Logo of biochemjBJ Latest papers and much more!
Biochem J. 2001 Jun 1; 356(Pt 2): 297–310.
PMCID: PMC1221839

Functional architecture in the cell nucleus.


The major functions of the cell nucleus, including transcription, pre-mRNA splicing and ribosome assembly, have been studied extensively by biochemical, genetic and molecular methods. An overwhelming amount of information about their molecular mechanisms is available. In stark contrast, very little is known about how these processes are integrated into the structural framework of the cell nucleus and how they are spatially and temporally co-ordinated within the three-dimensional confines of the nucleus. It is also largely unknown how nuclear architecture affects gene expression. In order to understand how genomes are organized, and how they function, the basic principles that govern nuclear architecture and function must be uncovered. Recent work combining molecular, biochemical and cell biological methods is beginning to shed light on how the nucleus functions and how genes are expressed in vivo. It has become clear that the nucleus contains distinct compartments and that many nuclear components are highly dynamic. Here we describe the major structural compartments of the cell nucleus and discuss their established and proposed functions. We summarize recent observations regarding the dynamic properties of chromatin, mRNA and nuclear proteins, and we consider the implications these findings have for the organization of nuclear processes and gene expression. Finally, we speculate that self-organization might play a substantial role in establishing and maintaining nuclear organization.

Full Text

The Full Text of this article is available as a PDF (316K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Spector DL. Macromolecular domains within the cell nucleus. Annu Rev Cell Biol. 1993;9:265–315. [PubMed]
  • Lamond AI, Earnshaw WC. Structure and function in the nucleus. Science. 1998 Apr 24;280(5363):547–553. [PubMed]
  • Belmont AS, Dietzel S, Nye AC, Strukov YG, Tumbar T. Large-scale chromatin structure and function. Curr Opin Cell Biol. 1999 Jun;11(3):307–311. [PubMed]
  • Politz JC, Pederson T. Review: movement of mRNA from transcription site to nuclear pores. J Struct Biol. 2000 Apr;129(2-3):252–257. [PubMed]
  • Misteli T. Protein dynamics: implications for nuclear architecture and gene expression. Science. 2001 Feb 2;291(5505):843–847. [PubMed]
  • Matera AG. Nuclear bodies: multifaceted subdomains of the interchromatin space. Trends Cell Biol. 1999 Aug;9(8):302–309. [PubMed]
  • Busch H, Narayan KS, Hamilton J. Isolation of nucleoli in a medium containing spermine and magnesium acetate. Exp Cell Res. 1967 Aug;47(1):329–336. [PubMed]
  • Mintz PJ, Patterson SD, Neuwald AF, Spahr CS, Spector DL. Purification and biochemical characterization of interchromatin granule clusters. EMBO J. 1999 Aug 2;18(15):4308–4320. [PMC free article] [PubMed]
  • Pederson T. Half a century of "the nuclear matrix". Mol Biol Cell. 2000 Mar;11(3):799–805. [PMC free article] [PubMed]
  • Nickerson J. Experimental observations of a nuclear matrix. J Cell Sci. 2001 Feb;114(Pt 3):463–474. [PubMed]
  • Scheer U, Hock R. Structure and function of the nucleolus. Curr Opin Cell Biol. 1999 Jun;11(3):385–390. [PubMed]
  • Carmo-Fonseca M, Mendes-Soares L, Campos I. To be or not to be in the nucleolus. Nat Cell Biol. 2000 Jun;2(6):E107–E112. [PubMed]
  • Olson MO, Dundr M, Szebeni A. The nucleolus: an old factory with unexpected capabilities. Trends Cell Biol. 2000 May;10(5):189–196. [PubMed]
  • Misteli T. Cell biology of transcription and pre-mRNA splicing: nuclear architecture meets nuclear function. J Cell Sci. 2000 Jun;113(Pt 11):1841–1849. [PubMed]
  • Gall JG. Cajal bodies: the first 100 years. Annu Rev Cell Dev Biol. 2000;16:273–300. [PubMed]
  • Zhong S, Salomoni P, Pandolfi PP. The transcriptional role of PML and the nuclear body. Nat Cell Biol. 2000 May;2(5):E85–E90. [PubMed]
  • Jackson DA, Hassan AB, Errington RJ, Cook PR. Visualization of focal sites of transcription within human nuclei. EMBO J. 1993 Mar;12(3):1059–1065. [PMC free article] [PubMed]
  • Wansink DG, Schul W, van der Kraan I, van Steensel B, van Driel R, de Jong L. Fluorescent labeling of nascent RNA reveals transcription by RNA polymerase II in domains scattered throughout the nucleus. J Cell Biol. 1993 Jul;122(2):283–293. [PMC free article] [PubMed]
  • Cook PR. The organization of replication and transcription. Science. 1999 Jun 11;284(5421):1790–1795. [PubMed]
  • Grande MA, van der Kraan I, de Jong L, van Driel R. Nuclear distribution of transcription factors in relation to sites of transcription and RNA polymerase II. J Cell Sci. 1997 Aug;110(Pt 15):1781–1791. [PubMed]
