biochim Biophys Acta. 1999 May 5;1411(2-3):290–309. [PubMed]
  • Hurshman AR, Marletta MA. Nitric oxide complexes of inducible nitric oxide synthase: spectral characterization and effect on catalytic activity. Biochemistry. 1995 Apr 25;34(16):5627–5634. [PubMed]
  • Abu-Soud HM, Wang J, Rousseau DL, Fukuto JM, Ignarro LJ, Stuehr DJ. Neuronal nitric oxide synthase self-inactivates by forming a ferrous-nitrosyl complex during aerobic catalysis. J Biol Chem. 1995 Sep 29;270(39):22997–23006. [PubMed]
  • Santolini J, Adak S, Curran CM, Stuehr DJ. A kinetic simulation model that describes catalysis and regulation in nitric-oxide synthase. J Biol Chem. 2001 Jan 12;276(2):1233–1243. [PubMed]
  • Abu-Soud HM, Rousseau DL, Stuehr DJ. Nitric oxide binding to the heme of neuronal nitric-oxide synthase links its activity to changes in oxygen tension. J Biol Chem. 1996 Dec 20;271(51):32515–32518. [PubMed]
  • Adak S, Crooks C, Wang Q, Crane BR, Tainer JA, Getzoff ED, Stuehr DJ. Tryptophan 409 controls the activity of neuronal nitric-oxide synthase by regulating nitric oxide feedback inhibition. J Biol Chem. 1999 Sep 17;274(38):26907–26911. [PubMed]
  • Geller DA, Billiar TR. Molecular biology of nitric oxide synthases. Cancer Metastasis Rev. 1998 Mar;17(1):7–23. [PubMed]
  • Förstermann U, Boissel JP, Kleinert H. Expressional control of the 'constitutive' isoforms of nitric oxide synthase (NOS I and NOS III). FASEB J. 1998 Jul;12(10):773–790. [PubMed]
  • Bredt DS, Snyder SH. Isolation of nitric oxide synthetase, a calmodulin-requiring enzyme. Proc Natl Acad Sci U S A. 1990 Jan;87(2):682–685. [PMC free article] [PubMed]
  • Gachhui R, Presta A, Bentley DF, Abu-Soud HM, McArthur R, Brudvig G, Ghosh DK, Stuehr DJ. Characterization of the reductase domain of rat neuronal nitric oxide synthase generated in the methylotrophic yeast Pichia pastoris. Calmodulin response is complete within the reductase domain itself. J Biol Chem. 1996 Aug 23;271(34):20594–20602. [PubMed]
  • Gachhui R, Abu-Soud HM, Ghosha DK, Presta A, Blazing MA, Mayer B, George SE, Stuehr DJ. Neuronal nitric-oxide synthase interaction with calmodulin-troponin C chimeras. J Biol Chem. 1998 Mar 6;273(10):5451–5454. [PubMed]
  • Abu-Soud HM, Yoho LL, Stuehr DJ. Calmodulin controls neuronal nitric-oxide synthase by a dual mechanism. Activation of intra- and interdomain electron transfer. J Biol Chem. 1994 Dec 23;269(51):32047–32050. [PubMed]
  • Salerno JC, Harris DE, Irizarry K, Patel B, Morales AJ, Smith SM, Martasek P, Roman LJ, Masters BS, Jones CL, et al. An autoinhibitory control element defines calcium-regulated isoforms of nitric oxide synthase. J Biol Chem. 1997 Nov 21;272(47):29769–29777. [PubMed]
  • Nishida CR, Ortiz de Montellano PR. Autoinhibition of endothelial nitric-oxide synthase. Identification of an electron transfer control element. J Biol Chem. 1999 May 21;274(21):14692–14698. [PubMed]
  • Daff S, Sagami I, Shimizu T. The 42-amino acid insert in the FMN domain of neuronal nitric-oxide synthase exerts control over Ca(2+)/calmodulin-dependent electron transfer. J Biol Chem. 1999 Oct 22;274(43):30589–30595. [PubMed]
  • Corson MA, James NL, Latta SE, Nerem RM, Berk BC, Harrison DG. Phosphorylation of endothelial nitric oxide synthase in response to fluid shear stress. Circ Res. 1996 Nov;79(5):984–991. [PubMed]
