• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of biochemjBJ Latest papers and much more!
Biochem J. Apr 15, 2000; 347(Pt 2): 321–337.
PMCID: PMC1220963

Regulation of cytochrome P450 (CYP) genes by nuclear receptors.

Abstract

Members of the nuclear-receptor superfamily mediate crucial physiological functions by regulating the synthesis of their target genes. Nuclear receptors are usually activated by ligand binding. Cytochrome P450 (CYP) isoforms often catalyse both formation and degradation of these ligands. CYPs also metabolize many exogenous compounds, some of which may act as activators of nuclear receptors and disruptors of endocrine and cellular homoeostasis. This review summarizes recent findings that indicate that major classes of CYP genes are selectively regulated by certain ligand-activated nuclear receptors, thus creating tightly controlled networks.

Full Text

The Full Text of this article is available as a PDF (219K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Nelson DR, Koymans L, Kamataki T, Stegeman JJ, Feyereisen R, Waxman DJ, Waterman MR, Gotoh O, Coon MJ, Estabrook RW, et al. P450 superfamily: update on new sequences, gene mapping, accession numbers and nomenclature. Pharmacogenetics. 1996 Feb;6(1):1–42. [PubMed]
  • Nelson DR. Cytochrome P450 and the individuality of species. Arch Biochem Biophys. 1999 Sep 1;369(1):1–10. [PubMed]
  • Negishi M, Uno T, Darden TA, Sueyoshi T, Pedersen LG. Structural flexibility and functional versatility of mammalian P450 enzymes. FASEB J. 1996 May;10(7):683–689. [PubMed]
  • Peterson JA, Graham SE. A close family resemblance: the importance of structure in understanding cytochromes P450. Structure. 1998 Sep 15;6(9):1079–1085. [PubMed]
  • Guengerich FP. Comparisons of catalytic selectivity of cytochrome P450 subfamily enzymes from different species. Chem Biol Interact. 1997 Oct 24;106(3):161–182. [PubMed]
  • Rendic S, Di Carlo FJ. Human cytochrome P450 enzymes: a status report summarizing their reactions, substrates, inducers, and inhibitors. Drug Metab Rev. 1997 Feb-May;29(1-2):413–580. [PubMed]
  • Waxman DJ, Azaroff L. Phenobarbital induction of cytochrome P-450 gene expression. Biochem J. 1992 Feb 1;281(Pt 3):577–592. [PMC free article] [PubMed]
  • Denison MS, Whitlock JP., Jr Xenobiotic-inducible transcription of cytochrome P450 genes. J Biol Chem. 1995 Aug 4;270(31):18175–18178. [PubMed]
  • Waxman DJ. P450 gene induction by structurally diverse xenochemicals: central role of nuclear receptors CAR, PXR, and PPAR. Arch Biochem Biophys. 1999 Sep 1;369(1):11–23. [PubMed]
  • Meyer UA, Zanger UM. Molecular mechanisms of genetic polymorphisms of drug metabolism. Annu Rev Pharmacol Toxicol. 1997;37:269–296. [PubMed]
  • Taningher M, Malacarne D, Izzotti A, Ugolini D, Parodi S. Drug metabolism polymorphisms as modulators of cancer susceptibility. Mutat Res. 1999 May;436(3):227–261. [PubMed]
  • Waxman DJ. Interactions of hepatic cytochromes P-450 with steroid hormones. Regioselectivity and stereospecificity of steroid metabolism and hormonal regulation of rat P-450 enzyme expression. Biochem Pharmacol. 1988 Jan 1;37(1):71–84. [PubMed]
  • Rifkind AB, Lee C, Chang TK, Waxman DJ. Arachidonic acid metabolism by human cytochrome P450s 2C8, 2C9, 2E1, and 1A2: regioselective oxygenation and evidence for a role for CYP2C enzymes in arachidonic acid epoxygenation in human liver microsomes. Arch Biochem Biophys. 1995 Jul 10;320(2):380–389. [PubMed]
  • Duester G. Involvement of alcohol dehydrogenase, short-chain dehydrogenase/reductase, aldehyde dehydrogenase, and cytochrome P450 in the control of retinoid signaling by activation of retinoic acid synthesis. Biochemistry. 1996 Sep 24;35(38):12221–12227. [PubMed]
  • Harder DR, Campbell WB, Roman RJ. Role of cytochrome P-450 enzymes and metabolites of arachidonic acid in the control of vascular tone. J Vasc Res. 1995 Mar-Apr;32(2):79–92. [PubMed]
  • Nebert DW. Proposed role of drug-metabolizing enzymes: regulation of steady state levels of the ligands that effect growth, homeostasis, differentiation, and neuroendocrine functions. Mol Endocrinol. 1991 Sep;5(9):1203–1214. [PubMed]
  • Andreola F, Fernandez-Salguero PM, Chiantore MV, Petkovich MP, Gonzalez FJ, De Luca LM. Aryl hydrocarbon receptor knockout mice (AHR-/-) exhibit liver retinoid accumulation and reduced retinoic acid metabolism. Cancer Res. 1997 Jul 15;57(14):2835–2838. [PubMed]
  • Plásilová M, Stoilov I, Sarfarazi M, Kádasi L, Feráková E, Ferák V. Identification of a single ancestral CYP1B1 mutation in Slovak Gypsies (Roms) affected with primary congenital glaucoma. J Med Genet. 1999 Apr;36(4):290–294. [PMC free article] [PubMed]
  • Keeney DS, Waterman MR. Regulation of steroid hydroxylase gene expression: importance to physiology and disease. Pharmacol Ther. 1993 Jun;58(3):301–317. [PubMed]
  • Jones G, Strugnell SA, DeLuca HF. Current understanding of the molecular actions of vitamin D. Physiol Rev. 1998 Oct;78(4):1193–1231. [PubMed]
  • White PC. Genetic diseases of steroid metabolism. Vitam Horm. 1994;49:131–195. [PubMed]
  • Setchell KD, Schwarz M, O'Connell NC, Lund EG, Davis DL, Lathe R, Thompson HR, Weslie Tyson R, Sokol RJ, Russell DW. Identification of a new inborn error in bile acid synthesis: mutation of the oxysterol 7alpha-hydroxylase gene causes severe neonatal liver disease. J Clin Invest. 1998 Nov 1;102(9):1690–1703. [PMC free article] [PubMed]
  • Mangelsdorf DJ, Thummel C, Beato M, Herrlich P, Schütz G, Umesono K, Blumberg B, Kastner P, Mark M, Chambon P, et al. The nuclear receptor superfamily: the second decade. Cell. 1995 Dec 15;83(6):835–839. [PubMed]
  • Kastner P, Mark M, Chambon P. Nonsteroid nuclear receptors: what are genetic studies telling us about their role in real life? Cell. 1995 Dec 15;83(6):859–869. [PubMed]
  • Enmark E, Gustafsson JA. Orphan nuclear receptors--the first eight years. Mol Endocrinol. 1996 Nov;10(11):1293–1307. [PubMed]
  • Forrest D, Golarai G, Connor J, Curran T. Genetic analysis of thyroid hormone receptors in development and disease. Recent Prog Horm Res. 1996;51:1–22. [PubMed]
  • Minucci S, Pelicci PG. Retinoid receptors in health and disease: co-regulators and the chromatin connection. Semin Cell Dev Biol. 1999 Apr;10(2):215–225. [PubMed]
  • Yong EL, Tut TG, Ghadessy FJ, Prins G, Ratnam SS. Partial androgen insensitivity and correlations with the predicted three dimensional structure of the androgen receptor ligand-binding domain. Mol Cell Endocrinol. 1998 Feb;137(1):41–50. [PubMed]
  • Mangelsdorf DJ, Evans RM. The RXR heterodimers and orphan receptors. Cell. 1995 Dec 15;83(6):841–850. [PubMed]
  • Wilson TE, Mouw AR, Weaver CA, Milbrandt J, Parker KL. The orphan nuclear receptor NGFI-B regulates expression of the gene encoding steroid 21-hydroxylase. Mol Cell Biol. 1993 Feb;13(2):861–868. [PMC free article] [PubMed]
  • Willy PJ, Umesono K, Ong ES, Evans RM, Heyman RA, Mangelsdorf DJ. LXR, a nuclear receptor that defines a distinct retinoid response pathway. Genes Dev. 1995 May 1;9(9):1033–1045. [PubMed]
  • Juge-Aubry C, Pernin A, Favez T, Burger AG, Wahli W, Meier CA, Desvergne B. DNA binding properties of peroxisome proliferator-activated receptor subtypes on various natural peroxisome proliferator response elements. Importance of the 5'-flanking region. J Biol Chem. 1997 Oct 3;272(40):25252–25259. [PubMed]
  • Rastinejad F, Perlmann T, Evans RM, Sigler PB. Structural determinants of nuclear receptor assembly on DNA direct repeats. Nature. 1995 May 18;375(6528):203–211. [PubMed]
  • Meinke G, Sigler PB. DNA-binding mechanism of the monomeric orphan nuclear receptor NGFI-B. Nat Struct Biol. 1999 May;6(5):471–477. [PubMed]
  • Hsu MH, Palmer CN, Song W, Griffin KJ, Johnson EF. A carboxyl-terminal extension of the zinc finger domain contributes to the specificity and polarity of peroxisome proliferator-activated receptor DNA binding. J Biol Chem. 1998 Oct 23;273(43):27988–27997. [PubMed]
  • Zechel C, Shen XQ, Chambon P, Gronemeyer H. Dimerization interfaces formed between the DNA binding domains determine the cooperative binding of RXR/RAR and RXR/TR heterodimers to DR5 and DR4 elements. EMBO J. 1994 Mar 15;13(6):1414–1424. [PMC free article] [PubMed]
  • Perlmann T, Umesono K, Rangarajan PN, Forman BM, Evans RM. Two distinct dimerization interfaces differentially modulate target gene specificity of nuclear hormone receptors. Mol Endocrinol. 1996 Aug;10(8):958–966. [PubMed]