  • Xing Y, Johnson CV, Dobner PR, Lawrence JB. Higher level organization of individual gene transcription and RNA splicing. Science. 1993 Feb 26;259(5099):1326–1330. [PubMed]
  • Dirks RW, Daniël KC, Raap AK. RNAs radiate from gene to cytoplasm as revealed by fluorescence in situ hybridization. J Cell Sci. 1995 Jul;108(Pt 7):2565–2572. [PubMed]
  • Beyer AL, Osheim YN. Splice site selection, rate of splicing, and alternative splicing on nascent transcripts. Genes Dev. 1988 Jun;2(6):754–765. [PubMed]
  • Baurén G, Wieslander L. Splicing of Balbiani ring 1 gene pre-mRNA occurs simultaneously with transcription. Cell. 1994 Jan 14;76(1):183–192. [PubMed]
  • Xing Y, Johnson CV, Moen PT, Jr, McNeil JA, Lawrence J. Nonrandom gene organization: structural arrangements of specific pre-mRNA transcription and splicing with SC-35 domains. J Cell Biol. 1995 Dec;131(6 Pt 2):1635–1647. [PMC free article] [PubMed]
  • Fakan S. Perichromatin fibrils are in situ forms of nascent transcripts. Trends Cell Biol. 1994 Mar;4(3):86–90. [PubMed]
  • Monneron A, Bernhard W. Fine structural organization of the interphase nucleus in some mammalian cells. J Ultrastruct Res. 1969 May;27(3):266–288. [PubMed]
  • Jiménez-García LF, Spector DL. In vivo evidence that transcription and splicing are coordinated by a recruiting mechanism. Cell. 1993 Apr 9;73(1):47–59. [PubMed]
  • Huang S, Spector DL. Intron-dependent recruitment of pre-mRNA splicing factors to sites of transcription. J Cell Biol. 1996 May;133(4):719–732. [PMC free article] [PubMed]
  • Misteli T, Cáceres JF, Spector DL. The dynamics of a pre-mRNA splicing factor in living cells. Nature. 1997 May 29;387(6632):523–527. [PubMed]
  • Melcák I, Cermanová S, Jirsová K, Koberna K, Malínský J, Raska I. Nuclear pre-mRNA compartmentalization: trafficking of released transcripts to splicing factor reservoirs. Mol Biol Cell. 2000 Feb;11(2):497–510. [PMC free article] [PubMed]
  • Du L, Warren SL. A functional interaction between the carboxy-terminal domain of RNA polymerase II and pre-mRNA splicing. J Cell Biol. 1997 Jan 13;136(1):5–18. [PMC free article] [PubMed]
  • Kim E, Du L, Bregman DB, Warren SL. Splicing factors associate with hyperphosphorylated RNA polymerase II in the absence of pre-mRNA. J Cell Biol. 1997 Jan 13;136(1):19–28. [PMC free article] [PubMed]
  • Misteli T, Spector DL. RNA polymerase II targets pre-mRNA splicing factors to transcription sites in vivo. Mol Cell. 1999 Jun;3(6):697–705. [PubMed]
  • Bentley D. Coupling RNA polymerase II transcription with pre-mRNA processing. Curr Opin Cell Biol. 1999 Jun;11(3):347–351. [PubMed]
  • Hirose Y, Manley JL. RNA polymerase II and the integration of nuclear events. Genes Dev. 2000 Jun 15;14(12):1415–1429. [PubMed]
  • Jackson DA, Iborra FJ, Manders EM, Cook PR. Numbers and organization of RNA polymerases, nascent transcripts, and transcription units in HeLa nuclei. Mol Biol Cell. 1998 Jun;9(6):1523–1536. [PMC free article] [PubMed]
  • Jackson DA, Pombo A, Iborra F. The balance sheet for transcription: an analysis of nuclear RNA metabolism in mammalian cells. FASEB J. 2000 Feb;14(2):242–254. [PubMed]
  • Dundr M, Raska I. Nonisotopic ultrastructural mapping of transcription sites within the nucleolus. Exp Cell Res. 1993 Sep;208(1):275–281. [PubMed]
  • Hozák P, Cook PR, Schöfer C, Mosgöller W, Wachtler F. Site of transcription of ribosomal RNA and intranucleolar structure in HeLa cells. J Cell Sci. 1994 Feb;107(Pt 2):639–648. [PubMed]
  • Puvion-Dutilleul F, Puvion E, Bachellerie JP. Early stages of pre-rRNA formation within the nucleolar ultrastructure of mouse cells studied by in situ hybridization with a 5'ETS leader probe. Chromosoma. 1997 Jun;105(7-8):496–505. [PubMed]
  • Cmarko D, Verschure PJ, Martin TE, Dahmus ME, Krause S, Fu XD, van Driel R, Fakan S. Ultrastructural analysis of transcription and splicing in the cell nucleus after bromo-UTP microinjection. Mol Biol Cell. 1999 Jan;10(1):211–223. [PMC free article] [PubMed]
  • Puvion-Dutilleul F, Mazan S, Nicoloso M, Pichard E, Bachellerie JP, Puvion E. Alterations of nucleolar ultrastructure and ribosome biogenesis by actinomycin D. Implications for U3 snRNP function. Eur J Cell Biol. 1992 Jun;58(1):149–162. [PubMed]
  • Maden BE, Hughes JM. Eukaryotic ribosomal RNA: the recent excitement in the nucleotide modification problem. Chromosoma. 1997 Jun;105(7-8):391–400. [PubMed]
  • Thiry M, Cheutin T, O'Donohue MF, Kaplan H, Ploton D. Dynamics and three-dimensional localization of ribosomal RNA within the nucleolus. RNA. 2000 Dec;6(12):1750–1761. [PMC free article] [PubMed]
  • Tollervey D, Kiss T. Function and synthesis of small nucleolar RNAs. Curr Opin Cell Biol. 1997 Jun;9(3):337–342. [PubMed]
  • Balakin AG, Smith L, Fournier MJ. The RNA world of the nucleolus: two major families of small RNAs defined by different box elements with related functions. Cell. 1996 Sep 6;86(5):823–834. [PubMed]