  • Fisslthaler B, Dimmeler S, Hermann C, Busse R, Fleming I. Phosphorylation and activation of the endothelial nitric oxide synthase by fluid shear stress. Acta Physiol Scand. 2000 Jan;168(1):81–88. [PubMed]
  • Dimmeler S, Fleming I, Fisslthaler B, Hermann C, Busse R, Zeiher AM. Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation. Nature. 1999 Jun 10;399(6736):601–605. [PubMed]
  • Fulton D, Gratton JP, McCabe TJ, Fontana J, Fujio Y, Walsh K, Franke TF, Papapetropoulos A, Sessa WC. Regulation of endothelium-derived nitric oxide production by the protein kinase Akt. Nature. 1999 Jun 10;399(6736):597–601. [PMC free article] [PubMed]
  • McCabe TJ, Fulton D, Roman LJ, Sessa WC. Enhanced electron flux and reduced calmodulin dissociation may explain "calcium-independent" eNOS activation by phosphorylation. J Biol Chem. 2000 Mar 3;275(9):6123–6128. [PubMed]
  • Komeima K, Hayashi Y, Naito Y, Watanabe Y. Inhibition of neuronal nitric-oxide synthase by calcium/ calmodulin-dependent protein kinase IIalpha through Ser847 phosphorylation in NG108-15 neuronal cells. J Biol Chem. 2000 Sep 8;275(36):28139–28143. [PubMed]
  • Hayashi Y, Nishio M, Naito Y, Yokokura H, Nimura Y, Hidaka H, Watanabe Y. Regulation of neuronal nitric-oxide synthase by calmodulin kinases. J Biol Chem. 1999 Jul 16;274(29):20597–20602. [PubMed]
  • Nakane M, Mitchell J, Förstermann U, Murad F. Phosphorylation by calcium calmodulin-dependent protein kinase II and protein kinase C modulates the activity of nitric oxide synthase. Biochem Biophys Res Commun. 1991 Nov 14;180(3):1396–1402. [PubMed]
  • Jaffrey SR, Snyder SH. PIN: an associated protein inhibitor of neuronal nitric oxide synthase. Science. 1996 Nov 1;274(5288):774–777. [PubMed]
  • Fan JS, Zhang Q, Li M, Tochio H, Yamazaki T, Shimizu M, Zhang M. Protein inhibitor of neuronal nitric-oxide synthase, PIN, binds to a 17-amino acid residue fragment of the enzyme. J Biol Chem. 1998 Dec 11;273(50):33472–33481. [PubMed]
  • Rodríguez-Crespo I, Straub W, Gavilanes F, Ortiz de Montellano PR. Binding of dynein light chain (PIN) to neuronal nitric oxide synthase in the absence of inhibition. Arch Biochem Biophys. 1998 Nov 15;359(2):297–304. [PubMed]
  • Hemmens B, Woschitz S, Pitters E, Klösch B, Völker C, Schmidt K, Mayer B. The protein inhibitor of neuronal nitric oxide synthase (PIN): characterization of its action on pure nitric oxide synthases. FEBS Lett. 1998 Jul 3;430(3):397–400. [PubMed]
  • King SM, Barbarese E, Dillman JF, 3rd, Patel-King RS, Carson JH, Pfister KK. Brain cytoplasmic and flagellar outer arm dyneins share a highly conserved Mr 8,000 light chain. J Biol Chem. 1996 Aug 9;271(32):19358–19366. [PubMed]
  • García-Cardeña G, Fan R, Shah V, Sorrentino R, Cirino G, Papapetropoulos A, Sessa WC. Dynamic activation of endothelial nitric oxide synthase by Hsp90. Nature. 1998 Apr 23;392(6678):821–824. [PubMed]
  • Venema VJ, Marrero MB, Venema RC. Bradykinin-stimulated protein tyrosine phosphorylation promotes endothelial nitric oxide synthase translocation to the cytoskeleton. Biochem Biophys Res Commun. 1996 Sep 24;226(3):703–710. [PubMed]
  • Bender AT, Silverstein AM, Demady DR, Kanelakis KC, Noguchi S, Pratt WB, Osawa Y. Neuronal nitric-oxide synthase is regulated by the Hsp90-based chaperone system in vivo. J Biol Chem. 1999 Jan 15;274(3):1472–1478. [PubMed]
