Logo of biochemjBJ Latest papers and much more!
Biochem J. Oct 15, 2000; 351(Pt 2): 527–535.
PMCID: PMC1221390

Proteins of the endoplasmic-reticulum-associated degradation pathway: domain detection and function prediction.

Abstract

Sequence database searches, using iterative-profile and Hidden-Markov-model approaches, were used to detect hitherto-undetected homologues of proteins that regulate the endoplasmic reticulum (ER)-associated degradation pathway. The translocon-associated subunit Sec63p (Sec=secretory) was shown to contain a domain of unknown function found twice in several Brr2p-like RNA helicases (Brr2=bad response to refrigeration 2). Additionally, Cue1p (Cue=coupling of ubiquitin conjugation to ER degradation), a yeast protein that recruits the ubiquitin-conjugating (UBC) enzyme Ubc7p to an ER-associated complex, was found to be one of a large family of putative scaffolding-domain-containing proteins that include the autocrine motility factor receptor and fungal Vps9p (Vps=vacuolar protein sorting). Two other yeast translocon-associated molecules, Sec72p and Hrd3p (Hrd=3-hydroxy-3-methylglutaryl-CoA reductase degradation), were shown to contain multiple tetratricopeptide-repeat-like sequences. From this observation it is suggested that Sec72p associates with a heat-shock protein, Hsp70, in a manner analogous to that known for Hop (Hsp70/Hsp90 organizing protein). Finally, the luminal portion of Ire1p (Ire=high inositol-requiring), thought to convey the sensing function of this transmembrane kinase and endoribonuclease, was shown to contain repeats similar to those in beta-propeller proteins. This finding hints at the mechanism by which Ire1p may sense extended unfolded proteins at the expense of compact folded molecules.