  • Ganot P, Jády BE, Bortolin ML, Darzacq X, Kiss T. Nucleolar factors direct the 2'-O-ribose methylation and pseudouridylation of U6 spliceosomal RNA. Mol Cell Biol. 1999 Oct;19(10):6906–6917. [PMC free article] [PubMed]
  • Meier UT, Blobel G. NAP57, a mammalian nucleolar protein with a putative homolog in yeast and bacteria. J Cell Biol. 1994 Dec;127(6 Pt 1):1505–1514. [PMC free article] [PubMed]
  • Lafontaine DL, Bousquet-Antonelli C, Henry Y, Caizergues-Ferrer M, Tollervey D. The box H + ACA snoRNAs carry Cbf5p, the putative rRNA pseudouridine synthase. Genes Dev. 1998 Feb 15;12(4):527–537. [PMC free article] [PubMed]
  • Tollervey D, Lehtonen H, Jansen R, Kern H, Hurt EC. Temperature-sensitive mutations demonstrate roles for yeast fibrillarin in pre-rRNA processing, pre-rRNA methylation, and ribosome assembly. Cell. 1993 Feb 12;72(3):443–457. [PubMed]
  • Wang H, Boisvert D, Kim KK, Kim R, Kim SH. Crystal structure of a fibrillarin homologue from Methanococcus jannaschii, a hyperthermophile, at 1.6 A resolution. EMBO J. 2000 Feb 1;19(3):317–323. [PMC free article] [PubMed]
  • Aitchison JD, Rout MP. The road to ribosomes. Filling potholes in the export pathway. J Cell Biol. 2000 Nov 27;151(5):F23–F26. [PMC free article] [PubMed]
  • Kressler D, Linder P, de La Cruz J. Protein trans-acting factors involved in ribosome biogenesis in Saccharomyces cerevisiae. Mol Cell Biol. 1999 Dec;19(12):7897–7912. [PMC free article] [PubMed]
  • Bataillé N, Helser T, Fried HM. Cytoplasmic transport of ribosomal subunits microinjected into the Xenopus laevis oocyte nucleus: a generalized, facilitated process. J Cell Biol. 1990 Oct;111(4):1571–1582. [PMC free article] [PubMed]
  • Hurt E, Hannus S, Schmelzl B, Lau D, Tollervey D, Simos G. A novel in vivo assay reveals inhibition of ribosomal nuclear export in ran-cycle and nucleoporin mutants. J Cell Biol. 1999 Feb 8;144(3):389–401. [PMC free article] [PubMed]
  • Moy TI, Silver PA. Nuclear export of the small ribosomal subunit requires the ran-GTPase cycle and certain nucleoporins. Genes Dev. 1999 Aug 15;13(16):2118–2133. [PMC free article] [PubMed]
  • Ho JH, Kallstrom G, Johnson AW. Nmd3p is a Crm1p-dependent adapter protein for nuclear export of the large ribosomal subunit. J Cell Biol. 2000 Nov 27;151(5):1057–1066. [PMC free article] [PubMed]
  • Heix J, Vente A, Voit R, Budde A, Michaelidis TM, Grummt I. Mitotic silencing of human rRNA synthesis: inactivation of the promoter selectivity factor SL1 by cdc2/cyclin B-mediated phosphorylation. EMBO J. 1998 Dec 15;17(24):7373–7381. [PMC free article] [PubMed]
  • Kuhn A, Vente A, Dorée M, Grummt I. Mitotic phosphorylation of the TBP-containing factor SL1 represses ribosomal gene transcription. J Mol Biol. 1998 Nov 20;284(1):1–5. [PubMed]
  • Sirri V, Roussel P, Hernandez-Verdun D. In vivo release of mitotic silencing of ribosomal gene transcription does not give rise to precursor ribosomal RNA processing. J Cell Biol. 2000 Jan 24;148(2):259–270. [PMC free article] [PubMed]
  • Dundr M, Misteli T, Olson MO. The dynamics of postmitotic reassembly of the nucleolus. J Cell Biol. 2000 Aug 7;150(3):433–446. [PMC free article] [PubMed]
  • Hernandez-Verdun D, Gautier T. The chromosome periphery during mitosis. Bioessays. 1994 Mar;16(3):179–185. [PubMed]
  • Dundr M, Olson MO. Partially processed pre-rRNA is preserved in association with processing components in nucleolus-derived foci during mitosis. Mol Biol Cell. 1998 Sep;9(9):2407–2422. [PMC free article] [PubMed]
  • Dousset T, Wang C, Verheggen C, Chen D, Hernandez-Verdun D, Huang S. Initiation of nucleolar assembly is independent of RNA polymerase I transcription. Mol Biol Cell. 2000 Aug;11(8):2705–2717. [PMC free article] [PubMed]
  • Verheggen C, Almouzni G, Hernandez-Verdun D. The ribosomal RNA processing machinery is recruited to the nucleolar domain before RNA polymerase I during Xenopus laevis development. J Cell Biol. 2000 Apr 17;149(2):293–306. [PMC free article] [PubMed]
  • Pederson T, Politz JC. The nucleolus and the four ribonucleoproteins of translation. J Cell Biol. 2000 Mar 20;148(6):1091–1095. [PMC free article] [PubMed]
  • Politz JC, Yarovoi S, Kilroy SM, Gowda K, Zwieb C, Pederson T. Signal recognition particle components in the nucleolus. Proc Natl Acad Sci U S A. 2000 Jan 4;97(1):55–60. [PMC free article] [PubMed]
  • Lange TS, Gerbi SA. Transient nucleolar localization Of U6 small nuclear RNA in Xenopus Laevis oocytes. Mol Biol Cell. 2000 Jul;11(7):2419–2428. [PMC free article] [PubMed]
  • Jády BE, Kiss T. A small nucleolar guide RNA functions both in 2'-O-ribose methylation and pseudouridylation of the U5 spliceosomal RNA. EMBO J. 2001 Feb 1;20(3):541–551. [PMC free article] [PubMed]
  • Wolin SL, Matera AG. The trials and travels of tRNA. Genes Dev. 1999 Jan 1;13(1):1–10. [PubMed]