  • Ratovitski EA, Alam MR, Quick RA, McMillan A, Bao C, Kozlovsky C, Hand TA, Johnson RC, Mains RE, Eipper BA, et al. Kalirin inhibition of inducible nitric-oxide synthase. J Biol Chem. 1999 Jan 8;274(2):993–999. [PubMed]
  • Michel T. Targeting and translocation of endothelial nitric oxide synthase. Braz J Med Biol Res. 1999 Nov;32(11):1361–1366. [PubMed]
  • Liu J, García-Cardeña G, Sessa WC. Biosynthesis and palmitoylation of endothelial nitric oxide synthase: mutagenesis of palmitoylation sites, cysteines-15 and/or -26, argues against depalmitoylation-induced translocation of the enzyme. Biochemistry. 1995 Sep 26;34(38):12333–12340. [PubMed]
  • Liu J, Hughes TE, Sessa WC. The first 35 amino acids and fatty acylation sites determine the molecular targeting of endothelial nitric oxide synthase into the Golgi region of cells: a green fluorescent protein study. J Cell Biol. 1997 Jun 30;137(7):1525–1535. [PMC free article] [PubMed]
  • Shaul PW, Smart EJ, Robinson LJ, German Z, Yuhanna IS, Ying Y, Anderson RG, Michel T. Acylation targets emdothelial nitric-oxide synthase to plasmalemmal caveolae. J Biol Chem. 1996 Mar 15;271(11):6518–6522. [PubMed]
  • Prabhakar P, Thatte HS, Goetz RM, Cho MR, Golan DE, Michel T. Receptor-regulated translocation of endothelial nitric-oxide synthase. J Biol Chem. 1998 Oct 16;273(42):27383–27388. [PubMed]
  • García-Cardeña G, Oh P, Liu J, Schnitzer JE, Sessa WC. Targeting of nitric oxide synthase to endothelial cell caveolae via palmitoylation: implications for nitric oxide signaling. Proc Natl Acad Sci U S A. 1996 Jun 25;93(13):6448–6453. [PMC free article] [PubMed]
  • Feron O, Belhassen L, Kobzik L, Smith TW, Kelly RA, Michel T. Endothelial nitric oxide synthase targeting to caveolae. Specific interactions with caveolin isoforms in cardiac myocytes and endothelial cells. J Biol Chem. 1996 Sep 13;271(37):22810–22814. [PubMed]
  • Ju H, Zou R, Venema VJ, Venema RC. Direct interaction of endothelial nitric-oxide synthase and caveolin-1 inhibits synthase activity. J Biol Chem. 1997 Jul 25;272(30):18522–18525. [PubMed]
  • Michel JB, Feron O, Sacks D, Michel T. Reciprocal regulation of endothelial nitric-oxide synthase by Ca2+-calmodulin and caveolin. J Biol Chem. 1997 Jun 20;272(25):15583–15586. [PubMed]
  • García-Cardeña G, Martasek P, Masters BS, Skidd PM, Couet J, Li S, Lisanti MP, Sessa WC. Dissecting the interaction between nitric oxide synthase (NOS) and caveolin. Functional significance of the nos caveolin binding domain in vivo. J Biol Chem. 1997 Oct 10;272(41):25437–25440. [PubMed]
  • Ghosh S, Gachhui R, Crooks C, Wu C, Lisanti MP, Stuehr DJ. Interaction between caveolin-1 and the reductase domain of endothelial nitric-oxide synthase. Consequences for catalysis. J Biol Chem. 1998 Aug 28;273(35):22267–22271. [PubMed]
  • Venema VJ, Ju H, Zou R, Venema RC. Interaction of neuronal nitric-oxide synthase with caveolin-3 in skeletal muscle. Identification of a novel caveolin scaffolding/inhibitory domain. J Biol Chem. 1997 Nov 7;272(45):28187–28190. [PubMed]
  • Brenman JE, Chao DS, Gee SH, McGee AW, Craven SE, Santillano DR, Wu Z, Huang F, Xia H, Peters MF, et al. Interaction of nitric oxide synthase with the postsynaptic density protein PSD-95 and alpha1-syntrophin mediated by PDZ domains. Cell. 1996 Mar 8;84(5):757–767. [PubMed]
