• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of biochemjBJ Latest papers and much more!
Biochem J. Nov 1, 2000; 351(Pt 3): 817–824.
PMCID: PMC1221424

N-acyl-dopamines: novel synthetic CB(1) cannabinoid-receptor ligands and inhibitors of anandamide inactivation with cannabimimetic activity in vitro and in vivo.

Abstract

We reported previously that synthetic amides of polyunsaturated fatty acids with bioactive amines can result in substances that interact with proteins of the endogenous cannabinoid system (ECS). Here we synthesized a series of N-acyl-dopamines (NADAs) and studied their effects on the anandamide membrane transporter, the anandamide amidohydrolase (fatty acid amide hydrolase, FAAH) and the two cannabinoid receptor subtypes, CB(1) and CB(2). NADAs competitively inhibited FAAH from N18TG2 cells (IC(50)=19-100 microM), as well as the binding of the selective CB(1) receptor ligand, [(3)H]SR141716A, to rat brain membranes (K(i)=250-3900 nM). The arachidonoyl (20:4 omega 6), eicosapentaenoyl (20:5 omega 3), docosapentaenoyl (22:5 omega 3), alpha-linolenoyl (18:3 omega 3) and pinolenoyl (5c,9c,12c 18:3 omega 6) homologues were also found to inhibit the anandamide membrane transporter in RBL-2H3 basophilic leukaemia and C6 glioma cells (IC(50)=17.5-33 microM). NADAs did not inhibit the binding of the CB(1)/CB(2) receptor ligand, [(3)H]WIN55,212-2, to rat spleen membranes (K(i)>10 microM). N-arachidonyl-dopamine (AA-DA) exhibited 40-fold selectivity for CB(1) (K(i)=250 nM) over CB(2) receptors, and N-docosapentaenoyl-dopamine exhibited 4-fold selectivity for the anandamide transporter over FAAH. AA-DA (0.1-10 microM) did not displace D1 and D2 dopamine-receptor high-affinity ligands from rat brain membranes, thus suggesting that this compound has little affinity for these receptors. AA-DA was more potent and efficacious than anandamide as a CB(1) agonist, as assessed by measuring the stimulatory effect on intracellular Ca(2+) mobilization in undifferentiated N18TG2 neuroblastoma cells. This effect of AA-DA was counteracted by the CB(1) antagonist SR141716A. AA-DA behaved as a CB(1) agonist in vivo by inducing hypothermia, hypo-locomotion, catalepsy and analgesia in mice (1-10 mg/kg). Finally, AA-DA potently inhibited (IC(50)=0.25 microM) the proliferation of human breast MCF-7 cancer cells, thus behaving like other CB(1) agonists. Also this effect was counteracted by SR141716A but not by the D2 antagonist haloperidol. We conclude that NADAs, and AA-DA in particular, may be novel and useful probes for the study of the ECS.

Full Text

The Full Text of this article is available as a PDF (183K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Di Marzo V. 'Endocannabinoids' and other fatty acid derivatives with cannabimimetic properties: biochemistry and possible physiopathological relevance. Biochim Biophys Acta. 1998 Jun 15;1392(2-3):153–175. [PubMed]
  • Di Marzo V, Deutsch DG. Biochemistry of the endogenous ligands of cannabinoid receptors. Neurobiol Dis. 1998 Dec;5(6 Pt B):386–404. [PubMed]
  • Hillard CJ, Campbell WB. Biochemistry and pharmacology of arachidonylethanolamide, a putative endogenous cannabinoid. J Lipid Res. 1997 Dec;38(12):2383–2398. [PubMed]
  • Devane WA, Hanus L, Breuer A, Pertwee RG, Stevenson LA, Griffin G, Gibson D, Mandelbaum A, Etinger A, Mechoulam R. Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science. 1992 Dec 18;258(5090):1946–1949. [PubMed]