  • Jarrous N, Wolenski JS, Wesolowski D, Lee C, Altman S. Localization in the nucleolus and coiled bodies of protein subunits of the ribonucleoprotein ribonuclease P. J Cell Biol. 1999 Aug 9;146(3):559–572. [PMC free article] [PubMed]
  • Intine RV, Sakulich AL, Koduru SB, Huang Y, Pierstorff E, Goodier JL, Phan L, Maraia RJ. Control of transfer RNA maturation by phosphorylation of the human La antigen on serine 366. Mol Cell. 2000 Aug;6(2):339–348. [PubMed]
  • Briand JF, Navarro F, Gadal O, Thuriaux P. Cross talk between tRNA and rRNA synthesis in Saccharomyces cerevisiae. Mol Cell Biol. 2001 Jan;21(1):189–195. [PMC free article] [PubMed]
  • Zolotukhin AS, Felber BK. Nucleoporins nup98 and nup214 participate in nuclear export of human immunodeficiency virus type 1 Rev. J Virol. 1999 Jan;73(1):120–127. [PMC free article] [PubMed]
  • Michienzi A, Conti L, Varano B, Prislei S, Gessani S, Bozzoni I. Inhibition of human immunodeficiency virus type 1 replication by nuclear chimeric anti-HIV ribozymes in a human T lymphoblastoid cell line. Hum Gene Ther. 1998 Mar 20;9(5):621–628. [PubMed]
  • Prives C, Hall PA. The p53 pathway. J Pathol. 1999 Jan;187(1):112–126. [PubMed]
  • Weber JD, Taylor LJ, Roussel MF, Sherr CJ, Bar-Sagi D. Nucleolar Arf sequesters Mdm2 and activates p53. Nat Cell Biol. 1999 May;1(1):20–26. [PubMed]
  • Tao W, Levine AJ. P19(ARF) stabilizes p53 by blocking nucleo-cytoplasmic shuttling of Mdm2. Proc Natl Acad Sci U S A. 1999 Jun 8;96(12):6937–6941. [PMC free article] [PubMed]
  • Zhang Y, Xiong Y. Mutations in human ARF exon 2 disrupt its nucleolar localization and impair its ability to block nuclear export of MDM2 and p53. Mol Cell. 1999 May;3(5):579–591. [PubMed]
  • Gall JG, Bellini M, Wu Z, Murphy C. Assembly of the nuclear transcription and processing machinery: Cajal bodies (coiled bodies) and transcriptosomes. Mol Biol Cell. 1999 Dec;10(12):4385–4402. [PMC free article] [PubMed]
  • Malatesta M, Zancanaro C, Martin TE, Chan EK, Amalric F, Lührmann R, Vogel P, Fakan S. Cytochemical and immunocytochemical characterization of nuclear bodies during hibernation. Eur J Cell Biol. 1994 Oct;65(1):82–93. [PubMed]
  • Ochs RL, Stein TW, Jr, Tan EM. Coiled bodies in the nucleolus of breast cancer cells. J Cell Sci. 1994 Feb;107(Pt 2):385–399. [PubMed]
  • Boudonck K, Dolan L, Shaw PJ. The movement of coiled bodies visualized in living plant cells by the green fluorescent protein. Mol Biol Cell. 1999 Jul;10(7):2297–2307. [PMC free article] [PubMed]
  • Platani M, Goldberg I, Swedlow JR, Lamond AI. In vivo analysis of Cajal body movement, separation, and joining in live human cells. J Cell Biol. 2000 Dec 25;151(7):1561–1574. [PMC free article] [PubMed]
  • Raska I, Andrade LE, Ochs RL, Chan EK, Chang CM, Roos G, Tan EM. Immunological and ultrastructural studies of the nuclear coiled body with autoimmune antibodies. Exp Cell Res. 1991 Jul;195(1):27–37. [PubMed]
  • Bohmann K, Ferreira JA, Lamond AI. Mutational analysis of p80 coilin indicates a functional interaction between coiled bodies and the nucleolus. J Cell Biol. 1995 Nov;131(4):817–831. [PMC free article] [PubMed]
  • Isaac C, Yang Y, Meier UT. Nopp140 functions as a molecular link between the nucleolus and the coiled bodies. J Cell Biol. 1998 Jul 27;142(2):319–329. [PMC free article] [PubMed]
  • Yang Y, Isaac C, Wang C, Dragon F, Pogacic V, Meier UT. Conserved composition of mammalian box H/ACA and box C/D small nucleolar ribonucleoprotein particles and their interaction with the common factor Nopp140. Mol Biol Cell. 2000 Feb;11(2):567–577. [PMC free article] [PubMed]
  • Lyon CE, Bohmann K, Sleeman J, Lamond AI. Inhibition of protein dephosphorylation results in the accumulation of splicing snRNPs and coiled bodies within the nucleolus. Exp Cell Res. 1997 Jan 10;230(1):84–93. [PubMed]
  • Sleeman JE, Lamond AI. Newly assembled snRNPs associate with coiled bodies before speckles, suggesting a nuclear snRNP maturation pathway. Curr Biol. 1999 Oct 7;9(19):1065–1074. [PubMed]
  • Carvalho T, Almeida F, Calapez A, Lafarga M, Berciano MT, Carmo-Fonseca M. The spinal muscular atrophy disease gene product, SMN: A link between snRNP biogenesis and the Cajal (coiled) body. J Cell Biol. 1999 Nov 15;147(4):715–728. [PMC free article] [PubMed]
  • Bauer DW, Gall JG. Coiled bodies without coilin. Mol Biol Cell. 1997 Jan;8(1):73–82. [PMC free article] [PubMed]
  • Narayanan A, Speckmann W, Terns R, Terns MP. Role of the box C/D motif in localization of small nucleolar RNAs to coiled bodies and nucleoli. Mol Biol Cell. 1999 Jul;10(7):2131–2147. [PMC free article] [PubMed]
  • Callan HG, Gall JG. Association of RNA with the B and C snurposomes of Xenopus oocyte nuclei. Chromosoma. 1991 Nov;101(2):69–82. [PubMed]