  • Christopherson KS, Hillier BJ, Lim WA, Bredt DS. PSD-95 assembles a ternary complex with the N-methyl-D-aspartic acid receptor and a bivalent neuronal NO synthase PDZ domain. J Biol Chem. 1999 Sep 24;274(39):27467–27473. [PubMed]
  • Schepens J, Cuppen E, Wieringa B, Hendriks W. The neuronal nitric oxide synthase PDZ motif binds to -G(D,E)XV* carboxyterminal sequences. FEBS Lett. 1997 Jun 2;409(1):53–56. [PubMed]
  • Stricker NL, Christopherson KS, Yi BA, Schatz PJ, Raab RW, Dawes G, Bassett DE, Jr, Bredt DS, Li M. PDZ domain of neuronal nitric oxide synthase recognizes novel C-terminal peptide sequences. Nat Biotechnol. 1997 Apr;15(4):336–342. [PubMed]
  • Wang Y, Newton DC, Robb GB, Kau CL, Miller TL, Cheung AH, Hall AV, VanDamme S, Wilcox JN, Marsden PA. RNA diversity has profound effects on the translation of neuronal nitric oxide synthase. Proc Natl Acad Sci U S A. 1999 Oct 12;96(21):12150–12155. [PMC free article] [PubMed]
  • Huang PL, Dawson TM, Bredt DS, Snyder SH, Fishman MC. Targeted disruption of the neuronal nitric oxide synthase gene. Cell. 1993 Dec 31;75(7):1273–1286. [PubMed]
  • Eliasson MJ, Blackshaw S, Schell MJ, Snyder SH. Neuronal nitric oxide synthase alternatively spliced forms: prominent functional localizations in the brain. Proc Natl Acad Sci U S A. 1997 Apr 1;94(7):3396–3401. [PMC free article] [PubMed]
  • Wang Y, Goligorsky MS, Lin M, Wilcox JN, Marsden PA. A novel, testis-specific mRNA transcript encoding an NH2-terminal truncated nitric-oxide synthase. J Biol Chem. 1997 Apr 25;272(17):11392–11401. [PubMed]
  • Silvagno F, Xia H, Bredt DS. Neuronal nitric-oxide synthase-mu, an alternatively spliced isoform expressed in differentiated skeletal muscle. J Biol Chem. 1996 May 10;271(19):11204–11208. [PubMed]
  • Magee T, Fuentes AM, Garban H, Rajavashisth T, Marquez D, Rodriguez JA, Rajfer J, Gonzalez-Cadavid NF. Cloning of a novel neuronal nitric oxide synthase expressed in penis and lower urinary tract. Biochem Biophys Res Commun. 1996 Sep 4;226(1):145–151. [PubMed]
  • Lainé R, de Montellano PR. Neuronal nitric oxide synthase isoforms alpha and mu are closely related calpain-sensitive proteins. Mol Pharmacol. 1998 Aug;54(2):305–312. [PubMed]
  • Ogura T, Yokoyama T, Fujisawa H, Kurashima Y, Esumi H. Structural diversity of neuronal nitric oxide synthase mRNA in the nervous system. Biochem Biophys Res Commun. 1993 Jun 30;193(3):1014–1022. [PubMed]
  • Fujisawa H, Ogura T, Kurashima Y, Yokoyama T, Yamashita J, Esumi H. Expression of two types of nitric oxide synthase mRNA in human neuroblastoma cell lines. J Neurochem. 1994 Jul;63(1):140–145. [PubMed]
  • Brenman JE, Xia H, Chao DS, Black SM, Bredt DS. Regulation of neuronal nitric oxide synthase through alternative transcripts. Dev Neurosci. 1997;19(3):224–231. [PubMed]
  • Kolesnikov YA, Pan YX, Babey AM, Jain S, Wilson R, Pasternak GW. Functionally differentiating two neuronal nitric oxide synthase isoforms through antisense mapping: evidence for opposing NO actions on morphine analgesia and tolerance. Proc Natl Acad Sci U S A. 1997 Jul 22;94(15):8220–8225. [PMC free article] [PubMed]
  • Eissa NT, Strauss AJ, Haggerty CM, Choo EK, Chu SC, Moss J. Alternative splicing of human inducible nitric-oxide synthase mRNA. tissue-specific regulation and induction by cytokines. J Biol Chem. 1996 Oct 25;271(43):27184–27187. [PubMed]