  • Tanenbaum DM, Wang Y, Williams SP, Sigler PB. Crystallographic comparison of the estrogen and progesterone receptor's ligand binding domains. Proc Natl Acad Sci U S A. 1998 May 26;95(11):5998–6003. [PMC free article] [PubMed]
  • Moras D, Gronemeyer H. The nuclear receptor ligand-binding domain: structure and function. Curr Opin Cell Biol. 1998 Jun;10(3):384–391. [PubMed]
  • Wagner RL, Apriletti JW, McGrath ME, West BL, Baxter JD, Fletterick RJ. A structural role for hormone in the thyroid hormone receptor. Nature. 1995 Dec 14;378(6558):690–697. [PubMed]
  • Brzozowski AM, Pike AC, Dauter Z, Hubbard RE, Bonn T, Engström O, Ohman L, Greene GL, Gustafsson JA, Carlquist M. Molecular basis of agonism and antagonism in the oestrogen receptor. Nature. 1997 Oct 16;389(6652):753–758. [PubMed]
  • Nolte RT, Wisely GB, Westin S, Cobb JE, Lambert MH, Kurokawa R, Rosenfeld MG, Willson TM, Glass CK, Milburn MV. Ligand binding and co-activator assembly of the peroxisome proliferator-activated receptor-gamma. Nature. 1998 Sep 10;395(6698):137–143. [PubMed]
  • Glass CK, Rose DW, Rosenfeld MG. Nuclear receptor coactivators. Curr Opin Cell Biol. 1997 Apr;9(2):222–232. [PubMed]
  • Xu L, Glass CK, Rosenfeld MG. Coactivator and corepressor complexes in nuclear receptor function. Curr Opin Genet Dev. 1999 Apr;9(2):140–147. [PubMed]
  • Darimont BD, Wagner RL, Apriletti JW, Stallcup MR, Kushner PJ, Baxter JD, Fletterick RJ, Yamamoto KR. Structure and specificity of nuclear receptor-coactivator interactions. Genes Dev. 1998 Nov 1;12(21):3343–3356. [PMC free article] [PubMed]
  • Grant PA, Berger SL. Histone acetyltransferase complexes. Semin Cell Dev Biol. 1999 Apr;10(2):169–177. [PubMed]
  • Johnson CA, Turner BM. Histone deacetylases: complex transducers of nuclear signals. Semin Cell Dev Biol. 1999 Apr;10(2):179–188. [PubMed]
  • Shao D, Rangwala SM, Bailey ST, Krakow SL, Reginato MJ, Lazar MA. Interdomain communication regulating ligand binding by PPAR-gamma. Nature. 1998 Nov 26;396(6709):377–380. [PubMed]
  • Hammer GD, Krylova I, Zhang Y, Darimont BD, Simpson K, Weigel NL, Ingraham HA. Phosphorylation of the nuclear receptor SF-1 modulates cofactor recruitment: integration of hormone signaling in reproduction and stress. Mol Cell. 1999 Apr;3(4):521–526. [PubMed]
  • Crofts LA, Hancock MS, Morrison NA, Eisman JA. Multiple promoters direct the tissue-specific expression of novel N-terminal variant human vitamin D receptor gene transcripts. Proc Natl Acad Sci U S A. 1998 Sep 1;95(18):10529–10534. [PMC free article] [PubMed]
  • Fasco MJ. Estrogen receptor mRNA splice variants produced from the distal and proximal promoter transcripts. Mol Cell Endocrinol. 1998 Mar 16;138(1-2):51–59. [PubMed]
  • Recent Advances in Steroid Biochemistry and Molecular Biology. Proceedings of the 12th International Symposium. Berlin, Germany, 21-24 May 1995. J Steroid Biochem Mol Biol. 1996 Jan;56(1-6):1–219. [PubMed]
  • Zhu XG, Hanover JA, Hager GL, Cheng SY. Hormone-induced translocation of thyroid hormone receptors in living cells visualized using a receptor green fluorescent protein chimera. J Biol Chem. 1998 Oct 16;273(42):27058–27063. [PubMed]
  • Weigel NL. Steroid hormone receptors and their regulation by phosphorylation. Biochem J. 1996 Nov 1;319(Pt 3):657–667. [PMC free article] [PubMed]
  • Shao D, Lazar MA. Modulating nuclear receptor function: may the phos be with you. J Clin Invest. 1999 Jun;103(12):1617–1618. [PMC free article] [PubMed]
  • Kim JH, Stansbury KH, Walker NJ, Trush MA, Strickland PT, Sutter TR. Metabolism of benzo[a]pyrene and benzo[a]pyrene-7,8-diol by human cytochrome P450 1B1. Carcinogenesis. 1998 Oct;19(10):1847–1853. [PubMed]
  • Martucci CP, Fishman J. P450 enzymes of estrogen metabolism. Pharmacol Ther. 1993 Feb-Mar;57(2-3):237–257. [PubMed]
  • Hayes CL, Spink DC, Spink BC, Cao JQ, Walker NJ, Sutter TR. 17 beta-estradiol hydroxylation catalyzed by human cytochrome P450 1B1. Proc Natl Acad Sci U S A. 1996 Sep 3;93(18):9776–9781. [PMC free article] [PubMed]
  • Hankinson O. The aryl hydrocarbon receptor complex. Annu Rev Pharmacol Toxicol. 1995;35:307–340. [PubMed]
  • Chen YH, Tukey RH. Protein kinase C modulates regulation of the CYP1A1 gene by the aryl hydrocarbon receptor. J Biol Chem. 1996 Oct 18;271(42):26261–26266. [PubMed]
  • Carrier F, Owens RA, Nebert DW, Puga A. Dioxin-dependent activation of murine Cyp1a-1 gene transcription requires protein kinase C-dependent phosphorylation. Mol Cell Biol. 1992 Apr;12(4):1856–1863. [PMC free article] [PubMed]
  • Mathis JM, Prough RA, Hines RN, Bresnick E, Simpson ER. Regulation of cytochrome P-450c by glucocorticoids and polycyclic aromatic hydrocarbons in cultured fetal rat hepatocytes. Arch Biochem Biophys. 1986 Apr;246(1):439–448. [PubMed]
  • Sidhu JS, Omiecinski CJ. Modulation of xenobiotic-inducible cytochrome P450 gene expression by dexamethasone in primary rat hepatocytes. Pharmacogenetics. 1995 Feb;5(1):24–36. [PubMed]
  • Celander M, Weisbrod R, Stegeman JJ. Glucocorticoid potentiation of cytochrome P4501A1 induction by 2,3,7,8-tetrachlorodibenzo-p-dioxin in porcine and human endothelial cells in culture. Biochem Biophys Res Commun. 1997 Mar 27;232(3):749–753. [PubMed]
  • Sherratt AJ, Banet DE, Linder MW, Prough RA. Potentiation of 3-methylcholanthrene induction of rat hepatic cytochrome P450IA1 by dexamethasone in vivo. J Pharmacol Exp Ther. 1989 May;249(2):667–672. [PubMed]
  • Mathis JM, Houser WH, Bresnick E, Cidlowski JA, Hines RN, Prough RA, Simpson ER. Glucocorticoid regulation of the rat cytochrome P450c (P450IA1) gene: receptor binding within intron I. Arch Biochem Biophys. 1989 Feb 15;269(1):93–105. [PubMed]
  • Linder MW, Falkner KC, Srinivasan G, Hines RN, Prough RA. Role of canonical glucocorticoid responsive elements in modulating expression of genes regulated by the arylhydrocarbon receptor. Drug Metab Rev. 1999 Feb;31(1):247–271. [PubMed]
  • Brake PB, Zhang L, Jefcoate CR. Aryl hydrocarbon receptor regulation of cytochrome P4501B1 in rat mammary fibroblasts: evidence for transcriptional repression by glucocorticoids. Mol Pharmacol. 1998 Nov;54(5):825–833. [PubMed]
  • König H, Ponta H, Rahmsdorf HJ, Herrlich P. Interference between pathway-specific transcription factors: glucocorticoids antagonize phorbol ester-induced AP-1 activity without altering AP-1 site occupation in vivo. EMBO J. 1992 Jun;11(6):2241–2246. [PMC free article] [PubMed]
  • Thomsen JS, Wang X, Hines RN, Safe S. Restoration of aryl hydrocarbon (Ah) responsiveness in MDA-MB-231 human breast cancer cells by transient expression of the estrogen receptor. Carcinogenesis. 1994 May;15(5):933–937. [PubMed]
  • Spink BC, Fasco MJ, Gierthy JF, Spink DC. 12-O-tetradecanoylphorbol-13-acetate upregulates the Ah receptor and differentially alters CYP1B1 and CYP1A1 expression in MCF-7 breast cancer cells. J Cell Biochem. 1998 Sep 1;70(3):289–296. [PubMed]
  • Jana NR, Sarkar S, Ishizuka M, Yonemoto J, Tohyama C, Sone H. Role of estradiol receptor-alpha in differential expression of 2,3,7, 8-tetrachlorodibenzo-p-dioxin-inducible genes in the RL95-2 and KLE human endometrial cancer cell lines. Arch Biochem Biophys. 1999 Aug 1;368(1):31–39. [PubMed]
  • Angus WG, Larsen MC, Jefcoate CR. Expression of CYP1A1 and CYP1B1 depends on cell-specific factors in human breast cancer cell lines: role of estrogen receptor status. Carcinogenesis. 1999 Jun;20(6):947–955. [PubMed]
  • Ignar-Trowbridge DM, Nelson KG, Bidwell MC, Curtis SW, Washburn TF, McLachlan JA, Korach KS. Coupling of dual signaling pathways: epidermal growth factor action involves the estrogen receptor. Proc Natl Acad Sci U S A. 1992 May 15;89(10):4658–4662. [PMC free article] [PubMed]
  • Bunone G, Briand PA, Miksicek RJ, Picard D. Activation of the unliganded estrogen receptor by EGF involves the MAP kinase pathway and direct phosphorylation. EMBO J. 1996 May 1;15(9):2174–2183. [PMC free article] [PubMed]
  • Korach KS, Couse JF, Curtis SW, Washburn TF, Lindzey J, Kimbro KS, Eddy EM, Migliaccio S, Snedeker SM, Lubahn DB, et al. Estrogen receptor gene disruption: molecular characterization and experimental and clinical phenotypes. Recent Prog Horm Res. 1996;51:159–188. [PubMed]
  • Kharat I, Saatcioglu F. Antiestrogenic effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin are mediated by direct transcriptional interference with the liganded estrogen receptor. Cross-talk between aryl hydrocarbon- and estrogen-mediated signaling. J Biol Chem. 1996 May 3;271(18):10533–10537. [PubMed]
