Logo of biochemjBJ Latest papers and much more!
Biochem J. 1999 Mar 1; 338(Pt 2): 367–374.
PMCID: PMC1220062

Differential regulation of vascular endothelial growth factor and its receptor fms-like-tyrosine kinase is mediated by nitric oxide in rat renal mesangial cells.

Abstract

Under conditions associated with local and systemic inflammation, mesangial cells and invading immune cells are likely to be responsible for the release of large amounts of nitric oxide (NO) in the glomerulus. To further define the mechanisms of NO action in the glomerulus, we attempted to identify genes which are regulated by NO in rat glomerular mesangial cells. We identified vascular endothelial growth factor (VEGF) and its receptor fms-like tyrosine kinase (FLT-1) to be under the regulatory control of exogenously applied NO in these cells. Using S-nitroso-glutathione (GSNO) as an NO-donating agent, VEGF expression was strongly induced, whereas expression of its FLT-1 receptor simultaneously decreased. Expressional regulation of VEGF and FLT-1 mRNA was transient and occurred rapidly within 1-3 h after GSNO treatment. Expression of a second VEGF-specific receptor, fetal liver kinase-1 (FLK-1/KDR), could not be detected. The inflammatory cytokine interleukin-1beta mediated a moderate increase in VEGF expression after 24 h and had no influence on FLT-1 expression. In contrast, platelet-derived growth factor-BB and basic fibroblast growth factor had no effect on VEGF expression, but strongly induced FLT-1 mRNA levels. Obviously, there is a differential regulation of VEGF and its receptor FLT-1 by NO, cytokines and growth factors in rat mesangial cells.