  • Eissa NT, Yuan JW, Haggerty CM, Choo EK, Palmer CD, Moss J. Cloning and characterization of human inducible nitric oxide synthase splice variants: a domain, encoded by exons 8 and 9, is critical for dimerization. Proc Natl Acad Sci U S A. 1998 Jun 23;95(13):7625–7630. [PMC free article] [PubMed]
  • Bates TE, Loesch A, Burnstock G, Clark JB. Immunocytochemical evidence for a mitochondrially located nitric oxide synthase in brain and liver. Biochem Biophys Res Commun. 1995 Aug 24;213(3):896–900. [PubMed]
  • Bates TE, Loesch A, Burnstock G, Clark JB. Mitochondrial nitric oxide synthase: a ubiquitous regulator of oxidative phosphorylation? Biochem Biophys Res Commun. 1996 Jan 5;218(1):40–44. [PubMed]
  • Kobzik L, Stringer B, Balligand JL, Reid MB, Stamler JS. Endothelial type nitric oxide synthase in skeletal muscle fibers: mitochondrial relationships. Biochem Biophys Res Commun. 1995 Jun 15;211(2):375–381. [PubMed]
  • Giulivi C. Functional implications of nitric oxide produced by mitochondria in mitochondrial metabolism. Biochem J. 1998 Jun 15;332(Pt 3):673–679. [PMC free article] [PubMed]
  • Giulivi C, Poderoso JJ, Boveris A. Production of nitric oxide by mitochondria. J Biol Chem. 1998 May 1;273(18):11038–11043. [PubMed]
  • Ghafourifar P, Richter C. Nitric oxide synthase activity in mitochondria. FEBS Lett. 1997 Dec 1;418(3):291–296. [PubMed]
  • Tatoyan A, Giulivi C. Purification and characterization of a nitric-oxide synthase from rat liver mitochondria. J Biol Chem. 1998 May 1;273(18):11044–11048. [PubMed]
  • Hiki K, Yui Y, Hattori R, Eizawa H, Kosuga K, Kawai C. Cytosolic and membrane-bound nitric oxide synthase. Jpn J Pharmacol. 1991 Jun;56(2):217–220. [PubMed]
  • Hecker M, Walsh DT, Vane JR. Characterization of a microsomal calcium-dependent nitric oxide synthase in activated J774.2 monocyte/macrophages. J Cardiovasc Pharmacol. 1992;20 (Suppl 12):S139–S141. [PubMed]
  • Amin AR, Di Cesare PE, Vyas P, Attur M, Tzeng E, Billiar TR, Stuchin SA, Abramson SB. The expression and regulation of nitric oxide synthase in human osteoarthritis-affected chondrocytes: evidence for up-regulated neuronal nitric oxide synthase. J Exp Med. 1995 Dec 1;182(6):2097–2102. [PMC free article] [PubMed]
  • Melchiorri C, Meliconi R, Frizziero L, Silvestri T, Pulsatelli L, Mazzetti I, Borzì RM, Uguccioni M, Facchini A. Enhanced and coordinated in vivo expression of inflammatory cytokines and nitric oxide synthase by chondrocytes from patients with osteoarthritis. Arthritis Rheum. 1998 Dec;41(12):2165–2174. [PubMed]
  • Shirato M, Sakamoto T, Uchida Y, Nomura A, Ishii Y, Iijima H, Goto Y, Hasegawa S. Molecular cloning and characterization of Ca2+-dependent inducible nitric oxide synthase from guinea-pig lung. Biochem J. 1998 Aug 1;333(Pt 3):795–799. [PMC free article] [PubMed]
  • Weiner CP, Lizasoain I, Baylis SA, Knowles RG, Charles IG, Moncada S. Induction of calcium-dependent nitric oxide synthases by sex hormones. Proc Natl Acad Sci U S A. 1994 May 24;91(11):5212–5216. [PMC free article] [PubMed]
  • Lundberg JO, Farkas-Szallasi T, Weitzberg E, Rinder J, Lidholm J, Anggåard A, Hökfelt T, Lundberg JM, Alving K. High nitric oxide production in human paranasal sinuses. Nat Med. 1995 Apr;1(4):370–373. [PubMed]