  • Hoivik D, Willett K, Wilson C, Safe S. Estrogen does not inhibit 2,3,7, 8-tetrachlorodibenzo-p-dioxin-mediated effects in MCF-7 and Hepa 1c1c7 cells. J Biol Chem. 1997 Nov 28;272(48):30270–30274. [PubMed]
  • Ricci MS, Toscano DG, Mattingly CJ, Toscano WA., Jr Estrogen receptor reduces CYP1A1 induction in cultured human endometrial cells. J Biol Chem. 1999 Feb 5;274(6):3430–3438. [PubMed]
  • Kumar MB, Tarpey RW, Perdew GH. Differential recruitment of coactivator RIP140 by Ah and estrogen receptors. Absence of a role for LXXLL motifs. J Biol Chem. 1999 Aug 6;274(32):22155–22164. [PubMed]
  • Nguyen TA, Hoivik D, Lee JE, Safe S. Interactions of nuclear receptor coactivator/corepressor proteins with the aryl hydrocarbon receptor complex. Arch Biochem Biophys. 1999 Jul 15;367(2):250–257. [PubMed]
  • Mäkelä S, Savolainen H, Aavik E, Myllärniemi M, Strauss L, Taskinen E, Gustafsson JA, Häyry P. Differentiation between vasculoprotective and uterotrophic effects of ligands with different binding affinities to estrogen receptors alpha and beta. Proc Natl Acad Sci U S A. 1999 Jun 8;96(12):7077–7082. [PMC free article] [PubMed]
  • Vanacker JM, Pettersson K, Gustafsson JA, Laudet V. Transcriptional targets shared by estrogen receptor- related receptors (ERRs) and estrogen receptor (ER) alpha, but not by ERbeta. EMBO J. 1999 Aug 2;18(15):4270–4279. [PMC free article] [PubMed]
  • Vanacker JM, Bonnelye E, Chopin-Delannoy S, Delmarre C, Cavaillès V, Laudet V. Transcriptional activities of the orphan nuclear receptor ERR alpha (estrogen receptor-related receptor-alpha). Mol Endocrinol. 1999 May;13(5):764–773. [PubMed]
  • Li XY, Aström A, Duell EA, Qin L, Griffiths CE, Voorhees JJ. Retinoic acid antagonizes basal as well as coal tar and glucocorticoid-induced cytochrome P4501A1 expression in human skin. Carcinogenesis. 1995 Mar;16(3):519–524. [PubMed]
  • Wanner R, Brömmer S, Czarnetzki BM, Rosenbach T. The differentiation-related upregulation of aryl hydrocarbon receptor transcript levels is suppressed by retinoic acid. Biochem Biophys Res Commun. 1995 Apr 17;209(2):706–711. [PubMed]
  • Vecchini F, Mace K, Magdalou J, Mahe Y, Bernard BA, Shroot B. Constitutive and inducible expression of drug metabolizing enzymes in cultured human keratinocytes. Br J Dermatol. 1995 Jan;132(1):14–21. [PubMed]
  • Vecchini F, Lenoir-Viale MC, Cathelineau C, Magdalou J, Bernard BA, Shroot B. Presence of a retinoid responsive element in the promoter region of the human cytochrome P4501A1 gene. Biochem Biophys Res Commun. 1994 Jun 30;201(3):1205–1212. [PubMed]
  • Jurima-Romet M, Neigh S, Casley WL. Induction of cytochrome P450 3A by retinoids in rat hepatocyte culture. Hum Exp Toxicol. 1997 Apr;16(4):198–203. [PubMed]
  • Howell SR, Shirley MA, Ulm EH. Effects of retinoid treatment of rats on hepatic microsomal metabolism and cytochromes P450. Correlation between retinoic acid receptor/retinoid x receptor selectivity and effects on metabolic enzymes. Drug Metab Dispos. 1998 Mar;26(3):234–239. [PubMed]
  • Safe S, Wang F, Porter W, Duan R, McDougal A. Ah receptor agonists as endocrine disruptors: antiestrogenic activity and mechanisms. Toxicol Lett. 1998 Dec 28;102-103:343–347. [PubMed]
  • Krishnan V, Porter W, Santostefano M, Wang X, Safe S. Molecular mechanism of inhibition of estrogen-induced cathepsin D gene expression by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in MCF-7 cells. Mol Cell Biol. 1995 Dec;15(12):6710–6719. [PMC free article] [PubMed]
  • Wang X, Porter W, Krishnan V, Narasimhan TR, Safe S. Mechanism of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-mediated decrease of the nuclear estrogen receptor in MCF-7 human breast cancer cells. Mol Cell Endocrinol. 1993 Oct;96(1-2):159–166. [PubMed]
  • Gierthy JF, Spink BC, Figge HL, Pentecost BT, Spink DC. Effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin, 12-O-tetradecanoylphorbol-13-acetate and 17 beta-estradiol on estrogen receptor regulation in MCF-7 human breast cancer cells. J Cell Biochem. 1996 Feb;60(2):173–184. [PubMed]
  • Sunahara GI, Guenat C, Grieu F. Characterization of 3-methylcholanthrene effects on the rat glucocorticoid receptor in vivo. Cancer Res. 1989 Jul 1;49(13):3535–3541. [PubMed]
  • Lin FH, Stohs SJ, Birnbaum LS, Clark G, Lucier GW, Goldstein JA. The effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on the hepatic estrogen and glucocorticoid receptors in congenic strains of Ah responsive and Ah nonresponsive C57BL/6J mice. Toxicol Appl Pharmacol. 1991 Mar 15;108(1):129–139. [PubMed]
  • Lorick KL, Toscano DL, Toscano WA., Jr 2,3,7,8-Tetrachlorodibenzo-p-dioxin alters retinoic acid receptor function in human keratinocytes. Biochem Biophys Res Commun. 1998 Feb 24;243(3):749–752. [PubMed]
  • Alexander DL, Ganem LG, Fernandez-Salguero P, Gonzalez F, Jefcoate CR. Aryl-hydrocarbon receptor is an inhibitory regulator of lipid synthesis and of commitment to adipogenesis. J Cell Sci. 1998 Nov;111(Pt 22):3311–3322. [PubMed]
  • Sewall CH, Flagler N, Vanden Heuvel JP, Clark GC, Tritscher AM, Maronpot RM, Lucier GW. Alterations in thyroid function in female Sprague-Dawley rats following chronic treatment with 2,3,7,8-tetrachlorodibenzo-p-dioxin. Toxicol Appl Pharmacol. 1995 Jun;132(2):237–244. [PubMed]
  • Emi Y, Omura T. Synthesis of sex-specific forms of cytochrome P-450 in rat liver is transiently suppressed by hepatic monooxygenase inducers. J Biochem. 1988 Jul;104(1):40–43. [PubMed]
  • Yeowell HN, Waxman DJ, Wadhera A, Goldstein JA. Suppression of the constitutive, male-specific rat hepatic cytochrome P-450 2c and its mRNA by 3,4,5,3',4',5'-hexachlorobiphenyl and 3-methylcholanthrene. Mol Pharmacol. 1987 Sep;32(3):340–347. [PubMed]
  • Fernandez-Salguero P, Pineau T, Hilbert DM, McPhail T, Lee SS, Kimura S, Nebert DW, Rudikoff S, Ward JM, Gonzalez FJ. Immune system impairment and hepatic fibrosis in mice lacking the dioxin-binding Ah receptor. Science. 1995 May 5;268(5211):722–726. [PubMed]
  • Roberts ES, Vaz AD, Coon MJ. Role of isozymes of rabbit microsomal cytochrome P-450 in the metabolism of retinoic acid, retinol, and retinal. Mol Pharmacol. 1992 Feb;41(2):427–433. [PubMed]
  • Raner GM, Vaz AD, Coon MJ. Metabolism of all-trans, 9-cis, and 13-cis isomers of retinal by purified isozymes of microsomal cytochrome P450 and mechanism-based inhibition of retinoid oxidation by citral. Mol Pharmacol. 1996 Mar;49(3):515–522. [PubMed]
  • Liang HC, Li H, McKinnon RA, Duffy JJ, Potter SS, Puga A, Nebert DW. Cyp1a2(-/-) null mutant mice develop normally but show deficient drug metabolism. Proc Natl Acad Sci U S A. 1996 Feb 20;93(4):1671–1676. [PMC free article] [PubMed]
  • Gonzalez FJ, Lee YH. Constitutive expression of hepatic cytochrome P450 genes. FASEB J. 1996 Aug;10(10):1112–1117. [PubMed]
  • Park Y, Kemper B. The CYP2B1 proximal promoter contains a functional C/EBP regulatory element. DNA Cell Biol. 1996 Aug;15(8):693–701. [PubMed]
  • Corton JC, Fan LQ, Brown S, Anderson SP, Bocos C, Cattley RC, Mode A, Gustafsson JA. Down-regulation of cytochrome P450 2C family members and positive acute-phase response gene expression by peroxisome proliferator chemicals. Mol Pharmacol. 1998 Sep;54(3):463–473. [PubMed]
  • Venepally P, Chen D, Kemper B. Transcriptional regulatory elements for basal expression of cytochrome P450IIC genes. J Biol Chem. 1992 Aug 25;267(24):17333–17338. [PubMed]
  • Fraser JD, Martinez V, Straney R, Briggs MR. DNA binding and transcription activation specificity of hepatocyte nuclear factor 4. Nucleic Acids Res. 1998 Jun 1;26(11):2702–2707. [PMC free article] [PubMed]
  • Chen D, Lepar G, Kemper B. A transcriptional regulatory element common to a large family of hepatic cytochrome P450 genes is a functional binding site of the orphan receptor HNF-4. J Biol Chem. 1994 Feb 18;269(7):5420–5427. [PubMed]
  • Chen D, Park Y, Kemper B. Differential protein binding and transcriptional activities of HNF-4 elements in three closely related CYP2C genes. DNA Cell Biol. 1994 Jul;13(7):771–779. [PubMed]
  • Ibeanu GC, Goldstein JA. Transcriptional regulation of human CYP2C genes: functional comparison of CYP2C9 and CYP2C18 promoter regions. Biochemistry. 1995 Jun 27;34(25):8028–8036. [PubMed]
  • Yokomori N, Nishio K, Aida K, Negishi M. Transcriptional regulation by HNF-4 of the steroid 15alpha-hydroxylase P450 (Cyp2a-4) gene in mouse liver. J Steroid Biochem Mol Biol. 1997 Jul;62(4):307–314. [PubMed]