Full Text

The Full Text of this article is available as a PDF (604K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Ponting CP, Schultz J, Copley RR, Andrade MA, Bork P. Evolution of domain families. Adv Protein Chem. 2000;54:185–244. [PubMed]
  • Kopito RR. ER quality control: the cytoplasmic connection. Cell. 1997 Feb 21;88(4):427–430. [PubMed]
  • Sommer T, Wolf DH. Endoplasmic reticulum degradation: reverse protein flow of no return. FASEB J. 1997 Dec;11(14):1227–1233. [PubMed]
  • Johnson AE, van Waes MA. The translocon: a dynamic gateway at the ER membrane. Annu Rev Cell Dev Biol. 1999;15:799–842. [PubMed]
  • Rapoport TA. Transport of proteins across the endoplasmic reticulum membrane. Science. 1992 Nov 6;258(5084):931–936. [PubMed]
  • Johnson AE. Protein translocation at the ER membrane: A complex process becomes more so. Trends Cell Biol. 1997 Mar;7(3):90–95. [PubMed]
  • Panzner S, Dreier L, Hartmann E, Kostka S, Rapoport TA. Posttranslational protein transport in yeast reconstituted with a purified complex of Sec proteins and Kar2p. Cell. 1995 May 19;81(4):561–570. [PubMed]
  • Dobson CM. Protein misfolding, evolution and disease. Trends Biochem Sci. 1999 Sep;24(9):329–332. [PubMed]
  • Ward CL, Omura S, Kopito RR. Degradation of CFTR by the ubiquitin-proteasome pathway. Cell. 1995 Oct 6;83(1):121–127. [PubMed]
  • Chen P, Johnson P, Sommer T, Jentsch S, Hochstrasser M. Multiple ubiquitin-conjugating enzymes participate in the in vivo degradation of the yeast MAT alpha 2 repressor. Cell. 1993 Jul 30;74(2):357–369. [PubMed]
  • Biederer T, Volkwein C, Sommer T. Role of Cue1p in ubiquitination and degradation at the ER surface. Science. 1997 Dec 5;278(5344):1806–1809. [PubMed]
  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997 Sep 1;25(17):3389–3402. [PMC free article] [PubMed]
  • Tatusov RL, Altschul SF, Koonin EV. Detection of conserved segments in proteins: iterative scanning of sequence databases with alignment blocks. Proc Natl Acad Sci U S A. 1994 Dec 6;91(25):12091–12095. [PMC free article] [PubMed]
  • Holm L, Sander C. Removing near-neighbour redundancy from large protein sequence collections. Bioinformatics. 1998 Jun;14(5):423–429. [PubMed]
  • Schultz J, Milpetz F, Bork P, Ponting CP. SMART, a simple modular architecture research tool: identification of signaling domains. Proc Natl Acad Sci U S A. 1998 May 26;95(11):5857–5864. [PMC free article] [PubMed]
  • Pietrokovski S. Searching databases of conserved sequence regions by aligning protein multiple-alignments. Nucleic Acids Res. 1996 Oct 1;24(19):3836–3845. [PMC free article] [PubMed]
  • Rost B, Sander C. Prediction of protein secondary structure at better than 70% accuracy. J Mol Biol. 1993 Jul 20;232(2):584–599. [PubMed]
  • Skowronek MH, Rotter M, Haas IG. Molecular characterization of a novel mammalian DnaJ-like Sec63p homolog. Biol Chem. 1999 Sep;380(9):1133–1138. [PubMed]
  • Lee TG, Tang N, Thompson S, Miller J, Katze MG. The 58,000-dalton cellular inhibitor of the interferon-induced double-stranded RNA-activated protein kinase (PKR) is a member of the tetratricopeptide repeat family of proteins. Mol Cell Biol. 1994 Apr;14(4):2331–2342. [PMC free article] [PubMed]
  • Jacobsen SE, Binkowski KA, Olszewski NE. SPINDLY, a tetratricopeptide repeat protein involved in gibberellin signal transduction in Arabidopsis. Proc Natl Acad Sci U S A. 1996 Aug 20;93(17):9292–9296. [PMC free article] [PubMed]
  • Keitel T, Diehl A, Knaute T, Stezowski JJ, Höhne W, Görisch H. X-ray structure of the quinoprotein ethanol dehydrogenase from Pseudomonas aeruginosa: basis of substrate specificity. J Mol Biol. 2000 Apr 7;297(4):961–974. [PubMed]
  • Schatz PJ, Beckwith J. Genetic analysis of protein export in Escherichia coli. Annu Rev Genet. 1990;24:215–248. [PubMed]
  • Gupta RS, Singh B. Phylogenetic analysis of 70 kD heat shock protein sequences suggests a chimeric origin for the eukaryotic cell nucleus. Curr Biol. 1994 Dec 1;4(12):1104–1114. [PubMed]
  • Cyr DM, Langer T, Douglas MG. DnaJ-like proteins: molecular chaperones and specific regulators of Hsp70. Trends Biochem Sci. 1994 Apr;19(4):176–181. [PubMed]
  • Lyman SK, Schekman R. Binding of secretory precursor polypeptides to a translocon subcomplex is regulated by BiP. Cell. 1997 Jan 10;88(1):85–96. [PubMed]
  • Plemper RK, Böhmler S, Bordallo J, Sommer T, Wolf DH. Mutant analysis links the translocon and BiP to retrograde protein transport for ER degradation. Nature. 1997 Aug 28;388(6645):891–895. [PubMed]
  • Feldheim D, Rothblatt J, Schekman R. Topology and functional domains of Sec63p, an endoplasmic reticulum membrane protein required for secretory protein translocation. Mol Cell Biol. 1992 Jul;12(7):3288–3296. [PMC free article] [PubMed]
  • Noble SM, Guthrie C. Identification of novel genes required for yeast pre-mRNA splicing by means of cold-sensitive mutations. Genetics. 1996 May;143(1):67–80. [PMC free article] [PubMed]
  • Lauber J, Fabrizio P, Teigelkamp S, Lane WS, Hartmann E, Luhrmann R. The HeLa 200 kDa U5 snRNP-specific protein and its homologue in Saccharomyces cerevisiae are members of the DEXH-box protein family of putative RNA helicases. EMBO J. 1996 Aug 1;15(15):4001–4015. [PMC free article] [PubMed]
  • Laggerbauer B, Achsel T, Lührmann R. The human U5-200kD DEXH-box protein unwinds U4/U6 RNA duplices in vitro. Proc Natl Acad Sci U S A. 1998 Apr 14;95(8):4188–4192. [PMC free article] [PubMed]
  • Raghunathan PL, Guthrie C. RNA unwinding in U4/U6 snRNPs requires ATP hydrolysis and the DEIH-box splicing factor Brr2. Curr Biol. 1998 Jul 16;8(15):847–855. [PubMed]