  • Handy RL, Moore PK. A comparison of the effects of L-NAME, 7-NI and L-NIL on carrageenan-induced hindpaw oedema and NOS activity. Br J Pharmacol. 1998 Mar;123(6):1119–1126. [PMC free article] [PubMed]
  • Haynes WG, Noon JP, Walker BR, Webb DJ. Inhibition of nitric oxide synthesis increases blood pressure in healthy humans. J Hypertens. 1993 Dec;11(12):1375–1380. [PubMed]
  • Hansen J, Jacobsen TN, Victor RG. Is nitric oxide involved in the tonic inhibition of central sympathetic outflow in humans? Hypertension. 1994 Oct;24(4):439–444. [PubMed]
  • Stamler JS, Loh E, Roddy MA, Currie KE, Creager MA. Nitric oxide regulates basal systemic and pulmonary vascular resistance in healthy humans. Circulation. 1994 May;89(5):2035–2040. [PubMed]
  • Rees DD, Palmer RM, Schulz R, Hodson HF, Moncada S. Characterization of three inhibitors of endothelial nitric oxide synthase in vitro and in vivo. Br J Pharmacol. 1990 Nov;101(3):746–752. [PMC free article] [PubMed]
  • Rees DD, Monkhouse JE, Cambridge D, Moncada S. Nitric oxide and the haemodynamic profile of endotoxin shock in the conscious mouse. Br J Pharmacol. 1998 Jun;124(3):540–546. [PMC free article] [PubMed]
  • Laszlo F, Whittle BJ, Moncada S. Time-dependent enhancement or inhibition of endotoxin-induced vascular injury in rat intestine by nitric oxide synthase inhibitors. Br J Pharmacol. 1994 Apr;111(4):1309–1315. [PMC free article] [PubMed]
  • Seiler N, Bolkenius FN, Knödgen B. The influence of catabolic reactions on polyamine excretion. Biochem J. 1985 Jan 1;225(1):219–226. [PMC free article] [PubMed]
  • Biegański T, Kusche J, Lorenz W, Hesterberg R, Stahlknecht CD, Feussner KD. Distribution and properties of human intestinal diamine oxidase and its relevance for the histamine catabolism. Biochim Biophys Acta. 1983 Mar 31;756(2):196–203. [PubMed]
  • Nilsson BO, Kockum I, Rosengren E. Inhibition of diamine oxidase promotes uptake of putrescine from rat small intestine. Inflamm Res. 1996 Oct;45(10):513–518. [PubMed]
  • Ou P, Wolff SP. Aminoguanidine: a drug proposed for prophylaxis in diabetes inhibits catalase and generates hydrogen peroxide in vitro. Biochem Pharmacol. 1993 Oct 5;46(7):1139–1144. [PubMed]
  • Giardino I, Fard AK, Hatchell DL, Brownlee M. Aminoguanidine inhibits reactive oxygen species formation, lipid peroxidation, and oxidant-induced apoptosis. Diabetes. 1998 Jul;47(7):1114–1120. [PubMed]
  • Yildiz G, Demiryürek AT, Sahin-Erdemli I, Kanzik I. Comparison of antioxidant activities of aminoguanidine, methylguanidine and guanidine by luminol-enhanced chemiluminescence. Br J Pharmacol. 1998 Jul;124(5):905–910. [PMC free article] [PubMed]
  • Bryk R, Wolff DJ. Pharmacological modulation of nitric oxide synthesis by mechanism-based inactivators and related inhibitors. Pharmacol Ther. 1999 Nov;84(2):157–178. [PubMed]
  • Misko TP, Moore WM, Kasten TP, Nickols GA, Corbett JA, Tilton RG, McDaniel ML, Williamson JR, Currie MG. Selective inhibition of the inducible nitric oxide synthase by aminoguanidine. Eur J Pharmacol. 1993 Mar 16;233(1):119–125. [PubMed]
  • Wolff DJ, Lubeskie A. Aminoguanidine is an isoform-selective, mechanism-based inactivator of nitric oxide synthase. Arch Biochem Biophys. 1995 Jan 10;316(1):290–301. [PubMed]