  • Gao L, Frey MR, Matera AG. Human genes encoding U3 snRNA associate with coiled bodies in interphase cells and are clustered on chromosome 17p11.2 in a complex inverted repeat structure. Nucleic Acids Res. 1997 Dec 1;25(23):4740–4747. [PMC free article] [PubMed]
  • Jacobs EY, Frey MR, Wu W, Ingledue TC, Gebuhr TC, Gao L, Marzluff WF, Matera AG. Coiled bodies preferentially associate with U4, U11, and U12 small nuclear RNA genes in interphase HeLa cells but not with U6 and U7 genes. Mol Biol Cell. 1999 May;10(5):1653–1663. [PMC free article] [PubMed]
  • Frey MR, Bailey AD, Weiner AM, Matera AG. Association of snRNA genes with coiled bodies is mediated by nascent snRNA transcripts. Curr Biol. 1999 Feb 11;9(3):126–135. [PubMed]
  • Schul W, van Driel R, de Jong L. Coiled bodies and U2 snRNA genes adjacent to coiled bodies are enriched in factors required for snRNA transcription. Mol Biol Cell. 1998 May;9(5):1025–1036. [PMC free article] [PubMed]
  • Schul W, Groenhout B, Koberna K, Takagaki Y, Jenny A, Manders EM, Raska I, van Driel R, de Jong L. The RNA 3' cleavage factors CstF 64 kDa and CPSF 100 kDa are concentrated in nuclear domains closely associated with coiled bodies and newly synthesized RNA. EMBO J. 1996 Jun 3;15(11):2883–2892. [PMC free article] [PubMed]
  • Schul W, van Der Kraan I, Matera AG, van Driel R, de Jong L. Nuclear domains enriched in RNA 3'-processing factors associate with coiled bodies and histone genes in a cell cycle-dependent manner. Mol Biol Cell. 1999 Nov;10(11):3815–3824. [PMC free article] [PubMed]
  • Frey MR, Matera AG. Coiled bodies contain U7 small nuclear RNA and associate with specific DNA sequences in interphase human cells. Proc Natl Acad Sci U S A. 1995 Jun 20;92(13):5915–5919. [PMC free article] [PubMed]
  • Shopland LS, Byron M, Stein JL, Lian JB, Stein GS, Lawrence JB. Replication-dependent histone gene expression is related to Cajal body (CB) association but does not require sustained CB contact. Mol Biol Cell. 2001 Mar;12(3):565–576. [PMC free article] [PubMed]
  • Liu J, Hebert MD, Ye Y, Templeton DJ, Kung H, Matera AG. Cell cycle-dependent localization of the CDK2-cyclin E complex in Cajal (coiled) bodies. J Cell Sci. 2000 May;113(Pt 9):1543–1552. [PubMed]
  • Morgan GT, Doyle O, Murphy C, Gall JG. RNA polymerase II in Cajal bodies of amphibian oocytes. J Struct Biol. 2000 Apr;129(2-3):258–268. [PubMed]
  • Pellizzoni L, Charroux B, Rappsilber J, Mann M, Dreyfuss G. A functional interaction between the survival motor neuron complex and RNA polymerase II. J Cell Biol. 2001 Jan 8;152(1):75–85. [PMC free article] [PubMed]
  • Koken MH, Linares-Cruz G, Quignon F, Viron A, Chelbi-Alix MK, Sobczak-Thépot J, Juhlin L, Degos L, Calvo F, de Thé H. The PML growth-suppressor has an altered expression in human oncogenesis. Oncogene. 1995 Apr 6;10(7):1315–1324. [PubMed]
  • Terris B, Baldin V, Dubois S, Degott C, Flejou JF, Hénin D, Dejean A. PML nuclear bodies are general targets for inflammation and cell proliferation. Cancer Res. 1995 Apr 1;55(7):1590–1597. [PubMed]
  • Sternsdorf T, Grötzinger T, Jensen K, Will H. Nuclear dots: actors on many stages. Immunobiology. 1997 Dec;198(1-3):307–331. [PubMed]
  • Ruggero D, Wang ZG, Pandolfi PP. The puzzling multiple lives of PML and its role in the genesis of cancer. Bioessays. 2000 Sep;22(9):827–835. [PubMed]
  • Maul GG. Nuclear domain 10, the site of DNA virus transcription and replication. Bioessays. 1998 Aug;20(8):660–667. [PubMed]
  • Quignon F, De Bels F, Koken M, Feunteun J, Ameisen JC, de Thé H. PML induces a novel caspase-independent death process. Nat Genet. 1998 Nov;20(3):259–265. [PubMed]
  • de Thé H, Chomienne C, Lanotte M, Degos L, Dejean A. The t(15;17) translocation of acute promyelocytic leukaemia fuses the retinoic acid receptor alpha gene to a novel transcribed locus. Nature. 1990 Oct 11;347(6293):558–561. [PubMed]
  • Dyck JA, Maul GG, Miller WH, Jr, Chen JD, Kakizuka A, Evans RM. A novel macromolecular structure is a target of the promyelocyte-retinoic acid receptor oncoprotein. Cell. 1994 Jan 28;76(2):333–343. [PubMed]
  • Koken MH, Puvion-Dutilleul F, Guillemin MC, Viron A, Linares-Cruz G, Stuurman N, de Jong L, Szostecki C, Calvo F, Chomienne C, et al. The t(15;17) translocation alters a nuclear body in a retinoic acid-reversible fashion. EMBO J. 1994 Mar 1;13(5):1073–1083. [PMC free article] [PubMed]
  • Tsukamoto T, Hashiguchi N, Janicki SM, Tumbar T, Belmont AS, Spector DL. Visualization of gene activity in living cells. Nat Cell Biol. 2000 Dec;2(12):871–878. [PubMed]
  • Boisvert FM, Kruhlak MJ, Box AK, Hendzel MJ, Bazett-Jones DP. The transcription coactivator CBP is a dynamic component of the promyelocytic leukemia nuclear body. J Cell Biol. 2001 Mar 5;152(5):1099–1106. [PMC free article] [PubMed]