  • Huss JM, Kasper CB. Nuclear receptor involvement in the regulation of rat cytochrome P450 3A23 expression. J Biol Chem. 1998 Jun 26;273(26):16155–16162. [PubMed]
  • Ogino M, Nagata K, Miyata M, Yamazoe Y. Hepatocyte nuclear factor 4-mediated activation of rat CYP3A1 gene and its modes of modulation by apolipoprotein AI regulatory protein I and v-ErbA-related protein 3. Arch Biochem Biophys. 1999 Feb 1;362(1):32–37. [PubMed]
  • Yoshioka H, Lang M, Wong G, Negishi M. A specific cis-acting element regulates in vitro transcription of sex-dependent mouse steroid 16 alpha-hydroxylase (C-P450(16 alpha)) gene. J Biol Chem. 1990 Aug 25;265(24):14612–14617. [PubMed]
  • Legraverend C, Eguchi H, Ström A, Lahuna O, Mode A, Tollet P, Westin S, Gustafsson JA. Transactivation of the rat CYP2C13 gene promoter involves HNF-1, HNF-3, and members of the orphan receptor subfamily. Biochemistry. 1994 Aug 23;33(33):9889–9897. [PubMed]
  • Ström A, Westin S, Eguchi H, Gustafsson JA, Mode A. Characterization of orphan nuclear receptor binding elements in sex-differentiated members of the CYP2C gene family expressed in rat liver. J Biol Chem. 1995 May 12;270(19):11276–11281. [PubMed]
  • Sueyoshi T, Yokomori N, Korach KS, Negishi M. Developmental action of estrogen receptor-alpha feminizes the growth hormone-Stat5b pathway and expression of Cyp2a4 and Cyp2d9 genes in mouse liver. Mol Pharmacol. 1999 Sep;56(3):473–477. [PubMed]
  • Sundseth SS, Alberta JA, Waxman DJ. Sex-specific, growth hormone-regulated transcription of the cytochrome P450 2C11 and 2C12 genes. J Biol Chem. 1992 Feb 25;267(6):3907–3914. [PubMed]
  • Legraverend C, Mode A, Westin S, Ström A, Eguchi H, Zaphiropoulos PG, Gustafsson JA. Transcriptional regulation of rat P-450 2C gene subfamily members by the sexually dimorphic pattern of growth hormone secretion. Mol Endocrinol. 1992 Feb;6(2):259–266. [PubMed]
  • Noshiro M, Negishi M. Pretranslational regulation of sex-dependent testosterone hydroxylases by growth hormone in mouse liver. J Biol Chem. 1986 Dec 5;261(34):15923–15927. [PubMed]
  • Udy GB, Towers RP, Snell RG, Wilkins RJ, Park SH, Ram PA, Waxman DJ, Davey HW. Requirement of STAT5b for sexual dimorphism of body growth rates and liver gene expression. Proc Natl Acad Sci U S A. 1997 Jul 8;94(14):7239–7244. [PMC free article] [PubMed]
  • Roselli CE, Klosterman SA. Sexual differentiation of aromatase activity in the rat brain: effects of perinatal steroid exposure. Endocrinology. 1998 Jul;139(7):3193–3201. [PubMed]
  • Fisher CR, Graves KH, Parlow AF, Simpson ER. Characterization of mice deficient in aromatase (ArKO) because of targeted disruption of the cyp19 gene. Proc Natl Acad Sci U S A. 1998 Jun 9;95(12):6965–6970. [PMC free article] [PubMed]
  • Honkakoski P, Lang MA. Mouse liver phenobarbital-inducible P450 system: purification, characterization, and differential inducibility of four cytochrome P450 isozymes from D2 mouse. Arch Biochem Biophys. 1989 Aug 15;273(1):42–57. [PubMed]
  • Furster C, Wikvall K. Identification of CYP3A4 as the major enzyme responsible for 25-hydroxylation of 5beta-cholestane-3alpha,7alpha,12alpha-triol in human liver microsomes. Biochim Biophys Acta. 1999 Jan 29;1437(1):46–52. [PubMed]
  • Omiecinski CJ. Tissue-specific expression of rat mRNAs homologous to cytochromes P-450b and P-450e. Nucleic Acids Res. 1986 Feb 11;14(3):1525–1539. [PMC free article] [PubMed]
  • Honkakoski P, Kojo A, Lang MA. Regulation of the mouse liver cytochrome P450 2B subfamily by sex hormones and phenobarbital. Biochem J. 1992 Aug 1;285(Pt 3):979–983. [PMC free article] [PubMed]
  • Frueh FW, Zanger UM, Meyer UA. Extent and character of phenobarbital-mediated changes in gene expression in the liver. Mol Pharmacol. 1997 Mar;51(3):363–369. [PubMed]
  • Sidhu JS, Omiecinski CJ. Protein synthesis inhibitors exhibit a nonspecific effect on phenobarbital-inducible cytochome P450 gene expression in primary rat hepatocytes. J Biol Chem. 1998 Feb 20;273(8):4769–4775. [PubMed]
  • Honkakoski P, Negishi M. Protein serine/threonine phosphatase inhibitors suppress phenobarbital-induced Cyp2b10 gene transcription in mouse primary hepatocytes. Biochem J. 1998 Mar 1;330(Pt 2):889–895. [PMC free article] [PubMed]
  • Sidhu JS, Omiecinski CJ. An okadaic acid-sensitive pathway involved in the phenobarbital-mediated induction of CYP2B gene expression in primary rat hepatocyte cultures. J Pharmacol Exp Ther. 1997 Aug;282(2):1122–1129. [PubMed]
  • Honkakoski P, Negishi M. Regulatory DNA elements of phenobarbital-responsive cytochrome P450 CYP2B genes. J Biochem Mol Toxicol. 1998;12(1):3–9. [PubMed]
  • Ramsden R, Sommer KM, Omiecinski CJ. Phenobarbital induction and tissue-specific expression of the rat CYP2B2 gene in transgenic mice. J Biol Chem. 1993 Oct 15;268(29):21722–21726. [PubMed]
  • Hashimoto T, Matsumoto T, Nishizawa M, Kawabata S, Morohashi K, Handa S, Omura T. A mutant rat strain deficient in induction of a phenobarbital-inducible form of cytochrome P-450 in liver microsomes. J Biochem. 1988 Mar;103(3):487–492. [PubMed]
  • Kende AS, Ebetino FH, Drendel WB, Sundaralingam M, Glover E, Poland A. Structure-activity relationship of bispyridyloxybenzene for induction of mouse hepatic aminopyrine N-demethylase activity. Chemical, biological, and X-ray crystallographic studies. Mol Pharmacol. 1985 Nov;28(5):445–453. [PubMed]
  • Trottier E, Belzil A, Stoltz C, Anderson A. Localization of a phenobarbital-responsive element (PBRE) in the 5'-flanking region of the rat CYP2B2 gene. Gene. 1995 Jun 9;158(2):263–268. [PubMed]
  • Park Y, Li H, Kemper B. Phenobarbital induction mediated by a distal CYP2B2 sequence in rat liver transiently transfected in situ. J Biol Chem. 1996 Sep 27;271(39):23725–23728. [PubMed]
  • Honkakoski P, Negishi M. Characterization of a phenobarbital-responsive enhancer module in mouse P450 Cyp2b10 gene. J Biol Chem. 1997 Jun 6;272(23):14943–14949. [PubMed]
  • Sueyoshi T, Kawamoto T, Zelko I, Honkakoski P, Negishi M. The repressed nuclear receptor CAR responds to phenobarbital in activating the human CYP2B6 gene. J Biol Chem. 1999 Mar 5;274(10):6043–6046. [PubMed]
  • Kim J, Kemper B. Phenobarbital alters protein binding to the CYP2B1/2 phenobarbital-responsive unit in native chromatin. J Biol Chem. 1997 Nov 21;272(47):29423–29425. [PubMed]
  • Honkakoski P, Zelko I, Sueyoshi T, Negishi M. The nuclear orphan receptor CAR-retinoid X receptor heterodimer activates the phenobarbital-responsive enhancer module of the CYP2B gene. Mol Cell Biol. 1998 Oct;18(10):5652–5658. [PMC free article] [PubMed]
  • Honkakoski P, Moore R, Washburn KA, Negishi M. Activation by diverse xenochemicals of the 51-base pair phenobarbital-responsive enhancer module in the CYP2B10 gene. Mol Pharmacol. 1998 Apr;53(4):597–601. [PubMed]
  • Ramsden R, Beck NB, Sommer KM, Omiecinski CJ. Phenobarbital responsiveness conferred by the 5'-flanking region of the rat CYP2B2 gene in transgenic mice. Gene. 1999 Mar 4;228(1-2):169–179. [PubMed]
  • Baes M, Gulick T, Choi HS, Martinoli MG, Simha D, Moore DD. A new orphan member of the nuclear hormone receptor superfamily that interacts with a subset of retinoic acid response elements. Mol Cell Biol. 1994 Mar;14(3):1544–1552. [PMC free article] [PubMed]
  • Lehmann JM, McKee DD, Watson MA, Willson TM, Moore JT, Kliewer SA. The human orphan nuclear receptor PXR is activated by compounds that regulate CYP3A4 gene expression and cause drug interactions. J Clin Invest. 1998 Sep 1;102(5):1016–1023. [PMC free article] [PubMed]
  • Choi HS, Chung M, Tzameli I, Simha D, Lee YK, Seol W, Moore DD. Differential transactivation by two isoforms of the orphan nuclear hormone receptor CAR. J Biol Chem. 1997 Sep 19;272(38):23565–23571. [PubMed]
  • Honkakoski P, Moore R, Gynther J, Negishi M. Characterization of phenobarbital-inducible mouse Cyp2b10 gene transcription in primary hepatocytes. J Biol Chem. 1996 Apr 19;271(16):9746–9753. [PubMed]
  • Forman BM, Tzameli I, Choi HS, Chen J, Simha D, Seol W, Evans RM, Moore DD. Androstane metabolites bind to and deactivate the nuclear receptor CAR-beta. Nature. 1998 Oct 8;395(6702):612–615. [PubMed]
  • Gower DB, Ruparelia BA. Olfaction in humans with special reference to odorous 16-androstenes: their occurrence, perception and possible social, psychological and sexual impact. J Endocrinol. 1993 May;137(2):167–187. [PubMed]
  • Kliewer SA, Lehmann JM, Willson TM. Orphan nuclear receptors: shifting endocrinology into reverse. Science. 1999 Apr 30;284(5415):757–760. [PubMed]