  • Mechoulam R, Ben-Shabat S, Hanus L, Ligumsky M, Kaminski NE, Schatz AR, Gopher A, Almog S, Martin BR, Compton DR, et al. Identification of an endogenous 2-monoglyceride, present in canine gut, that binds to cannabinoid receptors. Biochem Pharmacol. 1995 Jun 29;50(1):83–90. [PubMed]
  • Sugiura T, Kondo S, Sukagawa A, Nakane S, Shinoda A, Itoh K, Yamashita A, Waku K. 2-Arachidonoylglycerol: a possible endogenous cannabinoid receptor ligand in brain. Biochem Biophys Res Commun. 1995 Oct 4;215(1):89–97. [PubMed]
  • Ueda N, Kurahashi Y, Yamamoto S, Tokunaga T. Partial purification and characterization of the porcine brain enzyme hydrolyzing and synthesizing anandamide. J Biol Chem. 1995 Oct 6;270(40):23823–23827. [PubMed]
  • Maurelli S, Bisogno T, De Petrocellis L, Di Luccia A, Marino G, Di Marzo V. Two novel classes of neuroactive fatty acid amides are substrates for mouse neuroblastoma 'anandamide amidohydrolase'. FEBS Lett. 1995 Dec 11;377(1):82–86. [PubMed]
  • Ueda N, Yamanaka K, Terasawa Y, Yamamoto S. An acid amidase hydrolyzing anandamide as an endogenous ligand for cannabinoid receptors. FEBS Lett. 1999 Jul 9;454(3):267–270. [PubMed]
  • Cravatt BF, Giang DK, Mayfield SP, Boger DL, Lerner RA, Gilula NB. Molecular characterization of an enzyme that degrades neuromodulatory fatty-acid amides. Nature. 1996 Nov 7;384(6604):83–87. [PubMed]
  • Ueda N, Yamamoto S. Anandamide amidohydrolase (fatty acid amide hydrolase). Prostaglandins Other Lipid Mediat. 2000 Apr;61(1-2):19–28. [PubMed]
  • Di Marzo V, Fontana A, Cadas H, Schinelli S, Cimino G, Schwartz JC, Piomelli D. Formation and inactivation of endogenous cannabinoid anandamide in central neurons. Nature. 1994 Dec 15;372(6507):686–691. [PubMed]
  • Hillard CJ, Edgemond WS, Jarrahian A, Campbell WB. Accumulation of N-arachidonoylethanolamine (anandamide) into cerebellar granule cells occurs via facilitated diffusion. J Neurochem. 1997 Aug;69(2):631–638. [PubMed]
  • Bisogno T, Maurelli S, Melck D, De Petrocellis L, Di Marzo V. Biosynthesis, uptake, and degradation of anandamide and palmitoylethanolamide in leukocytes. J Biol Chem. 1997 Feb 7;272(6):3315–3323. [PubMed]
  • Matsuda LA, Lolait SJ, Brownstein MJ, Young AC, Bonner TI. Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature. 1990 Aug 9;346(6284):561–564. [PubMed]
  • Munro S, Thomas KL, Abu-Shaar M. Molecular characterization of a peripheral receptor for cannabinoids. Nature. 1993 Sep 2;365(6441):61–65. [PubMed]
  • Bisogno T, Melck D, De Petrocellis L, Bobrov MYu, Gretskaya NM, Bezuglov VV, Sitachitta N, Gerwick WH, Di Marzo V. Arachidonoylserotonin and other novel inhibitors of fatty acid amide hydrolase. Biochem Biophys Res Commun. 1998 Jul 30;248(3):515–522. [PubMed]
  • Di Marzo V, Bisogno T, Melck D, Ross R, Brockie H, Stevenson L, Pertwee R, De Petrocellis L. Interactions between synthetic vanilloids and the endogenous cannabinoid system. FEBS Lett. 1998 Oct 9;436(3):449–454. [PubMed]
  • Melck D, Bisogno T, De Petrocellis L, Chuang H, Julius D, Bifulco M, Di Marzo V. Unsaturated long-chain N-acyl-vanillyl-amides (N-AVAMs): vanilloid receptor ligands that inhibit anandamide-facilitated transport and bind to CB1 cannabinoid receptors. Biochem Biophys Res Commun. 1999 Aug 19;262(1):275–284. [PubMed]