  • Pombo A, Cuello P, Schul W, Yoon JB, Roeder RG, Cook PR, Murphy S. Regional and temporal specialization in the nucleus: a transcriptionally-active nuclear domain rich in PTF, Oct1 and PIKA antigens associates with specific chromosomes early in the cell cycle. EMBO J. 1998 Mar 16;17(6):1768–1778. [PMC free article] [PubMed]
  • Huang S, Deerinck TJ, Ellisman MH, Spector DL. The dynamic organization of the perinucleolar compartment in the cell nucleus. J Cell Biol. 1997 Jun 2;137(5):965–974. [PMC free article] [PubMed]
  • Matera AG, Frey MR, Margelot K, Wolin SL. A perinucleolar compartment contains several RNA polymerase III transcripts as well as the polypyrimidine tract-binding protein, hnRNP I. J Cell Biol. 1995 Jun;129(5):1181–1193. [PMC free article] [PubMed]
  • Lee B, Matera AG, Ward DC, Craft J. Association of RNase mitochondrial RNA processing enzyme with ribonuclease P in higher ordered structures in the nucleolus: a possible coordinate role in ribosome biogenesis. Proc Natl Acad Sci U S A. 1996 Oct 15;93(21):11471–11476. [PMC free article] [PubMed]
  • Huang S, Deerinck TJ, Ellisman MH, Spector DL. The perinucleolar compartment and transcription. J Cell Biol. 1998 Oct 5;143(1):35–47. [PMC free article] [PubMed]
  • Cremer T, Kreth G, Koester H, Fink RH, Heintzmann R, Cremer M, Solovei I, Zink D, Cremer C. Chromosome territories, interchromatin domain compartment, and nuclear matrix: an integrated view of the functional nuclear architecture. Crit Rev Eukaryot Gene Expr. 2000;10(2):179–212. [PubMed]
  • Cremer T, Cremer C, Baumann H, Luedtke EK, Sperling K, Teuber V, Zorn C. Rabl's model of the interphase chromosome arrangement tested in Chinese hamster cells by premature chromosome condensation and laser-UV-microbeam experiments. Hum Genet. 1982;60(1):46–56. [PubMed]
  • Cremer T, Lichter P, Borden J, Ward DC, Manuelidis L. Detection of chromosome aberrations in metaphase and interphase tumor cells by in situ hybridization using chromosome-specific library probes. Hum Genet. 1988 Nov;80(3):235–246. [PubMed]
  • Kurz A, Lampel S, Nickolenko JE, Bradl J, Benner A, Zirbel RM, Cremer T, Lichter P. Active and inactive genes localize preferentially in the periphery of chromosome territories. J Cell Biol. 1996 Dec;135(5):1195–1205. [PMC free article] [PubMed]
  • Verschure PJ, van Der Kraan I, Manders EM, van Driel R. Spatial relationship between transcription sites and chromosome territories. J Cell Biol. 1999 Oct 4;147(1):13–24. [PMC free article] [PubMed]
  • Seksek O, Biwersi J, Verkman AS. Translational diffusion of macromolecule-sized solutes in cytoplasm and nucleus. J Cell Biol. 1997 Jul 14;138(1):131–142. [PMC free article] [PubMed]
  • Bridger JM, Herrmann H, Münkel C, Lichter P. Identification of an interchromosomal compartment by polymerization of nuclear-targeted vimentin. J Cell Sci. 1998 May;111(Pt 9):1241–1253. [PubMed]
  • Wasser M, Chia W. The EAST protein of drosophila controls an expandable nuclear endoskeleton. Nat Cell Biol. 2000 May;2(5):268–275. [PubMed]
  • Francastel C, Schübeler D, Martin DI, Groudine M. Nuclear compartmentalization and gene activity. Nat Rev Mol Cell Biol. 2000 Nov;1(2):137–143. [PubMed]
  • Manuelidis L. Different central nervous system cell types display distinct and nonrandom arrangements of satellite DNA sequences. Proc Natl Acad Sci U S A. 1984 May;81(10):3123–3127. [PMC free article] [PubMed]
  • Manuelidis L. A view of interphase chromosomes. Science. 1990 Dec 14;250(4987):1533–1540. [PubMed]
  • Park PC, De Boni U. Transposition of DNase hypersensitive chromatin to the nuclear periphery coincides temporally with nerve growth factor-induced up-regulation of gene expression in PC12 cells. Proc Natl Acad Sci U S A. 1996 Oct 15;93(21):11646–11651. [PMC free article] [PubMed]
  • Janevski J, Park PC, De Boni U. Changes in morphology and spatial position of coiled bodies during NGF-induced neuronal differentiation of PC12 cells. J Histochem Cytochem. 1997 Nov;45(11):1523–1531. [PubMed]
  • Borden J, Manuelidis L. Movement of the X chromosome in epilepsy. Science. 1988 Dec 23;242(4886):1687–1691. [PubMed]
  • LYON MF. Gene action in the X-chromosome of the mouse (Mus musculus L.). Nature. 1961 Apr 22;190:372–373. [PubMed]
  • Cockell M, Gasser SM. Nuclear compartments and gene regulation. Curr Opin Genet Dev. 1999 Apr;9(2):199–205. [PubMed]
  • Festenstein R, Kioussis D. Locus control regions and epigenetic chromatin modifiers. Curr Opin Genet Dev. 2000 Apr;10(2):199–203. [PubMed]
  • Dernburg AF, Broman KW, Fung JC, Marshall WF, Philips J, Agard DA, Sedat JW. Perturbation of nuclear architecture by long-distance chromosome interactions. Cell. 1996 May 31;85(5):745–759. [PubMed]
  • Brown KE, Guest SS, Smale ST, Hahm K, Merkenschlager M, Fisher AG. Association of transcriptionally silent genes with Ikaros complexes at centromeric heterochromatin. Cell. 1997 Dec 12;91(6):845–854. [PubMed]