  • Kocarek TA, Kraniak JM, Reddy AB. Regulation of rat hepatic cytochrome P450 expression by sterol biosynthesis inhibition: inhibitors of squalene synthase are potent inducers of CYP2B expression in primary cultured rat hepatocytes and rat liver. Mol Pharmacol. 1998 Sep;54(3):474–484. [PubMed]
  • Kawamoto T, Sueyoshi T, Zelko I, Moore R, Washburn K, Negishi M. Phenobarbital-responsive nuclear translocation of the receptor CAR in induction of the CYP2B gene. Mol Cell Biol. 1999 Sep;19(9):6318–6322. [PMC free article] [PubMed]
  • DeFranco DB, Qi M, Borror KC, Garabedian MJ, Brautigan DL. Protein phosphatase types 1 and/or 2A regulate nucleocytoplasmic shuttling of glucocorticoid receptors. Mol Endocrinol. 1991 Sep;5(9):1215–1228. [PubMed]
  • Chang TK, Teixeira J, Gil G, Waxman DJ. The lithocholic acid 6 beta-hydroxylase cytochrome P-450, CYP 3A10, is an active catalyst of steroid-hormone 6 beta-hydroxylation. Biochem J. 1993 Apr 15;291(Pt 2):429–433. [PMC free article] [PubMed]
  • Thummel KE, Wilkinson GR. In vitro and in vivo drug interactions involving human CYP3A. Annu Rev Pharmacol Toxicol. 1998;38:389–430. [PubMed]
  • Schuetz JD, Beach DL, Guzelian PS. Selective expression of cytochrome P450 CYP3A mRNAs in embryonic and adult human liver. Pharmacogenetics. 1994 Feb;4(1):11–20. [PubMed]
  • Barwick JL, Quattrochi LC, Mills AS, Potenza C, Tukey RH, Guzelian PS. Trans-species gene transfer for analysis of glucocorticoid-inducible transcriptional activation of transiently expressed human CYP3A4 and rabbit CYP3A6 in primary cultures of adult rat and rabbit hepatocytes. Mol Pharmacol. 1996 Jul;50(1):10–16. [PubMed]
  • Schuetz EG, Brimer C, Schuetz JD. Environmental xenobiotics and the antihormones cyproterone acetate and spironolactone use the nuclear hormone pregnenolone X receptor to activate the CYP3A23 hormone response element. Mol Pharmacol. 1998 Dec;54(6):1113–1117. [PMC free article] [PubMed]
  • Quattrochi LC, Mills AS, Barwick JL, Yockey CB, Guzelian PS. A novel cis-acting element in a liver cytochrome P450 3A gene confers synergistic induction by glucocorticoids plus antiglucocorticoids. J Biol Chem. 1995 Dec 1;270(48):28917–28923. [PubMed]
  • Huss JM, Wang SI, Astrom A, McQuiddy P, Kasper CB. Dexamethasone responsiveness of a major glucocorticoid-inducible CYP3A gene is mediated by elements unrelated to a glucocorticoid receptor binding motif. Proc Natl Acad Sci U S A. 1996 May 14;93(10):4666–4670. [PMC free article] [PubMed]
  • Pascussi JM, Jounaidi Y, Drocourt L, Domergue J, Balabaud C, Maurel P, Vilarem MJ. Evidence for the presence of a functional pregnane X receptor response element in the CYP3A7 promoter gene. Biochem Biophys Res Commun. 1999 Jul 5;260(2):377–381. [PubMed]
  • Goodwin B, Hodgson E, Liddle C. The orphan human pregnane X receptor mediates the transcriptional activation of CYP3A4 by rifampicin through a distal enhancer module. Mol Pharmacol. 1999 Dec;56(6):1329–1339. [PubMed]
  • Blumberg B, Sabbagh W, Jr, Juguilon H, Bolado J, Jr, van Meter CM, Ong ES, Evans RM. SXR, a novel steroid and xenobiotic-sensing nuclear receptor. Genes Dev. 1998 Oct 15;12(20):3195–3205. [PMC free article] [PubMed]
  • Kliewer SA, Moore JT, Wade L, Staudinger JL, Watson MA, Jones SA, McKee DD, Oliver BB, Willson TM, Zetterström RH, et al. An orphan nuclear receptor activated by pregnanes defines a novel steroid signaling pathway. Cell. 1998 Jan 9;92(1):73–82. [PubMed]
  • Bertilsson G, Heidrich J, Svensson K, Asman M, Jendeberg L, Sydow-Bäckman M, Ohlsson R, Postlind H, Blomquist P, Berkenstam A. Identification of a human nuclear receptor defines a new signaling pathway for CYP3A induction. Proc Natl Acad Sci U S A. 1998 Oct 13;95(21):12208–12213. [PMC free article] [PubMed]
  • Janowski BA, Grogan MJ, Jones SA, Wisely GB, Kliewer SA, Corey EJ, Mangelsdorf DJ. Structural requirements of ligands for the oxysterol liver X receptors LXRalpha and LXRbeta. Proc Natl Acad Sci U S A. 1999 Jan 5;96(1):266–271. [PMC free article] [PubMed]
  • Traber PG, Wang W, McDonnell M, Gumucio JJ. P450IIB gene expression in rat small intestine: cloning of intestinal P450IIB1 mRNA using the polymerase chain reaction and transcriptional regulation of induction. Mol Pharmacol. 1990 Jun;37(6):810–819. [PubMed]
  • Meehan RR, Forrester LM, Stevenson K, Hastie ND, Buchmann A, Kunz HW, Wolf CR. Regulation of phenobarbital-inducible cytochrome P-450s in rat and mouse liver following dexamethasone administration and hypophysectomy. Biochem J. 1988 Sep 15;254(3):789–797. [PMC free article] [PubMed]
  • Kocarek TA, Schuetz EG, Guzelian PS. Differentiated induction of cytochrome P450b/e and P450p mRNAs by dose of phenobarbital in primary cultures of adult rat hepatocytes. Mol Pharmacol. 1990 Oct;38(4):440–444. [PubMed]
  • Jaiswal AK, Haaparanta T, Luc PV, Schembri J, Adesnik M. Glucocorticoid regulation of a phenobarbital-inducible cytochrome P-450 gene: the presence of a functional glucocorticoid response element in the 5'-flanking region of the CYP2B2 gene. Nucleic Acids Res. 1990 Jul 25;18(14):4237–4242. [PMC free article] [PubMed]
  • Schuetz JD, Schuetz EG, Thottassery JV, Guzelian PS, Strom S, Sun D. Identification of a novel dexamethasone responsive enhancer in the human CYP3A5 gene and its activation in human and rat liver cells. Mol Pharmacol. 1996 Jan;49(1):63–72. [PubMed]
  • Pereira TM, Carlstedt-Duke J, Lechner MC, Gustafsson JA. Identification of a functional glucocorticoid response element in the CYP3A1/IGC2 gene. DNA Cell Biol. 1998 Jan;17(1):39–49. [PubMed]
  • Burger HJ, Schuetz JD, Schuetz EG, Guzelian PS. Paradoxical transcriptional activation of rat liver cytochrome P-450 3A1 by dexamethasone and the antiglucocorticoid pregnenolone 16 alpha-carbonitrile: analysis by transient transfection into primary monolayer cultures of adult rat hepatocytes. Proc Natl Acad Sci U S A. 1992 Mar 15;89(6):2145–2149. [PMC free article] [PubMed]
  • Zhang H, LeCulyse E, Liu L, Hu M, Matoney L, Zhu W, Yan B. Rat pregnane X receptor: molecular cloning, tissue distribution, and xenobiotic regulation. Arch Biochem Biophys. 1999 Aug 1;368(1):14–22. [PubMed]
  • Liddle C, Goodwin BJ, George J, Tapner M, Farrell GC. Separate and interactive regulation of cytochrome P450 3A4 by triiodothyronine, dexamethasone, and growth hormone in cultured hepatocytes. J Clin Endocrinol Metab. 1998 Jul;83(7):2411–2416. [PubMed]
  • Ganem LG, Trottier E, Anderson A, Jefcoate CR. Phenobarbital induction of CYP2B1/2 in primary hepatocytes: endocrine regulation and evidence for a single pathway for multiple inducers. Toxicol Appl Pharmacol. 1999 Feb 15;155(1):32–42. [PubMed]
  • Seol W, Choi HS, Moore DD. An orphan nuclear hormone receptor that lacks a DNA binding domain and heterodimerizes with other receptors. Science. 1996 May 31;272(5266):1336–1339. [PubMed]
  • Johansson L, Thomsen JS, Damdimopoulos AE, Spyrou G, Gustafsson JA, Treuter E. The orphan nuclear receptor SHP inhibits agonist-dependent transcriptional activity of estrogen receptors ERalpha and ERbeta. J Biol Chem. 1999 Jan 1;274(1):345–353. [PubMed]
  • Roman LJ, Palmer CN, Clark JE, Muerhoff AS, Griffin KJ, Johnson EF, Masters BS. Expression of rabbit cytochromes P4504A which catalyze the omega-hydroxylation of arachidonic acid, fatty acids, and prostaglandins. Arch Biochem Biophys. 1993 Nov 15;307(1):57–65. [PubMed]
  • Sharma R, Lake BG, Gibson GG. Co-induction of microsomal cytochrome P-452 and the peroxisomal fatty acid beta-oxidation pathway in the rat by clofibrate and di-(2-ethylhexyl)phthalate. Dose-response studies. Biochem Pharmacol. 1988 Apr 1;37(7):1203–1206. [PubMed]
  • Issemann I, Green S. Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators. Nature. 1990 Oct 18;347(6294):645–650. [PubMed]
  • Gonzalez FJ, Peters JM, Cattley RC. Mechanism of action of the nongenotoxic peroxisome proliferators: role of the peroxisome proliferator-activator receptor alpha. J Natl Cancer Inst. 1998 Nov 18;90(22):1702–1709. [PubMed]
  • Vamecq J, Latruffe N. Medical significance of peroxisome proliferator-activated receptors. Lancet. 1999 Jul 10;354(9173):141–148. [PubMed]
  • Johnson EF, Palmer CN, Griffin KJ, Hsu MH. Role of the peroxisome proliferator-activated receptor in cytochrome P450 4A gene regulation. FASEB J. 1996 Sep;10(11):1241–1248. [PubMed]
  • Aldridge TC, Tugwood JD, Green S. Identification and characterization of DNA elements implicated in the regulation of CYP4A1 transcription. Biochem J. 1995 Mar 1;306(Pt 2):473–479. [PMC free article] [PubMed]