  • McCall TB, Feelisch M, Palmer RM, Moncada S. Identification of N-iminoethyl-L-ornithine as an irreversible inhibitor of nitric oxide synthase in phagocytic cells. Br J Pharmacol. 1991 Jan;102(1):234–238. [PMC free article] [PubMed]
  • Grant SK, Green BG, Stiffey-Wilusz J, Durette PL, Shah SK, Kozarich JW. Structural requirements for human inducible nitric oxide synthase substrates and substrate analogue inhibitors. Biochemistry. 1998 Mar 24;37(12):4174–4180. [PubMed]
  • Wolff DJ, Lubeskie A, Gauld DS, Neulander MJ. Inactivation of nitric oxide synthases and cellular nitric oxide formation by N6-iminoethyl-L-lysine and N5-iminoethyl-L-ornithine. Eur J Pharmacol. 1998 Jun 5;350(2-3):325–334. [PubMed]
  • Garvey EP, Oplinger JA, Furfine ES, Kiff RJ, Laszlo F, Whittle BJ, Knowles RG. 1400W is a slow, tight binding, and highly selective inhibitor of inducible nitric-oxide synthase in vitro and in vivo. J Biol Chem. 1997 Feb 21;272(8):4959–4963. [PubMed]
  • Bryk R, Wolff DJ. Mechanism of inducible nitric oxide synthase inactivation by aminoguanidine and L-N6-(1-iminoethyl)lysine. Biochemistry. 1998 Apr 7;37(14):4844–4852. [PubMed]
  • Werner ER, Pitters E, Schmidt K, Wachter H, Werner-Felmayer G, Mayer B. Identification of the 4-amino analogue of tetrahydrobiopterin as a dihydropteridine reductase inhibitor and a potent pteridine antagonist of rat neuronal nitric oxide synthase. Biochem J. 1996 Nov 15;320(Pt 1):193–196. [PMC free article] [PubMed]
  • Bömmel HM, Reif A, Fröhlich LG, Frey A, Hofmann H, Marecak DM, Groehn V, Kotsonis P, La M, Köster S, et al. Anti-pterins as tools to characterize the function of tetrahydrobiopterin in NO synthase. J Biol Chem. 1998 Dec 11;273(50):33142–33149. [PubMed]
  • Wolff DJ, Datto GA, Samatovicz RA, Tempsick RA. Calmodulin-dependent nitric-oxide synthase. Mechanism of inhibition by imidazole and phenylimidazoles. J Biol Chem. 1993 May 5;268(13):9425–9429. [PubMed]
  • Babu BR, Griffith OW. Design of isoform-selective inhibitors of nitric oxide synthase. Curr Opin Chem Biol. 1998 Aug;2(4):491–500. [PubMed]
  • Furfine ES, Harmon MF, Paith JE, Knowles RG, Salter M, Kiff RJ, Duffy C, Hazelwood R, Oplinger JA, Garvey EP. Potent and selective inhibition of human nitric oxide synthases. Selective inhibition of neuronal nitric oxide synthase by S-methyl-L-thiocitrulline and S-ethyl-L-thiocitrulline. J Biol Chem. 1994 Oct 28;269(43):26677–26683. [PubMed]
  • Narayanan K, Spack L, McMillan K, Kilbourn RG, Hayward MA, Masters BS, Griffith OW. S-alkyl-L-thiocitrullines. Potent stereoselective inhibitors of nitric oxide synthase with strong pressor activity in vivo. J Biol Chem. 1995 May 12;270(19):11103–11110. [PubMed]
  • Babu BR, Griffith OW. N5-(1-Imino-3-butenyl)-L-ornithine. A neuronal isoform selective mechanism-based inactivator of nitric oxide synthase. J Biol Chem. 1998 Apr 10;273(15):8882–8889. [PubMed]
  • Zhang ZG, Reif D, Macdonald J, Tang WX, Kamp DK, Gentile RJ, Shakespeare WC, Murray RJ, Chopp M. ARL 17477, a potent and selective neuronal NOS inhibitor decreases infarct volume after transient middle cerebral artery occlusion in rats. J Cereb Blood Flow Metab. 1996 Jul;16(4):599–604. [PubMed]
  • O'Neill MJ, Murray TK, McCarty DR, Hicks CA, Dell CP, Patrick KE, Ward MA, Osborne DJ, Wiernicki TR, Roman CR, et al. ARL 17477, a selective nitric oxide synthase inhibitor, with neuroprotective effects in animal models of global and focal cerebral ischaemia. Brain Res. 2000 Jul 21;871(2):234–244. [PubMed]
