Logo of biochemjBJ Latest papers and much more!
Biochem J. Oct 1, 1999; 343(Pt 1): 177–183.
PMCID: PMC1220539

Bacterial lipolytic enzymes: classification and properties.


Knowledge of bacterial lipolytic enzymes is increasing at a rapid and exciting rate. To obtain an overview of this industrially very important class of enzymes and their characteristics, we have collected and classified the information available from protein and nucleotide databases. Here we propose an updated and extensive classification of bacterial esterases and lipases based mainly on a comparison of their amino acid sequences and some fundamental biological properties. These new insights result in the identification of eight different families with the largest being further divided into six subfamilies. Moreover, the classification enables us to predict (1) important structural features such as residues forming the catalytic site or the presence of disulphide bonds, (2) types of secretion mechanism and requirement for lipase-specific foldases, and (3) the potential relationship to other enzyme families. This work will therefore contribute to a faster identification and to an easier characterization of novel bacterial lipolytic enzymes.

Full Text

The Full Text of this article is available as a PDF (191K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Titball RW. Bacterial phospholipases. Symp Ser Soc Appl Microbiol. 1998;27:127S–137S. [PubMed]
  • Songer JG. Bacterial phospholipases and their role in virulence. Trends Microbiol. 1997 Apr;5(4):156–161. [PubMed]
  • Cygler M, Schrag JD. Structure as basis for understanding interfacial properties of lipases. Methods Enzymol. 1997;284:3–27. [PubMed]
  • Schrag JD, Cygler M. Lipases and alpha/beta hydrolase fold. Methods Enzymol. 1997;284:85–107. [PubMed]
  • Anthonsen HW, Baptista A, Drabløs F, Martel P, Petersen SB, Sebastião M, Vaz L. Lipases and esterases: a review of their sequences, structure and evolution. Biotechnol Annu Rev. 1995;1:315–371. [PubMed]
  • Drabløs F, Petersen SB. Identification of conserved residues in family of esterase and lipase sequences. Methods Enzymol. 1997;284:28–61. [PubMed]
  • Ollis DL, Cheah E, Cygler M, Dijkstra B, Frolow F, Franken SM, Harel M, Remington SJ, Silman I, Schrag J, et al. The alpha/beta hydrolase fold. Protein Eng. 1992 Apr;5(3):197–211. [PubMed]
  • Derewenda ZS. Structure and function of lipases. Adv Protein Chem. 1994;45:1–52. [PubMed]
  • Jaeger KE, Reetz MT. Microbial lipases form versatile tools for biotechnology. Trends Biotechnol. 1998 Sep;16(9):396–403. [PubMed]
  • Reetz MT, Jaeger KE. Overexpression, immobilization and biotechnological application of Pseudomonas lipases. Chem Phys Lipids. 1998 Jun;93(1-2):3–14. [PubMed]
  • Benjamin S, Pandey A. Candida rugosa lipases: molecular biology and versatility in biotechnology. Yeast. 1998 Sep 15;14(12):1069–1087. [PubMed]
  • Pandey A, Benjamin S, Soccol CR, Nigam P, Krieger N, Soccol VT. The realm of microbial lipases in biotechnology. Biotechnol Appl Biochem. 1999 Apr;29(Pt 2):119–131. [PubMed]
  • Gilbert EJ. Pseudomonas lipases: biochemical properties and molecular cloning. Enzyme Microb Technol. 1993 Aug;15(8):634–645. [PubMed]
  • Svendsen A, Borch K, Barfoed M, Nielsen TB, Gormsen E, Patkar SA. Biochemical properties of cloned lipases from the Pseudomonas family. Biochim Biophys Acta. 1995 Oct 26;1259(1):9–17. [PubMed]