  • Brown KE, Baxter J, Graf D, Merkenschlager M, Fisher AG. Dynamic repositioning of genes in the nucleus of lymphocytes preparing for cell division. Mol Cell. 1999 Feb;3(2):207–217. [PubMed]
  • Gottschling DE, Aparicio OM, Billington BL, Zakian VA. Position effect at S. cerevisiae telomeres: reversible repression of Pol II transcription. Cell. 1990 Nov 16;63(4):751–762. [PubMed]
  • Andrulis ED, Neiman AM, Zappulla DC, Sternglanz R. Perinuclear localization of chromatin facilitates transcriptional silencing. Nature. 1998 Aug 6;394(6693):592–595. [PubMed]
  • Workman JL, Kingston RE. Alteration of nucleosome structure as a mechanism of transcriptional regulation. Annu Rev Biochem. 1998;67:545–579. [PubMed]
  • Abney JR, Cutler B, Fillbach ML, Axelrod D, Scalettar BA. Chromatin dynamics in interphase nuclei and its implications for nuclear structure. J Cell Biol. 1997 Jun 30;137(7):1459–1468. [PMC free article] [PubMed]
  • Marshall WF, Straight A, Marko JF, Swedlow J, Dernburg A, Belmont A, Murray AW, Agard DA, Sedat JW. Interphase chromosomes undergo constrained diffusional motion in living cells. Curr Biol. 1997 Dec 1;7(12):930–939. [PubMed]
  • Kanda T, Sullivan KF, Wahl GM. Histone-GFP fusion protein enables sensitive analysis of chromosome dynamics in living mammalian cells. Curr Biol. 1998 Mar 26;8(7):377–385. [PubMed]
  • Robinett CC, Straight A, Li G, Willhelm C, Sudlow G, Murray A, Belmont AS. In vivo localization of DNA sequences and visualization of large-scale chromatin organization using lac operator/repressor recognition. J Cell Biol. 1996 Dec;135(6 Pt 2):1685–1700. [PMC free article] [PubMed]
  • Tumbar T, Sudlow G, Belmont AS. Large-scale chromatin unfolding and remodeling induced by VP16 acidic activation domain. J Cell Biol. 1999 Jun 28;145(7):1341–1354. [PMC free article] [PubMed]
  • Tumbar T, Belmont AS. Interphase movements of a DNA chromosome region modulated by VP16 transcriptional activator. Nat Cell Biol. 2001 Feb;3(2):134–139. [PubMed]
  • McNally JG, Müller WG, Walker D, Wolford R, Hager GL. The glucocorticoid receptor: rapid exchange with regulatory sites in living cells. Science. 2000 Feb 18;287(5456):1262–1265. [PubMed]
  • GALL JG, CALLAN HG. H3 uridine incorporation in lampbrush chromosomes. Proc Natl Acad Sci U S A. 1962 Apr 15;48:562–570. [PMC free article] [PubMed]
  • Blobel G. Gene gating: a hypothesis. Proc Natl Acad Sci U S A. 1985 Dec;82(24):8527–8529. [PMC free article] [PubMed]
  • Carter KC, Taneja KL, Lawrence JB. Discrete nuclear domains of poly(A) RNA and their relationship to the functional organization of the nucleus. J Cell Biol. 1991 Dec;115(5):1191–1202. [PMC free article] [PubMed]
  • Carter KC, Bowman D, Carrington W, Fogarty K, McNeil JA, Fay FS, Lawrence JB. A three-dimensional view of precursor messenger RNA metabolism within the mammalian nucleus. Science. 1993 Feb 26;259(5099):1330–1335. [PubMed]
  • Xing Y, Lawrence JB. Nuclear RNA tracks: structural basis for transcription and splicing? Trends Cell Biol. 1993 Oct;3(10):346–353. [PubMed]
  • Edgar BA, Weir MP, Schubiger G, Kornberg T. Repression and turnover pattern fushi tarazu RNA in the early Drosophila embryo. Cell. 1986 Dec 5;47(5):747–754. [PubMed]
  • Davis I, Ish-Horowicz D. Apical localization of pair-rule transcripts requires 3' sequences and limits protein diffusion in the Drosophila blastoderm embryo. Cell. 1991 Nov 29;67(5):927–940. [PubMed]
  • Lall S, Francis-Lang H, Flament A, Norvell A, Schüpbach T, Ish-Horowicz D. Squid hnRNP protein promotes apical cytoplasmic transport and localization of Drosophila pair-rule transcripts. Cell. 1999 Jul 23;98(2):171–180. [PubMed]
  • Zachar Z, Kramer J, Mims IP, Bingham PM. Evidence for channeled diffusion of pre-mRNAs during nuclear RNA transport in metazoans. J Cell Biol. 1993 May;121(4):729–742. [PMC free article] [PubMed]
  • Politz JC, Browne ES, Wolf DE, Pederson T. Intranuclear diffusion and hybridization state of oligonucleotides measured by fluorescence correlation spectroscopy in living cells. Proc Natl Acad Sci U S A. 1998 May 26;95(11):6043–6048. [PMC free article] [PubMed]
  • Politz JC, Tuft RA, Pederson T, Singer RH. Movement of nuclear poly(A) RNA throughout the interchromatin space in living cells. Curr Biol. 1999 Mar 25;9(6):285–291. [PubMed]
  • Singh OP, Björkroth B, Masich S, Wieslander L, Daneholt B. The intranuclear movement of Balbiani ring premessenger ribonucleoprotein particles. Exp Cell Res. 1999 Aug 25;251(1):135–146. [PubMed]
  • Stenoien DL, Patel K, Mancini MG, Dutertre M, Smith CL, O'Malley BW, Mancini MA. FRAP reveals that mobility of oestrogen receptor-alpha is ligand- and proteasome-dependent. Nat Cell Biol. 2001 Jan;3(1):15–23. [PubMed]
  • Kruhlak MJ, Lever MA, Fischle W, Verdin E, Bazett-Jones DP, Hendzel MJ. Reduced mobility of the alternate splicing factor (ASF) through the nucleoplasm and steady state speckle compartments. J Cell Biol. 2000 Jul 10;150(1):41–51. [PMC free article] [PubMed]