  • Palmer CN, Hsu MH, Griffin HJ, Johnson EF. Novel sequence determinants in peroxisome proliferator signaling. J Biol Chem. 1995 Jul 7;270(27):16114–16121. [PubMed]
  • Nakshatri H, Bhat-Nakshatri P. Multiple parameters determine the specificity of transcriptional response by nuclear receptors HNF-4, ARP-1, PPAR, RAR and RXR through common response elements. Nucleic Acids Res. 1998 May 15;26(10):2491–2499. [PMC free article] [PubMed]
  • Castelein H, Declercq PE, Baes M. DNA binding preferences of PPAR alpha/RXR alpha heterodimers. Biochem Biophys Res Commun. 1997 Apr 7;233(1):91–95. [PubMed]
  • Göttlicher M, Widmark E, Li Q, Gustafsson JA. Fatty acids activate a chimera of the clofibric acid-activated receptor and the glucocorticoid receptor. Proc Natl Acad Sci U S A. 1992 May 15;89(10):4653–4657. [PMC free article] [PubMed]
  • Devchand PR, Keller H, Peters JM, Vazquez M, Gonzalez FJ, Wahli W. The PPARalpha-leukotriene B4 pathway to inflammation control. Nature. 1996 Nov 7;384(6604):39–43. [PubMed]
  • Yu K, Bayona W, Kallen CB, Harding HP, Ravera CP, McMahon G, Brown M, Lazar MA. Differential activation of peroxisome proliferator-activated receptors by eicosanoids. J Biol Chem. 1995 Oct 13;270(41):23975–23983. [PubMed]
  • Forman BM, Chen J, Evans RM. Hypolipidemic drugs, polyunsaturated fatty acids, and eicosanoids are ligands for peroxisome proliferator-activated receptors alpha and delta. Proc Natl Acad Sci U S A. 1997 Apr 29;94(9):4312–4317. [PMC free article] [PubMed]
  • Keller H, Devchand PR, Perroud M, Wahli W. PPAR alpha structure-function relationships derived from species-specific differences in responsiveness to hypolipidemic agents. Biol Chem. 1997 Jul;378(7):651–655. [PubMed]
  • Maloney EK, Waxman DJ. trans-Activation of PPARalpha and PPARgamma by structurally diverse environmental chemicals. Toxicol Appl Pharmacol. 1999 Dec 1;161(2):209–218. [PubMed]
  • Yan ZH, Karam WG, Staudinger JL, Medvedev A, Ghanayem BI, Jetten AM. Regulation of peroxisome proliferator-activated receptor alpha-induced transactivation by the nuclear orphan receptor TAK1/TR4. J Biol Chem. 1998 May 1;273(18):10948–10957. [PubMed]
  • Miyata KS, McCaw SE, Patel HV, Rachubinski RA, Capone JP. The orphan nuclear hormone receptor LXR alpha interacts with the peroxisome proliferator-activated receptor and inhibits peroxisome proliferator signaling. J Biol Chem. 1996 Apr 19;271(16):9189–9192. [PubMed]
  • Chu R, Madison LD, Lin Y, Kopp P, Rao MS, Jameson JL, Reddy JK. Thyroid hormone (T3) inhibits ciprofibrate-induced transcription of genes encoding beta-oxidation enzymes: cross talk between peroxisome proliferator and T3 signaling pathways. Proc Natl Acad Sci U S A. 1995 Dec 5;92(25):11593–11597. [PMC free article] [PubMed]
  • Jow L, Mukherjee R. The human peroxisome proliferator-activated receptor (PPAR) subtype NUC1 represses the activation of hPPAR alpha and thyroid hormone receptors. J Biol Chem. 1995 Feb 24;270(8):3836–3840. [PubMed]
  • Webb SJ, Xiao GH, Geoghegan TE, Prough RA. Regulation of CYP4A expression in rat by dehydroepiandrosterone and thyroid hormone. Mol Pharmacol. 1996 Feb;49(2):276–287. [PubMed]
  • Lee SS, Pineau T, Drago J, Lee EJ, Owens JW, Kroetz DL, Fernandez-Salguero PM, Westphal H, Gonzalez FJ. Targeted disruption of the alpha isoform of the peroxisome proliferator-activated receptor gene in mice results in abolishment of the pleiotropic effects of peroxisome proliferators. Mol Cell Biol. 1995 Jun;15(6):3012–3022. [PMC free article] [PubMed]
  • Peters JM, Zhou YC, Ram PA, Lee SS, Gonzalez FJ, Waxman DJ. Peroxisome proliferator-activated receptor alpha required for gene induction by dehydroepiandrosterone-3 beta-sulfate. Mol Pharmacol. 1996 Jul;50(1):67–74. [PubMed]
  • Palmer CN, Hsu MH, Muerhoff AS, Griffin KJ, Johnson EF. Interaction of the peroxisome proliferator-activated receptor alpha with the retinoid X receptor alpha unmasks a cryptic peroxisome proliferator response element that overlaps an ARP-1-binding site in the CYP4A6 promoter. J Biol Chem. 1994 Jul 8;269(27):18083–18089. [PubMed]
  • Chambon P. A decade of molecular biology of retinoic acid receptors. FASEB J. 1996 Jul;10(9):940–954. [PubMed]
  • Leo MA, Lieber CS. New pathway for retinol metabolism in liver microsomes. J Biol Chem. 1985 May 10;260(9):5228–5231. [PubMed]
  • Zhang QY, Raner G, Ding X, Dunbar D, Coon MJ, Kaminsky LS. Characterization of the cytochrome P450 CYP2J4: expression in rat small intestine and role in retinoic acid biotransformation from retinal. Arch Biochem Biophys. 1998 May 15;353(2):257–264. [PubMed]
  • Blumberg B, Bolado J, Jr, Derguini F, Craig AG, Moreno TA, Chakravarti D, Heyman RA, Buck J, Evans RM. Novel retinoic acid receptor ligands in Xenopus embryos. Proc Natl Acad Sci U S A. 1996 May 14;93(10):4873–4878. [PMC free article] [PubMed]
  • Pijnappel WW, Folkers GE, de Jonge WJ, Verdegem PJ, de Laat SW, Lugtenburg J, Hendriks HF, van der Saag PT, Durston AJ. Metabolism to a response pathway selective retinoid ligand during axial pattern formation. Proc Natl Acad Sci U S A. 1998 Dec 22;95(26):15424–15429. [PMC free article] [PubMed]
  • White JA, Beckett-Jones B, Guo YD, Dilworth FJ, Bonasoro J, Jones G, Petkovich M. cDNA cloning of human retinoic acid-metabolizing enzyme (hP450RAI) identifies a novel family of cytochromes P450. J Biol Chem. 1997 Jul 25;272(30):18538–18541. [PubMed]
  • Ray WJ, Bain G, Yao M, Gottlieb DI. CYP26, a novel mammalian cytochrome P450, is induced by retinoic acid and defines a new family. J Biol Chem. 1997 Jul 25;272(30):18702–18708. [PubMed]
  • Abu-Abed SS, Beckett BR, Chiba H, Chithalen JV, Jones G, Metzger D, Chambon P, Petkovich M. Mouse P450RAI (CYP26) expression and retinoic acid-inducible retinoic acid metabolism in F9 cells are regulated by retinoic acid receptor gamma and retinoid X receptor alpha. J Biol Chem. 1998 Jan 23;273(4):2409–2415. [PubMed]
  • Leo MA, Iida S, Lieber CS. Retinoic acid metabolism by a system reconstituted with cytochrome P-450. Arch Biochem Biophys. 1984 Oct;234(1):305–312. [PubMed]
  • Leo MA, Lasker JM, Raucy JL, Kim CI, Black M, Lieber CS. Metabolism of retinol and retinoic acid by human liver cytochrome P450IIC8. Arch Biochem Biophys. 1989 Feb 15;269(1):305–312. [PubMed]
  • Westin S, Mode A, Murray M, Chen R, Gustafsson JA. Growth hormone and vitamin A induce P4502C7 mRNA expression in primary rat hepatocytes. Mol Pharmacol. 1993 Nov;44(5):997–1002. [PubMed]
  • Westin S, Sonneveld E, van der Leede BM, van der Saag PT, Gustafsson JA, Mode A. CYP2C7 expression in rat liver and hepatocytes: regulation by retinoids. Mol Cell Endocrinol. 1997 May 16;129(2):169–179. [PubMed]
  • Carlberg C, Polly P. Gene regulation by vitamin D3. Crit Rev Eukaryot Gene Expr. 1998;8(1):19–42. [PubMed]
  • Umesono K, Murakami KK, Thompson CC, Evans RM. Direct repeats as selective response elements for the thyroid hormone, retinoic acid, and vitamin D3 receptors. Cell. 1991 Jun 28;65(7):1255–1266. [PubMed]
  • vom Baur E, Zechel C, Heery D, Heine MJ, Garnier JM, Vivat V, Le Douarin B, Gronemeyer H, Chambon P, Losson R. Differential ligand-dependent interactions between the AF-2 activating domain of nuclear receptors and the putative transcriptional intermediary factors mSUG1 and TIF1. EMBO J. 1996 Jan 2;15(1):110–124. [PMC free article] [PubMed]
  • Alroy I, Towers TL, Freedman LP. Transcriptional repression of the interleukin-2 gene by vitamin D3: direct inhibition of NFATp/AP-1 complex formation by a nuclear hormone receptor. Mol Cell Biol. 1995 Oct;15(10):5789–5799. [PMC free article] [PubMed]
  • Carlberg C. Mechanisms of nuclear signalling by vitamin D3. Interplay with retinoid and thyroid hormone signalling. Eur J Biochem. 1995 Aug 1;231(3):517–527. [PubMed]
  • Schmiedlin-Ren P, Thummel KE, Fisher JM, Paine MF, Lown KS, Watkins PB. Expression of enzymatically active CYP3A4 by Caco-2 cells grown on extracellular matrix-coated permeable supports in the presence of 1alpha,25-dihydroxyvitamin D3. Mol Pharmacol. 1997 May;51(5):741–754. [PubMed]
  • Cali JJ, Russell DW. Characterization of human sterol 27-hydroxylase. A mitochondrial cytochrome P-450 that catalyzes multiple oxidation reaction in bile acid biosynthesis. J Biol Chem. 1991 Apr 25;266(12):7774–7778. [PubMed]