  • Upton C, Buckley JT. A new family of lipolytic enzymes? Trends Biochem Sci. 1995 May;20(5):178–179. [PubMed]
  • Jaeger KE, Ransac S, Dijkstra BW, Colson C, van Heuvel M, Misset O. Bacterial lipases. FEMS Microbiol Rev. 1994 Sep;15(1):29–63. [PubMed]
  • Götz F, Verheij HM, Rosenstein R. Staphylococcal lipases: molecular characterisation, secretion, and processing. Chem Phys Lipids. 1998 Jun;93(1-2):15–25. [PubMed]
  • Rogalska E, Cudrey C, Ferrato F, Verger R. Stereoselective hydrolysis of triglycerides by animal and microbial lipases. Chirality. 1993;5(1):24–30. [PubMed]
  • Simons JW, van Kampen MD, Riel S, Götz F, Egmond MR, Verheij HM. Cloning, purification and characterisation of the lipase from Staphylococcus epidermidis--comparison of the substrate selectivity with those of other microbial lipases. Eur J Biochem. 1998 May 1;253(3):675–683. [PubMed]
  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997 Sep 1;25(17):3389–3402. [PMC free article] [PubMed]
  • Depiereux E, Baudoux G, Briffeuil P, Reginster I, De Bolle X, Vinals C, Feytmans E. Match-Box_server: a multiple sequence alignment tool placing emphasis on reliability. Comput Appl Biosci. 1997 Jun;13(3):249–256. [PubMed]
  • Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994 Nov 11;22(22):4673–4680. [PMC free article] [PubMed]
  • Yabuuchi E, Kosako Y, Oyaizu H, Yano I, Hotta H, Hashimoto Y, Ezaki T, Arakawa M. Proposal of Burkholderia gen. nov. and transfer of seven species of the genus Pseudomonas homology group II to the new genus, with the type species Burkholderia cepacia (Palleroni and Holmes 1981) comb. nov. Microbiol Immunol. 1992;36(12):1251–1275. [PubMed]
  • Noble ME, Cleasby A, Johnson LN, Egmond MR, Frenken LG. The crystal structure of triacylglycerol lipase from Pseudomonas glumae reveals a partially redundant catalytic aspartate. FEBS Lett. 1993 Sep 27;331(1-2):123–128. [PubMed]
  • Lang D, Hofmann B, Haalck L, Hecht HJ, Spener F, Schmid RD, Schomburg D. Crystal structure of a bacterial lipase from Chromobacterium viscosum ATCC 6918 refined at 1.6 angstroms resolution. J Mol Biol. 1996 Jun 21;259(4):704–717. [PubMed]
  • Kim KK, Song HK, Shin DH, Hwang KY, Suh SW. The crystal structure of a triacylglycerol lipase from Pseudomonas cepacia reveals a highly open conformation in the absence of a bound inhibitor. Structure. 1997 Feb 15;5(2):173–185. [PubMed]
  • Schrag JD, Li Y, Cygler M, Lang D, Burgdorf T, Hecht HJ, Schmid R, Schomburg D, Rydel TJ, Oliver JD, et al. The open conformation of a Pseudomonas lipase. Structure. 1997 Feb 15;5(2):187–202. [PubMed]
  • Duong F, Soscia C, Lazdunski A, Murgier M. The Pseudomonas fluorescens lipase has a C-terminal secretion signal and is secreted by a three-component bacterial ABC-exporter system. Mol Microbiol. 1994 Mar;11(6):1117–1126. [PubMed]
  • Li X, Tetling S, Winkler UK, Jaeger KE, Benedik MJ. Gene cloning, sequence analysis, purification, and secretion by Escherichia coli of an extracellular lipase from Serratia marcescens. Appl Environ Microbiol. 1995 Jul;61(7):2674–2680. [PMC free article] [PubMed]
  • Schmidt-Dannert C, Rúa ML, Atomi H, Schmid RD. Thermoalkalophilic lipase of Bacillus thermocatenulatus. I. molecular cloning, nucleotide sequence, purification and some properties. Biochim Biophys Acta. 1996 May 31;1301(1-2):105–114. [PubMed]