  • Maccarrone M, Bari M, Lorenzon T, Bisogno T, Di Marzo V, Finazzi-Agrò A. Anandamide uptake by human endothelial cells and its regulation by nitric oxide. J Biol Chem. 2000 May 5;275(18):13484–13492. [PubMed]
  • Bezuglov VV, Bobrov MYu, Archakov AV. Bioactive amides of fatty acids. Biochemistry (Mosc) 1998 Jan;63(1):22–30. [PubMed]
  • Giuffrida A, Parsons LH, Kerr TM, Rodríguez de Fonseca F, Navarro M, Piomelli D. Dopamine activation of endogenous cannabinoid signaling in dorsal striatum. Nat Neurosci. 1999 Apr;2(4):358–363. [PubMed]
  • Di Marzo V, Hill MP, Bisogno T, Crossman AR, Brotchie JM. Enhanced levels of endogenous cannabinoids in the globus pallidus are associated with a reduction in movement in an animal model of Parkinson's disease. FASEB J. 2000 Jul;14(10):1432–1438. [PubMed]
  • Abood ME, Ditto KE, Noel MA, Showalter VM, Tao Q. Isolation and expression of a mouse CB1 cannabinoid receptor gene. Comparison of binding properties with those of native CB1 receptors in mouse brain and N18TG2 neuroblastoma cells. Biochem Pharmacol. 1997 Jan 24;53(2):207–214. [PubMed]
  • Hillard CJ, Manna S, Greenberg MJ, DiCamelli R, Ross RA, Stevenson LA, Murphy V, Pertwee RG, Campbell WB. Synthesis and characterization of potent and selective agonists of the neuronal cannabinoid receptor (CB1). J Pharmacol Exp Ther. 1999 Jun;289(3):1427–1433. [PubMed]
  • Winter J, Walpole CS, Bevan S, James IF. Characterization of resiniferatoxin binding sites on sensory neurons: co-regulation of resiniferatoxin binding and capsaicin sensitivity in adult rat dorsal root ganglia. Neuroscience. 1993 Dec;57(3):747–757. [PubMed]
  • Mombouli JV, Schaeffer G, Holzmann S, Kostner GM, Graier WF. Anandamide-induced mobilization of cytosolic Ca2+ in endothelial cells. Br J Pharmacol. 1999 Apr;126(7):1593–1600. [PMC free article] [PubMed]
  • Crawley JN, Corwin RL, Robinson JK, Felder CC, Devane WA, Axelrod J. Anandamide, an endogenous ligand of the cannabinoid receptor, induces hypomotility and hypothermia in vivo in rodents. Pharmacol Biochem Behav. 1993 Dec;46(4):967–972. [PubMed]
  • Pertwee RG. The ring test: a quantitative method for assessing the 'cataleptic' effect of cannabis in mice. Br J Pharmacol. 1972 Dec;46(4):753–763. [PMC free article] [PubMed]
  • Janusz JM, Buckwalter BL, Young PA, LaHann TR, Farmer RW, Kasting GB, Loomans ME, Kerckaert GA, Maddin CS, Berman EF, et al. Vanilloids. 1. Analogs of capsaicin with antinociceptive and antiinflammatory activity. J Med Chem. 1993 Sep 3;36(18):2595–2604. [PubMed]
  • De Petrocellis L, Melck D, Palmisano A, Bisogno T, Laezza C, Bifulco M, Di Marzo V. The endogenous cannabinoid anandamide inhibits human breast cancer cell proliferation. Proc Natl Acad Sci U S A. 1998 Jul 7;95(14):8375–8380. [PMC free article] [PubMed]
  • Melck D, De Petrocellis L, Orlando P, Bisogno T, Laezza C, Bifulco M, Di Marzo V. Suppression of nerve growth factor Trk receptors and prolactin receptors by endocannabinoids leads to inhibition of human breast and prostate cancer cell proliferation. Endocrinology. 2000 Jan;141(1):118–126. [PubMed]
  • Bisogno T, Katayama K, Melck D, Ueda N, De Petrocellis L, Yamamoto S, Di Marzo V. Biosynthesis and degradation of bioactive fatty acid amides in human breast cancer and rat pheochromocytoma cells--implications for cell proliferation and differentiation. Eur J Biochem. 1998 Jun 15;254(3):634–642. [PubMed]