  • Axén E, Postlind H, Sjöberg H, Wikvall K. Liver mitochondrial cytochrome P450 CYP27 and recombinant-expressed human CYP27 catalyze 1 alpha-hydroxylation of 25-hydroxyvitamin D3. Proc Natl Acad Sci U S A. 1994 Oct 11;91(21):10014–10018. [PMC free article] [PubMed]
  • Rosen H, Reshef A, Maeda N, Lippoldt A, Shpizen S, Triger L, Eggertsen G, Björkhem I, Leitersdorf E. Markedly reduced bile acid synthesis but maintained levels of cholesterol and vitamin D metabolites in mice with disrupted sterol 27-hydroxylase gene. J Biol Chem. 1998 Jun 12;273(24):14805–14812. [PubMed]
  • Postlind H, Axén E, Bergman T, Wikvall K. Cloning, structure, and expression of a cDNA encoding vitamin D3 25-hydroxylase. Biochem Biophys Res Commun. 1997 Dec 18;241(2):491–497. [PubMed]
  • Reinholz GG, DeLuca HF. Inhibition of 25-hydroxyvitamin D3 production by 1, 25-dihydroxyvitamin D3 in rats. Arch Biochem Biophys. 1998 Jul 1;355(1):77–83. [PubMed]
  • Takeyama K, Kitanaka S, Sato T, Kobori M, Yanagisawa J, Kato S. 25-Hydroxyvitamin D3 1alpha-hydroxylase and vitamin D synthesis. Science. 1997 Sep 19;277(5333):1827–1830. [PubMed]
  • Brenza HL, Kimmel-Jehan C, Jehan F, Shinki T, Wakino S, Anazawa H, Suda T, DeLuca HF. Parathyroid hormone activation of the 25-hydroxyvitamin D3-1alpha-hydroxylase gene promoter. Proc Natl Acad Sci U S A. 1998 Feb 17;95(4):1387–1391. [PMC free article] [PubMed]
  • Kong XF, Zhu XH, Pei YL, Jackson DM, Holick MF. Molecular cloning, characterization, and promoter analysis of the human 25-hydroxyvitamin D3-1alpha-hydroxylase gene. Proc Natl Acad Sci U S A. 1999 Jun 8;96(12):6988–6993. [PMC free article] [PubMed]
  • Murayama A, Takeyama K, Kitanaka S, Kodera Y, Hosoya T, Kato S. The promoter of the human 25-hydroxyvitamin D3 1 alpha-hydroxylase gene confers positive and negative responsiveness to PTH, calcitonin, and 1 alpha,25(OH)2D3. Biochem Biophys Res Commun. 1998 Aug 10;249(1):11–16. [PubMed]
  • Ohyama Y, Okuda K. Isolation and characterization of a cytochrome P-450 from rat kidney mitochondria that catalyzes the 24-hydroxylation of 25-hydroxyvitamin D3. J Biol Chem. 1991 May 15;266(14):8690–8695. [PubMed]
  • Beckman MJ, Tadikonda P, Werner E, Prahl J, Yamada S, DeLuca HF. Human 25-hydroxyvitamin D3-24-hydroxylase, a multicatalytic enzyme. Biochemistry. 1996 Jun 25;35(25):8465–8472. [PubMed]
  • St-Arnaud R. Targeted inactivation of vitamin D hydroxylases in mice. Bone. 1999 Jul;25(1):127–129. [PubMed]
  • Ohyama Y, Ozono K, Uchida M, Shinki T, Kato S, Suda T, Yamamoto O, Noshiro M, Kato Y. Identification of a vitamin D-responsive element in the 5'-flanking region of the rat 25-hydroxyvitamin D3 24-hydroxylase gene. J Biol Chem. 1994 Apr 8;269(14):10545–10550. [PubMed]
  • Chen KS, DeLuca HF. Cloning of the human 1 alpha,25-dihydroxyvitamin D-3 24-hydroxylase gene promoter and identification of two vitamin D-responsive elements. Biochim Biophys Acta. 1995 Jul 25;1263(1):1–9. [PubMed]
  • Zou A, Elgort MG, Allegretto EA. Retinoid X receptor (RXR) ligands activate the human 25-hydroxyvitamin D3-24-hydroxylase promoter via RXR heterodimer binding to two vitamin D-responsive elements and elicit additive effects with 1,25-dihydroxyvitamin D3. J Biol Chem. 1997 Jul 25;272(30):19027–19034. [PubMed]
  • Lee YF, Young WJ, Lin WJ, Shyr CR, Chang C. Differential regulation of direct repeat 3 vitamin D3 and direct repeat 4 thyroid hormone signaling pathways by the human TR4 orphan receptor. J Biol Chem. 1999 Jun 4;274(23):16198–16205. [PubMed]
  • Strömstedt M, Waterman MR. Messenger RNAs encoding steroidogenic enzymes are expressed in rodent brain. Brain Res Mol Brain Res. 1995 Dec 1;34(1):75–88. [PubMed]
  • Keeney DS, Ikeda Y, Waterman MR, Parker KL. Cholesterol side-chain cleavage cytochrome P450 gene expression in the primitive gut of the mouse embryo does not require steroidogenic factor 1. Mol Endocrinol. 1995 Aug;9(8):1091–1098. [PubMed]
  • Lala DS, Ikeda Y, Luo X, Baity LA, Meade JC, Parker KL. A cell-specific nuclear receptor regulates the steroid hydroxylases. Steroids. 1995 Jan;60(1):10–14. [PubMed]
  • Honda S, Morohashi K, Nomura M, Takeya H, Kitajima M, Omura T. Ad4BP regulating steroidogenic P-450 gene is a member of steroid hormone receptor superfamily. J Biol Chem. 1993 Apr 5;268(10):7494–7502. [PubMed]
  • Morohashi K, Honda S, Inomata Y, Handa H, Omura T. A common trans-acting factor, Ad4-binding protein, to the promoters of steroidogenic P-450s. J Biol Chem. 1992 Sep 5;267(25):17913–17919. [PubMed]
  • Honda S, Morohashi K, Omura T. Novel cAMP regulatory elements in the promoter region of bovine P-450(11 beta) gene. J Biochem. 1990 Dec;108(6):1042–1049. [PubMed]
  • Lynch JP, Lala DS, Peluso JJ, Luo W, Parker KL, White BA. Steroidogenic factor 1, an orphan nuclear receptor, regulates the expression of the rat aromatase gene in gonadal tissues. Mol Endocrinol. 1993 Jun;7(6):776–786. [PubMed]
  • Bakke M, Lund J. Mutually exclusive interactions of two nuclear orphan receptors determine activity of a cyclic adenosine 3',5'-monophosphate-responsive sequence in the bovine CYP17 gene. Mol Endocrinol. 1995 Mar;9(3):327–339. [PubMed]
  • Liu Z, Simpson ER. Steroidogenic factor 1 (SF-1) and SP1 are required for regulation of bovine CYP11A gene expression in bovine luteal cells and adrenal Y1 cells. Mol Endocrinol. 1997 Feb;11(2):127–137. [PubMed]
  • Chau YM, Crawford PA, Woodson KG, Polish JA, Olson LM, Sadovsky Y. Role of steroidogenic-factor 1 in basal and 3',5'-cyclic adenosine monophosphate-mediated regulation of cytochrome P450 side-chain cleavage enzyme in the mouse. Biol Reprod. 1997 Oct;57(4):765–771. [PubMed]
  • Luo X, Ikeda Y, Parker KL. A cell-specific nuclear receptor is essential for adrenal and gonadal development and sexual differentiation. Cell. 1994 May 20;77(4):481–490. [PubMed]
  • Lala DS, Syka PM, Lazarchik SB, Mangelsdorf DJ, Parker KL, Heyman RA. Activation of the orphan nuclear receptor steroidogenic factor 1 by oxysterols. Proc Natl Acad Sci U S A. 1997 May 13;94(10):4895–4900. [PMC free article] [PubMed]
  • Mellon SH, Bair SR. 25-Hydroxycholesterol is not a ligand for the orphan nuclear receptor steroidogenic factor-1 (SF-1). Endocrinology. 1998 Jun;139(6):3026–3029. [PubMed]
  • Christenson LK, McAllister JM, Martin KO, Javitt NB, Osborne TF, Strauss JF., 3rd Oxysterol regulation of steroidogenic acute regulatory protein gene expression. Structural specificity and transcriptional and posttranscriptional actions. J Biol Chem. 1998 Nov 13;273(46):30729–30735. [PubMed]
  • Jacob AL, Lund J. Mutations in the activation function-2 core domain of steroidogenic factor-1 dominantly suppresses PKA-dependent transactivation of the bovine CYP17 gene. J Biol Chem. 1998 May 29;273(22):13391–13394. [PubMed]
  • Liu Z, Simpson ER. Molecular mechanism for cooperation between Sp1 and steroidogenic factor-1 (SF-1) to regulate bovine CYP11A gene expression. Mol Cell Endocrinol. 1999 Jul 20;153(1-2):183–196. [PubMed]
  • Sadovsky Y, Crawford PA, Woodson KG, Polish JA, Clements MA, Tourtellotte LM, Simburger K, Milbrandt J. Mice deficient in the orphan receptor steroidogenic factor 1 lack adrenal glands and gonads but express P450 side-chain-cleavage enzyme in the placenta and have normal embryonic serum levels of corticosteroids. Proc Natl Acad Sci U S A. 1995 Nov 21;92(24):10939–10943. [PMC free article] [PubMed]
  • Zhang P, Mellon SH. Multiple orphan nuclear receptors converge to regulate rat P450c17 gene transcription: novel mechanisms for orphan nuclear receptor action. Mol Endocrinol. 1997 Jun;11(7):891–904. [PubMed]
  • Yang C, Zhou D, Chen S. Modulation of aromatase expression in the breast tissue by ERR alpha-1 orphan receptor. Cancer Res. 1998 Dec 15;58(24):5695–5700. [PubMed]
  • Zhang P, Hammer F, Bair S, Wang J, Reeves WH, Mellon SH. Ku autoimmune antigen is involved in placental regulation of rat P450c17 gene transcription. DNA Cell Biol. 1999 Mar;18(3):197–208. [PubMed]
  • Mukai K, Mitani F, Shimada H, Ishimura Y. Involvement of an AP-1 complex in zone-specific expression of the CYP11B1 gene in the rat adrenal cortex. Mol Cell Biol. 1995 Nov;15(11):6003–6012. [PMC free article] [PubMed]
  • Waterman MR, Bischof LJ. Mechanisms of ACTH(cAMP)-dependent transcription of adrenal steroid hydroxylases. Endocr Res. 1996 Nov;22(4):615–620. [PubMed]
  • Michael MD, Kilgore MW, Morohashi K, Simpson ER. Ad4BP/SF-1 regulates cyclic AMP-induced transcription from the proximal promoter (PII) of the human aromatase P450 (CYP19) gene in the ovary. J Biol Chem. 1995 Jun 2;270(22):13561–13566. [PubMed]