  • Kim HK, Park SY, Lee JK, Oh TK. Gene cloning and characterization of thermostable lipase from Bacillus stearothermophilus L1. Biosci Biotechnol Biochem. 1998 Jan;62(1):66–71. [PubMed]
  • van Oort MG, Deveer AM, Dijkman R, Tjeenk ML, Verheij HM, de Haas GH, Wenzig E, Götz F. Purification and substrate specificity of Staphylococcus hyicus lipase. Biochemistry. 1989 Nov 28;28(24):9278–9285. [PubMed]
  • Miskin JE, Farrell AM, Cunliffe WJ, Holland KT. Propionibacterium acnes, a resident of lipid-rich human skin, produces a 33 kDa extracellular lipase encoded by gehA. Microbiology. 1997 May;143(Pt 5):1745–1755. [PubMed]
  • Sommer P, Bormann C, Götz F. Genetic and biochemical characterization of a new extracellular lipase from Streptomyces cinnamomeus. Appl Environ Microbiol. 1997 Sep;63(9):3553–3560. [PMC free article] [PubMed]
  • Wei Y, Schottel JL, Derewenda U, Swenson L, Patkar S, Derewenda ZS. A novel variant of the catalytic triad in the Streptomyces scabies esterase. Nat Struct Biol. 1995 Mar;2(3):218–223. [PubMed]
  • Ho YS, Swenson L, Derewenda U, Serre L, Wei Y, Dauter Z, Hattori M, Adachi T, Aoki J, Arai H, et al. Brain acetylhydrolase that inactivates platelet-activating factor is a G-protein-like trimer. Nature. 1997 Jan 2;385(6611):89–93. [PubMed]
  • Brumlik MJ, Buckley JT. Identification of the catalytic triad of the lipase/acyltransferase from Aeromonas hydrophila. J Bacteriol. 1996 Apr;178(7):2060–2064. [PMC free article] [PubMed]
  • Loveless BJ, Saier MH., Jr A novel family of channel-forming, autotransporting, bacterial virulence factors. Mol Membr Biol. 1997 Jul-Sep;14(3):113–123. [PubMed]
  • Henderson IR, Navarro-Garcia F, Nataro JP. The great escape: structure and function of the autotransporter proteins. Trends Microbiol. 1998 Sep;6(9):370–378. [PubMed]
  • Cruz H, Pérez C, Wellington E, Castro C, Servín-González L. Sequence of the Streptomyces albus G lipase-encoding gene reveals the presence of a prokaryotic lipase family. Gene. 1994 Jun 24;144(1):141–142. [PubMed]
  • Wei Y, Swenson L, Castro C, Derewenda U, Minor W, Arai H, Aoki J, Inoue K, Servin-Gonzalez L, Derewenda ZS. Structure of a microbial homologue of mammalian platelet-activating factor acetylhydrolases: Streptomyces exfoliatus lipase at 1.9 A resolution. Structure. 1998 Apr 15;6(4):511–519. [PubMed]
  • Hemilä H, Koivula TT, Palva I. Hormone-sensitive lipase is closely related to several bacterial proteins, and distantly related to acetylcholinesterase and lipoprotein lipase: identification of a superfamily of esterases and lipases. Biochim Biophys Acta. 1994 Jan 3;1210(2):249–253. [PubMed]
  • Contreras JA, Karlsson M, Osterlund T, Laurell H, Svensson A, Holm C. Hormone-sensitive lipase is structurally related to acetylcholinesterase, bile salt-stimulated lipase, and several fungal lipases. Building of a three-dimensional model for the catalytic domain of hormone-sensitive lipase. J Biol Chem. 1996 Dec 6;271(49):31426–31430. [PubMed]
  • Feller G, Thiry M, Arpigny JL, Gerday C. Cloning and expression in Escherichia coli of three lipase-encoding genes from the psychrotrophic antarctic strain Moraxella TA144. Gene. 1991 Jun 15;102(1):111–115. [PubMed]