  • Phair RD, Misteli T. High mobility of proteins in the mammalian cell nucleus. Nature. 2000 Apr 6;404(6778):604–609. [PubMed]
  • Snaar S, Wiesmeijer K, Jochemsen AG, Tanke HJ, Dirks RW. Mutational analysis of fibrillarin and its mobility in living human cells. J Cell Biol. 2000 Oct 30;151(3):653–662. [PMC free article] [PubMed]
  • Houtsmuller AB, Rademakers S, Nigg AL, Hoogstraten D, Hoeijmakers JH, Vermeulen W. Action of DNA repair endonuclease ERCC1/XPF in living cells. Science. 1999 May 7;284(5416):958–961. [PubMed]
  • Lever MA, Th'ng JP, Sun X, Hendzel MJ. Rapid exchange of histone H1.1 on chromatin in living human cells. Nature. 2000 Dec 14;408(6814):873–876. [PubMed]
  • Misteli T, Gunjan A, Hock R, Bustin M, Brown DT. Dynamic binding of histone H1 to chromatin in living cells. Nature. 2000 Dec 14;408(6814):877–881. [PubMed]
  • Perche PY, Vourc'h C, Konecny L, Souchier C, Robert-Nicoud M, Dimitrov S, Khochbin S. Higher concentrations of histone macroH2A in the Barr body are correlated with higher nucleosome density. Curr Biol. 2000 Nov 30;10(23):1531–1534. [PubMed]
  • Leonhardt H, Rahn HP, Weinzierl P, Sporbert A, Cremer T, Zink D, Cardoso MC. Dynamics of DNA replication factories in living cells. J Cell Biol. 2000 Apr 17;149(2):271–280. [PMC free article] [PubMed]
  • Hill DA, Imbalzano AN. Human SWI/SNF nucleosome remodeling activity is partially inhibited by linker histone H1. Biochemistry. 2000 Sep 26;39(38):11649–11656. [PubMed]
  • Rigaud G, Roux J, Pictet R, Grange T. In vivo footprinting of rat TAT gene: dynamic interplay between the glucocorticoid receptor and a liver-specific factor. Cell. 1991 Nov 29;67(5):977–986. [PubMed]
  • Jolly C, Usson Y, Morimoto RI. Rapid and reversible relocalization of heat shock factor 1 within seconds to nuclear stress granules. Proc Natl Acad Sci U S A. 1999 Jun 8;96(12):6769–6774. [PMC free article] [PubMed]
  • Sinclair GD, Brasch K. The reversible action of alpha-amanitin on nuclear structure and molecular composition. Exp Cell Res. 1978 Jan;111(1):1–14. [PubMed]
  • Misteli T, Cáceres JF, Spector DL. The dynamics of a pre-mRNA splicing factor in living cells. Nature. 1997 May 29;387(6632):523–527. [PubMed]
  • Hebert MD, Matera AG. Self-association of coilin reveals a common theme in nuclear body localization. Mol Biol Cell. 2000 Dec;11(12):4159–4171. [PMC free article] [PubMed]
  • Ishov AM, Sotnikov AG, Negorev D, Vladimirova OV, Neff N, Kamitani T, Yeh ET, Strauss JF, 3rd, Maul GG. PML is critical for ND10 formation and recruits the PML-interacting protein daxx to this nuclear structure when modified by SUMO-1. J Cell Biol. 1999 Oct 18;147(2):221–234. [PMC free article] [PubMed]
  • Lorson CL, Strasswimmer J, Yao JM, Baleja JD, Hahnen E, Wirth B, Le T, Burghes AH, Androphy EJ. SMN oligomerization defect correlates with spinal muscular atrophy severity. Nat Genet. 1998 May;19(1):63–66. [PubMed]
  • Oakes M, Nogi Y, Clark MW, Nomura M. Structural alterations of the nucleolus in mutants of Saccharomyces cerevisiae defective in RNA polymerase I. Mol Cell Biol. 1993 Apr;13(4):2441–2455. [PMC free article] [PubMed]
  • Mélèse T, Xue Z. The nucleolus: an organelle formed by the act of building a ribosome. Curr Opin Cell Biol. 1995 Jun;7(3):319–324. [PubMed]
  • Karpen GH, Schaefer JE, Laird CD. A Drosophila rRNA gene located in euchromatin is active in transcription and nucleolus formation. Genes Dev. 1988 Dec;2(12B):1745–1763. [PubMed]
  • Oakes M, Aris JP, Brockenbrough JS, Wai H, Vu L, Nomura M. Mutational analysis of the structure and localization of the nucleolus in the yeast Saccharomyces cerevisiae. J Cell Biol. 1998 Oct 5;143(1):23–34. [PMC free article] [PubMed]
  • Cook PR. The organization of replication and transcription. Science. 1999 Jun 11;284(5421):1790–1795. [PubMed]
  • O'Keefe RT, Henderson SC, Spector DL. Dynamic organization of DNA replication in mammalian cell nuclei: spatially and temporally defined replication of chromosome-specific alpha-satellite DNA sequences. J Cell Biol. 1992 Mar;116(5):1095–1110. [PMC free article] [PubMed]
  • Ma H, Samarabandu J, Devdhar RS, Acharya R, Cheng PC, Meng C, Berezney R. Spatial and temporal dynamics of DNA replication sites in mammalian cells. J Cell Biol. 1998 Dec 14;143(6):1415–1425. [PMC free article] [PubMed]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society


Save items

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...


  • PubMed
    PubMed citations for these articles
  • Substance
    PubChem chemical substance records that cite the current articles. These references are taken from those provided on submitted PubChem chemical substance records.

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...