  • Carlone DL, Richards JS. Functional interactions, phosphorylation, and levels of 3',5'-cyclic adenosine monophosphate-regulatory element binding protein and steroidogenic factor-1 mediate hormone-regulated and constitutive expression of aromatase in gonadal cells. Mol Endocrinol. 1997 Mar;11(3):292–304. [PubMed]
  • Ahlgren R, Suske G, Waterman MR, Lund J. Role of Sp1 in cAMP-dependent transcriptional regulation of the bovine CYP11A gene. J Biol Chem. 1999 Jul 2;274(27):19422–19428. [PubMed]
  • Kagawa N, Waterman MR. Purification and characterization of a transcription factor which appears to regulate cAMP responsiveness of the human CYP21B gene. J Biol Chem. 1992 Dec 15;267(35):25213–25219. [PubMed]
  • Nomura M, Kawabe K, Matsushita S, Oka S, Hatano O, Harada N, Nawata H, Morohashi K. Adrenocortical and gonadal expression of the mammalian Ftz-F1 gene encoding Ad4BP/SF-1 is independent of pituitary control. J Biochem. 1998 Jul;124(1):217–224. [PubMed]
  • Brown MS, Goldstein JL. The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell. 1997 May 2;89(3):331–340. [PubMed]
  • Rozman D, Strömstedt M, Tsui LC, Scherer SW, Waterman MR. Structure and mapping of the human lanosterol 14alpha-demethylase gene (CYP51) encoding the cytochrome P450 involved in cholesterol biosynthesis; comparison of exon/intron organization with other mammalian and fungal CYP genes. Genomics. 1996 Dec 15;38(3):371–381. [PubMed]
  • Strömstedt M, Waterman MR, Haugen TB, Taskén K, Parvinen M, Rozman D. Elevated expression of lanosterol 14alpha-demethylase (CYP51) and the synthesis of oocyte meiosis-activating sterols in postmeiotic germ cells of male rats. Endocrinology. 1998 May;139(5):2314–2321. [PubMed]
  • Janowski BA, Willy PJ, Devi TR, Falck JR, Mangelsdorf DJ. An oxysterol signalling pathway mediated by the nuclear receptor LXR alpha. Nature. 1996 Oct 24;383(6602):728–731. [PubMed]
  • Strömstedt M, Rozman D, Waterman MR. The ubiquitously expressed human CYP51 encodes lanosterol 14 alpha-demethylase, a cytochrome P450 whose expression is regulated by oxysterols. Arch Biochem Biophys. 1996 May 1;329(1):73–81. [PubMed]
  • Yoshida Y, Yamashita C, Noshiro M, Fukuda M, Aoyama Y. Sterol 14-demethylase P450 activity expressed in rat gonads: contribution to the formation of mammalian meiosis-activating sterol. Biochem Biophys Res Commun. 1996 Jun 25;223(3):534–538. [PubMed]
  • Russell DW, Setchell KD. Bile acid biosynthesis. Biochemistry. 1992 May 26;31(20):4737–4749. [PubMed]
  • Noshiro M, Nishimoto M, Morohashi K, Okuda K. Molecular cloning of cDNA for cholesterol 7 alpha-hydroxylase from rat liver microsomes. Nucleotide sequence and expression. FEBS Lett. 1989 Oct 23;257(1):97–100. [PubMed]
  • Russell DW. Nuclear orphan receptors control cholesterol catabolism. Cell. 1999 May 28;97(5):539–542. [PubMed]
  • Rose KA, Stapleton G, Dott K, Kieny MP, Best R, Schwarz M, Russell DW, Björkhem I, Seckl J, Lathe R. Cyp7b, a novel brain cytochrome P450, catalyzes the synthesis of neurosteroids 7alpha-hydroxy dehydroepiandrosterone and 7alpha-hydroxy pregnenolone. Proc Natl Acad Sci U S A. 1997 May 13;94(10):4925–4930. [PMC free article] [PubMed]
  • Schwarz M, Lund EG, Lathe R, Björkhem I, Russell DW. Identification and characterization of a mouse oxysterol 7alpha-hydroxylase cDNA. J Biol Chem. 1997 Sep 19;272(38):23995–24001. [PubMed]
  • Lund EG, Guileyardo JM, Russell DW. cDNA cloning of cholesterol 24-hydroxylase, a mediator of cholesterol homeostasis in the brain. Proc Natl Acad Sci U S A. 1999 Jun 22;96(13):7238–7243. [PMC free article] [PubMed]
  • Lund EG, Kerr TA, Sakai J, Li WP, Russell DW. cDNA cloning of mouse and human cholesterol 25-hydroxylases, polytopic membrane proteins that synthesize a potent oxysterol regulator of lipid metabolism. J Biol Chem. 1998 Dec 18;273(51):34316–34327. [PubMed]
  • Lehmann JM, Kliewer SA, Moore LB, Smith-Oliver TA, Oliver BB, Su JL, Sundseth SS, Winegar DA, Blanchard DE, Spencer TA, et al. Activation of the nuclear receptor LXR by oxysterols defines a new hormone response pathway. J Biol Chem. 1997 Feb 7;272(6):3137–3140. [PubMed]
  • Stroup D, Crestani M, Chiang JY. Identification of a bile acid response element in the cholesterol 7 alpha-hydroxylase gene CYP7A. Am J Physiol. 1997 Aug;273(2 Pt 1):G508–G517. [PubMed]
  • Peet DJ, Turley SD, Ma W, Janowski BA, Lobaccaro JM, Hammer RE, Mangelsdorf DJ. Cholesterol and bile acid metabolism are impaired in mice lacking the nuclear oxysterol receptor LXR alpha. Cell. 1998 May 29;93(5):693–704. [PubMed]
  • Nitta M, Ku S, Brown C, Okamoto AY, Shan B. CPF: an orphan nuclear receptor that regulates liver-specific expression of the human cholesterol 7alpha-hydroxylase gene. Proc Natl Acad Sci U S A. 1999 Jun 8;96(12):6660–6665. [PMC free article] [PubMed]
  • Wang H, Chen J, Hollister K, Sowers LC, Forman BM. Endogenous bile acids are ligands for the nuclear receptor FXR/BAR. Mol Cell. 1999 May;3(5):543–553. [PubMed]
  • Parks DJ, Blanchard SG, Bledsoe RK, Chandra G, Consler TG, Kliewer SA, Stimmel JB, Willson TM, Zavacki AM, Moore DD, et al. Bile acids: natural ligands for an orphan nuclear receptor. Science. 1999 May 21;284(5418):1365–1368. [PubMed]
  • Forman BM, Goode E, Chen J, Oro AE, Bradley DJ, Perlmann T, Noonan DJ, Burka LT, McMorris T, Lamph WW, et al. Identification of a nuclear receptor that is activated by farnesol metabolites. Cell. 1995 Jun 2;81(5):687–693. [PubMed]
  • Makishima M, Okamoto AY, Repa JJ, Tu H, Learned RM, Luk A, Hull MV, Lustig KD, Mangelsdorf DJ, Shan B. Identification of a nuclear receptor for bile acids. Science. 1999 May 21;284(5418):1362–1365. [PubMed]
  • Stroup D, Crestani M, Chiang JY. Orphan receptors chicken ovalbumin upstream promoter transcription factor II (COUP-TFII) and retinoid X receptor (RXR) activate and bind the rat cholesterol 7alpha-hydroxylase gene (CYP7A). J Biol Chem. 1997 Apr 11;272(15):9833–9839. [PubMed]
  • Pikuleva IA, Babiker A, Waterman MR, Björkhem I. Activities of recombinant human cytochrome P450c27 (CYP27) which produce intermediates of alternative bile acid biosynthetic pathways. J Biol Chem. 1998 Jul 17;273(29):18153–18160. [PubMed]
  • Xu G, Salen G, Shefer S, Tint GS, Nguyen LB, Chen TS, Greenblatt D. Increasing dietary cholesterol induces different regulation of classic and alternative bile acid synthesis. J Clin Invest. 1999 Jan;103(1):89–95. [PMC free article] [PubMed]
  • Twisk J, de Wit EC, Princen HM. Suppression of sterol 27-hydroxylase mRNA and transcriptional activity by bile acids in cultured rat hepatocytes. Biochem J. 1995 Jan 15;305(Pt 2):505–511. [PMC free article] [PubMed]
  • Stravitz RT, Vlahcevic ZR, Russell TL, Heizer ML, Avadhani NG, Hylemon PB. Regulation of sterol 27-hydroxylase and an alternative pathway of bile acid biosynthesis in primary cultures of rat hepatocytes. J Steroid Biochem Mol Biol. 1996 Mar;57(5-6):337–347. [PubMed]
  • Björkhem I, Diczfalusy U, Lütjohann D. Removal of cholesterol from extrahepatic sources by oxidative mechanisms. Curr Opin Lipidol. 1999 Apr;10(2):161–165. [PubMed]
  • Andersson U, Yang YZ, Björkhem I, Einarsson C, Eggertsen G, Gåfvels M. Thyroid hormone suppresses hepatic sterol 12alpha-hydroxylase (CYP8B1) activity and messenger ribonucleic acid in rat liver: failure to define known thyroid hormone response elements in the gene. Biochim Biophys Acta. 1999 May 18;1438(2):167–174. [PubMed]
  • Ishida H, Kuruta Y, Gotoh O, Yamashita C, Yoshida Y, Noshiro M. Structure, evolution, and liver-specific expression of sterol 12alpha-hydroxylase P450 (CYP8B). J Biochem. 1999 Jul;126(1):19–25. [PubMed]
  • Li HC, Dehal SS, Kupfer D. Induction of the hepatic CYP2B and CYP3A enzymes by the proestrogenic pesticide methoxychlor and by DDT in the rat. Effects on methoxychlor metabolism. J Biochem Toxicol. 1995 Feb;10(1):51–61. [PubMed]
  • Honkakoski P, Negishi M. The structure, function, and regulation of cytochrome P450 2A enzymes. Drug Metab Rev. 1997 Nov;29(4):977–996. [PubMed]
  • Stresser DM, Kupfer D. Human cytochrome P450-catalyzed conversion of the proestrogenic pesticide methoxychlor into an estrogen. Role of CYP2C19 and CYP1A2 in O-demethylation. Drug Metab Dispos. 1998 Sep;26(9):868–874. [PubMed]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

  • MedGen
    MedGen
    Related information in MedGen
  • PubMed
    PubMed
    PubMed citations for these articles
  • Substance
    Substance
    PubChem Substance links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...