  • Langin D, Laurell H, Holst LS, Belfrage P, Holm C. Gene organization and primary structure of human hormone-sensitive lipase: possible significance of a sequence homology with a lipase of Moraxella TA144, an antarctic bacterium. Proc Natl Acad Sci U S A. 1993 Jun 1;90(11):4897–4901. [PMC free article] [PubMed]
  • Verschueren KH, Seljée F, Rozeboom HJ, Kalk KH, Dijkstra BW. Crystallographic analysis of the catalytic mechanism of haloalkane dehalogenase. Nature. 1993 Jun 24;363(6431):693–698. [PubMed]
  • Misawa E, Chan Kwo Chion CK, Archer IV, Woodland MP, Zhou NY, Carter SF, Widdowson DA, Leak DJ. Characterisation of a catabolic epoxide hydrolase from a Corynebacterium sp. Eur J Biochem. 1998 Apr 1;253(1):173–183. [PubMed]
  • Kim KK, Song HK, Shin DH, Hwang KY, Choe S, Yoo OJ, Suh SW. Crystal structure of carboxylesterase from Pseudomonas fluorescens, an alpha/beta hydrolase with broad substrate specificity. Structure. 1997 Dec 15;5(12):1571–1584. [PubMed]
  • Hong KH, Jang WH, Choi KD, Yoo OJ. Characterization of Pseudomonas fluorescens carboxylesterase: cloning and expression of the esterase gene in Escherichia coli. Agric Biol Chem. 1991 Nov;55(11):2839–2845. [PubMed]
  • Salvi S, Trinei M, Lanfaloni L, Pon CL. Cloning and characterization of the gene encoding an esterase from Spirulina platensis. Mol Gen Genet. 1994 Apr;243(1):124–126. [PubMed]
  • Pohlenz HD, Boidol W, Schüttke I, Streber WR. Purification and properties of an Arthrobacter oxydans P52 carbamate hydrolase specific for the herbicide phenmedipham and nucleotide sequence of the corresponding gene. J Bacteriol. 1992 Oct;174(20):6600–6607. [PMC free article] [PubMed]
  • Zock J, Cantwell C, Swartling J, Hodges R, Pohl T, Sutton K, Rosteck P, Jr, McGilvray D, Queener S. The Bacillus subtilis pnbA gene encoding p-nitrobenzyl esterase: cloning, sequence and high-level expression in Escherichia coli. Gene. 1994 Dec 30;151(1-2):37–43. [PubMed]
  • Galleni M, Lindberg F, Normark S, Cole S, Honore N, Joris B, Frere JM. Sequence and comparative analysis of three Enterobacter cloacae ampC beta-lactamase genes and their products. Biochem J. 1988 Mar 15;250(3):753–760. [PMC free article] [PubMed]
  • Nishizawa M, Shimizu M, Ohkawa H, Kanaoka M. Stereoselective production of (+)-trans-chrysanthemic acid by a microbial esterase: cloning, nucleotide sequence, and overexpression of the esterase gene of Arthrobacter globiformis in Escherichia coli. Appl Environ Microbiol. 1995 Sep;61(9):3208–3215. [PMC free article] [PubMed]
  • Lobkovsky E, Moews PC, Liu H, Zhao H, Frere JM, Knox JR. Evolution of an enzyme activity: crystallographic structure at 2-A resolution of cephalosporinase from the ampC gene of Enterobacter cloacae P99 and comparison with a class A penicillinase. Proc Natl Acad Sci U S A. 1993 Dec 1;90(23):11257–11261. [PMC free article] [PubMed]
  • Kim YS, Lee HB, Choi KD, Park S, Yoo OJ. Cloning of Pseudomonas fluorescens carboxylesterase gene and characterization of its product expressed in Escherichia coli. Biosci Biotechnol Biochem. 1994 Jan;58(1):111–116. [PubMed]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society


Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...


  • PubMed
    PubMed citations for these articles
  • Substance
    PubChem Substance links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...