  • Rapoport TA, Jungnickel B, Kutay U. Protein transport across the eukaryotic endoplasmic reticulum and bacterial inner membranes. Annu Rev Biochem. 1996;65:271–303. [PubMed]
  • Green N, Fang H, Walter P. Mutants in three novel complementation groups inhibit membrane protein insertion into and soluble protein translocation across the endoplasmic reticulum membrane of Saccharomyces cerevisiae. J Cell Biol. 1992 Feb;116(3):597–604. [PMC free article] [PubMed]
  • Andrade MA, Ponting CP, Gibson TJ, Bork P. Homology-based method for identification of protein repeats using statistical significance estimates. J Mol Biol. 2000 May 5;298(3):521–537. [PubMed]
  • Das AK, Cohen PW, Barford D. The structure of the tetratricopeptide repeats of protein phosphatase 5: implications for TPR-mediated protein-protein interactions. EMBO J. 1998 Mar 2;17(5):1192–1199. [PMC free article] [PubMed]
  • Groves MR, Barford D. Topological characteristics of helical repeat proteins. Curr Opin Struct Biol. 1999 Jun;9(3):383–389. [PubMed]
  • Van Der Spuy J, Kana BD, Dirr HW, Blatch GL. Heat shock cognate protein 70 chaperone-binding site in the co-chaperone murine stress-inducible protein 1 maps to within three consecutive tetratricopeptide repeat motifs. Biochem J. 2000 Feb 1;345(Pt 3):645–651. [PMC free article] [PubMed]
  • Scheufler C, Brinker A, Bourenkov G, Pegoraro S, Moroder L, Bartunik H, Hartl FU, Moarefi I. Structure of TPR domain-peptide complexes: critical elements in the assembly of the Hsp70-Hsp90 multichaperone machine. Cell. 2000 Apr 14;101(2):199–210. [PubMed]
  • Nishikawa S, Endo T. The yeast JEM1p is a DnaJ-like protein of the endoplasmic reticulum membrane required for nuclear fusion. J Biol Chem. 1997 May 16;272(20):12889–12892. [PubMed]
  • Nabi IR, Watanabe H, Raz A. Autocrine motility factor and its receptor: role in cell locomotion and metastasis. Cancer Metastasis Rev. 1992 Mar;11(1):5–20. [PubMed]
  • Shimizu K, Tani M, Watanabe H, Nagamachi Y, Niinaka Y, Shiroishi T, Ohwada S, Raz A, Yokota J. The autocrine motility factor receptor gene encodes a novel type of seven transmembrane protein. FEBS Lett. 1999 Aug 6;456(2):295–300. [PubMed]
  • Lorick KL, Jensen JP, Fang S, Ong AM, Hatakeyama S, Weissman AM. RING fingers mediate ubiquitin-conjugating enzyme (E2)-dependent ubiquitination. Proc Natl Acad Sci U S A. 1999 Sep 28;96(20):11364–11369. [PMC free article] [PubMed]
  • Wang HJ, Benlimame N, Nabi I. The AMF-R tubule is a smooth ilimaquinone-sensitive subdomain of the endoplasmic reticulum. J Cell Sci. 1997 Dec;110(Pt 24):3043–3053. [PubMed]
  • Bordallo J, Wolf DH. A RING-H2 finger motif is essential for the function of Der3/Hrd1 in endoplasmic reticulum associated protein degradation in the yeast Saccharomyces cerevisiae. FEBS Lett. 1999 Apr 9;448(2-3):244–248. [PubMed]
  • Marcotte EM, Pellegrini M, Ng HL, Rice DW, Yeates TO, Eisenberg D. Detecting protein function and protein-protein interactions from genome sequences. Science. 1999 Jul 30;285(5428):751–753. [PubMed]
  • Burns K, Clatworthy J, Martin L, Martinon F, Plumpton C, Maschera B, Lewis A, Ray K, Tschopp J, Volpe F. Tollip, a new component of the IL-1RI pathway, links IRAK to the IL-1 receptor. Nat Cell Biol. 2000 Jun;2(6):346–351. [PubMed]
  • Neuwald AF. Barth syndrome may be due to an acyltransferase deficiency. Curr Biol. 1997 Aug 1;7(8):R465–R466. [PubMed]
  • Plemper RK, Bordallo J, Deak PM, Taxis C, Hitt R, Wolf DH. Genetic interactions of Hrd3p and Der3p/Hrd1p with Sec61p suggest a retro-translocation complex mediating protein transport for ER degradation. J Cell Sci. 1999 Nov;112(Pt 22):4123–4134. [PubMed]
  • Hampton RY, Gardner RG, Rine J. Role of 26S proteasome and HRD genes in the degradation of 3-hydroxy-3-methylglutaryl-CoA reductase, an integral endoplasmic reticulum membrane protein. Mol Biol Cell. 1996 Dec;7(12):2029–2044. [PMC free article] [PubMed]
  • Grant B, Greenwald I. The Caenorhabditis elegans sel-1 gene, a negative regulator of lin-12 and glp-1, encodes a predicted extracellular protein. Genetics. 1996 May;143(1):237–247. [PMC free article] [PubMed]
  • Ponting CP, Aravind L, Schultz J, Bork P, Koonin EV. Eukaryotic signalling domain homologues in archaea and bacteria. Ancient ancestry and horizontal gene transfer. J Mol Biol. 1999 Jun 18;289(4):729–745. [PubMed]
  • Travers KJ, Patil CK, Wodicka L, Lockhart DJ, Weissman JS, Walter P. Functional and genomic analyses reveal an essential coordination between the unfolded protein response and ER-associated degradation. Cell. 2000 Apr 28;101(3):249–258. [PubMed]
  • Casagrande R, Stern P, Diehn M, Shamu C, Osario M, Zúiga M, Brown PO, Ploegh H. Degradation of proteins from the ER of S. cerevisiae requires an intact unfolded protein response pathway. Mol Cell. 2000 Apr;5(4):729–735. [PubMed]
  • Shamu CE, Walter P. Oligomerization and phosphorylation of the Ire1p kinase during intracellular signaling from the endoplasmic reticulum to the nucleus. EMBO J. 1996 Jun 17;15(12):3028–3039. [PMC free article] [PubMed]
  • Xia ZX, Dai WW, Xiong JP, Hao ZP, Davidson VL, White S, Mathews FS. The three-dimensional structures of methanol dehydrogenase from two methylotrophic bacteria at 2.6-A resolution. J Biol Chem. 1992 Nov 5;267(31):22289–22297. [PubMed]
  • Russell RB, Sasieni PD, Sternberg MJ. Supersites within superfolds. Binding site similarity in the absence of homology. J Mol Biol. 1998 Oct 2;282(4):903–918. [PubMed]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...