  • Sugiura T, Kodaka T, Kondo S, Nakane S, Kondo H, Waku K, Ishima Y, Watanabe K, Yamamoto I. Is the cannabinoid CB1 receptor a 2-arachidonoylglycerol receptor? Structural requirements for triggering a Ca2+ transient in NG108-15 cells. J Biochem. 1997 Oct;122(4):890–895. [PubMed]
  • Melck D, Rueda D, Galve-Roperh I, De Petrocellis L, Guzmán M, Di Marzo V. Involvement of the cAMP/protein kinase A pathway and of mitogen-activated protein kinase in the anti-proliferative effects of anandamide in human breast cancer cells. FEBS Lett. 1999 Dec 17;463(3):235–240. [PubMed]
  • Lang W, Qin C, Lin S, Khanolkar AD, Goutopoulos A, Fan P, Abouzid K, Meng Z, Biegel D, Makriyannis A. Substrate specificity and stereoselectivity of rat brain microsomal anandamide amidohydrolase. J Med Chem. 1999 Mar 11;42(5):896–902. [PubMed]
  • Di Marzo V, Bisogno T, De Petrocellis L, Melck D, Martin BR. Cannabimimetic fatty acid derivatives: the anandamide family and other endocannabinoids. Curr Med Chem. 1999 Aug;6(8):721–744. [PubMed]
  • Rakhshan F, Day TA, Blakely RD, Barker EL. Carrier-mediated uptake of the endogenous cannabinoid anandamide in RBL-2H3 cells. J Pharmacol Exp Ther. 2000 Mar;292(3):960–967. [PubMed]
  • Martin BR, Mechoulam R, Razdan RK. Discovery and characterization of endogenous cannabinoids. Life Sci. 1999;65(6-7):573–595. [PubMed]
  • Pertwee RG. Pharmacology of cannabinoid CB1 and CB2 receptors. Pharmacol Ther. 1997;74(2):129–180. [PubMed]
  • Sokoloff P, Riou JF, Martres MP, Schwartz JC. Presence of dopamine D-2 receptors in human tumoral cell lines. Biochem Biophys Res Commun. 1989 Jul 31;162(2):575–582. [PubMed]
  • Johnson DE, Ochieng J, Evans SL. The growth inhibitory properties of a dopamine agonist (SKF 38393) on MCF-7 cells. Anticancer Drugs. 1995 Jun;6(3):471–474. [PubMed]
  • Mechoulam R, Fride E, Hanus L, Sheskin T, Bisogno T, Di Marzo V, Bayewitch M, Vogel Z. Anandamide may mediate sleep induction. Nature. 1997 Sep 4;389(6646):25–26. [PubMed]
  • Watanabe K, Matsunaga T, Nakamura S, Kimura T, Ho IK, Yoshimura H, Yamamoto I. Pharmacological effects in mice of anandamide and its related fatty acid ethanolamides, and enhancement of cataleptogenic effect of anandamide by phenylmethylsulfonyl fluoride. Biol Pharm Bull. 1999 Apr;22(4):366–370. [PubMed]
  • Smart D, Jerman JC. Anandamide: an endogenous activator of the vanilloid receptor. Trends Pharmacol Sci. 2000 Apr;21(4):134–134. [PubMed]
  • Zygmunt PM, Chuang H, Movahed P, Julius D, Högestätt ED. The anandamide transport inhibitor AM404 activates vanilloid receptors. Eur J Pharmacol. 2000 May 12;396(1):39–42. [PubMed]
  • Tominaga M, Caterina MJ, Malmberg AB, Rosen TA, Gilbert H, Skinner K, Raumann BE, Basbaum AI, Julius D. The cloned capsaicin receptor integrates multiple pain-producing stimuli. Neuron. 1998 Sep;21(3):531–543. [PubMed]
  • Walpole CS, Wrigglesworth R, Bevan S, Campbell EA, Dray A, James IF, Masdin KJ, Perkins MN, Winter J. Analogues of capsaicin with agonist activity as novel analgesic agents; structure-activity studies. 2. The amide bond "B-region". J Med Chem. 1993 Aug 6;36(16):2373–2380. [PubMed]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

  • Compound
    Compound
    PubChem Compound links
  • MedGen
    MedGen
    Related information in MedGen
  • PubMed
    PubMed
    PubMed citations for these articles
  • Substance
    Substance
    PubChem Substance links