  • Iadecola C, Zhang F, Casey R, Nagayama M, Ross ME. Delayed reduction of ischemic brain injury and neurological deficits in mice lacking the inducible nitric oxide synthase gene. J Neurosci. 1997 Dec 1;17(23):9157–9164. [PubMed]
  • Nagayama M, Zhang F, Iadecola C. Delayed treatment with aminoguanidine decreases focal cerebral ischemic damage and enhances neurologic recovery in rats. J Cereb Blood Flow Metab. 1998 Oct;18(10):1107–1113. [PubMed]
  • Moore WM, Webber RK, Jerome GM, Tjoeng FS, Misko TP, Currie MG. L-N6-(1-iminoethyl)lysine: a selective inhibitor of inducible nitric oxide synthase. J Med Chem. 1994 Nov 11;37(23):3886–3888. [PubMed]
  • László F, Whittle BJ. Actions of isoform-selective and non-selective nitric oxide synthase inhibitors on endotoxin-induced vascular leakage in rat colon. Eur J Pharmacol. 1997 Sep 3;334(1):99–102. [PubMed]
  • Hagen TJ, Bergmanis AA, Kramer SW, Fok KF, Schmelzer AE, Pitzele BS, Swenton L, Jerome GM, Kornmeier CM, Moore WM, et al. 2-Iminopyrrolidines as potent and selective inhibitors of human inducible nitric oxide synthase. J Med Chem. 1998 Sep 10;41(19):3675–3683. [PubMed]
  • Hansen DW, Jr, Peterson KB, Trivedi M, Kramer SW, Webber RK, Tjoeng FS, Moore WM, Jerome GM, Kornmeier CM, Manning PT, et al. 2-Iminohomopiperidinium salts as selective inhibitors of inducible nitric oxide synthase (iNOS). J Med Chem. 1998 Apr 23;41(9):1361–1366. [PubMed]
  • Thomsen LL, Scott JM, Topley P, Knowles RG, Keerie AJ, Frend AJ. Selective inhibition of inducible nitric oxide synthase inhibits tumor growth in vivo: studies with 1400W, a novel inhibitor. Cancer Res. 1997 Aug 1;57(15):3300–3304. [PubMed]
  • Wray GM, Millar CG, Hinds CJ, Thiemermann C. Selective inhibition of the activity of inducible nitric oxide synthase prevents the circulatory failure, but not the organ injury/dysfunction, caused by endotoxin. Shock. 1998 May;9(5):329–335. [PubMed]
  • Parmentier S, Böhme GA, Lerouet D, Damour D, Stutzmann JM, Margaill I, Plotkine M. Selective inhibition of inducible nitric oxide synthase prevents ischaemic brain injury. Br J Pharmacol. 1999 May;127(2):546–552. [PMC free article] [PubMed]
  • Koarai A, Ichinose M, Sugiura H, Yamagata S, Hattori T, Shirato K. Allergic airway hyperresponsiveness and eosinophil infiltration is reduced by a selective iNOS inhibitor, 1400W, in mice. Pulm Pharmacol Ther. 2000;13(6):267–275. [PubMed]
  • Young RJ, Beams RM, Carter K, Clark HA, Coe DM, Chambers CL, Davies PI, Dawson J, Drysdale MJ, Franzman KW, et al. Inhibition of inducible nitric oxide synthase by acetamidine derivatives of hetero-substituted lysine and homolysine. Bioorg Med Chem Lett. 2000 Mar 20;10(6):597–600. [PubMed]
  • Dawson J, Knowles RG. A microtiter-plate assay of human NOS isoforms. Methods Mol Biol. 1998;100:237–242. [PubMed]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society


Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...


  • Cited in Books
    Cited in Books
    PubMed Central articles cited in books
  • Compound
    PubChem Compound links
  • MedGen
    Related information in MedGen
  • PubMed
    PubMed citations for these articles
  • Substance
    PubChem Substance links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...