Full Text

The Full Text of this article is available as a PDF (324K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Knowles RG, Moncada S. Nitric oxide synthases in mammals. Biochem J. 1994 Mar 1;298(Pt 2):249–258. [PMC free article] [PubMed]
  • Pfeilschifter J, Rob P, Mülsch A, Fandrey J, Vosbeck K, Busse R. Interleukin 1 beta and tumour necrosis factor alpha induce a macrophage-type of nitric oxide synthase in rat renal mesangial cells. Eur J Biochem. 1992 Jan 15;203(1-2):251–255. [PubMed]
  • Pfeilschifter J, Schwarzenbach H. Interleukin 1 and tumor necrosis factor stimulate cGMP formation in rat renal mesangial cells. FEBS Lett. 1990 Oct 29;273(1-2):185–187. [PubMed]
  • Shultz PJ, Archer SL, Rosenberg ME. Inducible nitric oxide synthase mRNA and activity in glomerular mesangial cells. Kidney Int. 1994 Sep;46(3):683–689. [PubMed]
  • Saura M, López S, Rodríguez Puyol M, Rodríguez Puyol D, Lamas S. Regulation of inducible nitric oxide synthase expression in rat mesangial cells and isolated glomeruli. Kidney Int. 1995 Feb;47(2):500–509. [PubMed]
  • Thiemermann C. The role of the L-arginine: nitric oxide pathway in circulatory shock. Adv Pharmacol. 1994;28:45–79. [PubMed]
  • Pfeilschifter J, Kunz D, Mühl H. Nitric oxide: an inflammatory mediator of glomerular mesangial cells. Nephron. 1993;64(4):518–525. [PubMed]
  • Cattell V, Cook HT. Nitric oxide: role in the physiology and pathology of the glomerulus. Exp Nephrol. 1993 Sep-Oct;1(5):265–280. [PubMed]
  • Ferrara N, Henzel WJ. Pituitary follicular cells secrete a novel heparin-binding growth factor specific for vascular endothelial cells. Biochem Biophys Res Commun. 1989 Jun 15;161(2):851–858. [PubMed]
  • Leung DW, Cachianes G, Kuang WJ, Goeddel DV, Ferrara N. Vascular endothelial growth factor is a secreted angiogenic mitogen. Science. 1989 Dec 8;246(4935):1306–1309. [PubMed]
  • Bacic M, Edwards NA, Merrill MJ. Differential expression of vascular endothelial growth factor (vascular permeability factor) forms in rat tissues. Growth Factors. 1995;12(1):11–15. [PubMed]
  • Monacci WT, Merrill MJ, Oldfield EH. Expression of vascular permeability factor/vascular endothelial growth factor in normal rat tissues. Am J Physiol. 1993 Apr;264(4 Pt 1):C995–1002. [PubMed]
  • Pepper MS, Ferrara N, Orci L, Montesano R. Potent synergism between vascular endothelial growth factor and basic fibroblast growth factor in the induction of angiogenesis in vitro. Biochem Biophys Res Commun. 1992 Dec 15;189(2):824–831. [PubMed]
  • Pepper MS, Ferrara N, Orci L, Montesano R. Vascular endothelial growth factor (VEGF) induces plasminogen activators and plasminogen activator inhibitor-1 in microvascular endothelial cells. Biochem Biophys Res Commun. 1991 Dec 16;181(2):902–906. [PubMed]
  • Unemori EN, Ferrara N, Bauer EA, Amento EP. Vascular endothelial growth factor induces interstitial collagenase expression in human endothelial cells. J Cell Physiol. 1992 Dec;153(3):557–562. [PubMed]
  • Senger DR, Galli SJ, Dvorak AM, Perruzzi CA, Harvey VS, Dvorak HF. Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science. 1983 Feb 25;219(4587):983–985. [PubMed]
  • Connolly DT, Olander JV, Heuvelman D, Nelson R, Monsell R, Siegel N, Haymore BL, Leimgruber R, Feder J. Human vascular permeability factor. Isolation from U937 cells. J Biol Chem. 1989 Nov 25;264(33):20017–20024. [PubMed]
  • Kitamoto Y, Tokunaga H, Tomita K. Vascular endothelial growth factor is an essential molecule for mouse kidney development: glomerulogenesis and nephrogenesis. J Clin Invest. 1997 May 15;99(10):2351–2357. [PMC free article] [PubMed]
  • Simon M, Röckl W, Hornig C, Gröne EF, Theis H, Weich HA, Fuchs E, Yayon A, Gröne HJ. Receptors of vascular endothelial growth factor/vascular permeability factor (VEGF/VPF) in fetal and adult human kidney: localization and [125I]VEGF binding sites. J Am Soc Nephrol. 1998 Jun;9(6):1032–1044. [PubMed]
  • Shulman K, Rosen S, Tognazzi K, Manseau EJ, Brown LF. Expression of vascular permeability factor (VPF/VEGF) is altered in many glomerular diseases. J Am Soc Nephrol. 1996 May;7(5):661–666. [PubMed]
  • Iruela-Arispe L, Gordon K, Hugo C, Duijvestijn AM, Claffey KP, Reilly M, Couser WG, Alpers CE, Johnson RJ. Participation of glomerular endothelial cells in the capillary repair of glomerulonephritis. Am J Pathol. 1995 Dec;147(6):1715–1727. [PMC free article] [PubMed]
  • Gruden G, Thomas S, Burt D, Lane S, Chusney G, Sacks S, Viberti G. Mechanical stretch induces vascular permeability factor in human mesangial cells: mechanisms of signal transduction. Proc Natl Acad Sci U S A. 1997 Oct 28;94(22):12112–12116. [PMC free article] [PubMed]
  • Iijima K, Yoshikawa N, Connolly DT, Nakamura H. Human mesangial cells and peripheral blood mononuclear cells produce vascular permeability factor. Kidney Int. 1993 Nov;44(5):959–966. [PubMed]
  • Uchida K, Uchida S, Nitta K, Yumura W, Marumo F, Nihei H. Glomerular endothelial cells in culture express and secrete vascular endothelial growth factor. Am J Physiol. 1994 Jan;266(1 Pt 2):F81–F88. [PubMed]
  • Takahashi T, Shirasawa T, Miyake K, Yahagi Y, Maruyama N, Kasahara N, Kawamura T, Matsumura O, Mitarai T, Sakai O. Protein tyrosine kinases expressed in glomeruli and cultured glomerular cells: Flt-1 and VEGF expression in renal mesangial cells. Biochem Biophys Res Commun. 1995 Apr 6;209(1):218–226. [PubMed]
  • Klanke B, Simon M, Röckl W, Weich HA, Stolte H, Gröne HJ. Effects of vascular endothelial growth factor (VEGF)/vascular permeability factor (VPF) on haemodynamics and permselectivity of the isolated perfused rat kidney. Nephrol Dial Transplant. 1998 Apr;13(4):875–885. [PubMed]
  • Pfeilschifter J, Vosbeck K. Transforming growth factor beta 2 inhibits interleukin 1 beta- and tumour necrosis factor alpha-induction of nitric oxide synthase in rat renal mesangial cells. Biochem Biophys Res Commun. 1991 Mar 15;175(2):372–379. [PubMed]
  • Chomczynski P, Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. [PubMed]
  • Werner S, Peters KG, Longaker MT, Fuller-Pace F, Banda MJ, Williams LT. Large induction of keratinocyte growth factor expression in the dermis during wound healing. Proc Natl Acad Sci U S A. 1992 Aug 1;89(15):6896–6900. [PMC free article] [PubMed]
  • Conn G, Bayne ML, Soderman DD, Kwok PW, Sullivan KA, Palisi TM, Hope DA, Thomas KA. Amino acid and cDNA sequences of a vascular endothelial cell mitogen that is homologous to platelet-derived growth factor. Proc Natl Acad Sci U S A. 1990 Apr;87(7):2628–2632. [PMC free article] [PubMed]
  • Yamane A, Seetharam L, Yamaguchi S, Gotoh N, Takahashi T, Neufeld G, Shibuya M. A new communication system between hepatocytes and sinusoidal endothelial cells in liver through vascular endothelial growth factor and Flt tyrosine kinase receptor family (Flt-1 and KDR/Flk-1). Oncogene. 1994 Sep;9(9):2683–2690. [PubMed]
  • Wen Y, Edelman JL, Kang T, Zeng N, Sachs G. Two functional forms of vascular endothelial growth factor receptor-2/Flk-1 mRNA are expressed in normal rat retina. J Biol Chem. 1998 Jan 23;273(4):2090–2097. [PubMed]
  • Pfeilschifter J. Does nitric oxide, an inflammatory mediator of glomerular mesangial cells, have a role in diabetic nephropathy? Kidney Int Suppl. 1995 Sep;51:S50–S60. [PubMed]
  • Garthwaite J, Charles SL, Chess-Williams R. Endothelium-derived relaxing factor release on activation of NMDA receptors suggests role as intercellular messenger in the brain. Nature. 1988 Nov 24;336(6197):385–388. [PubMed]
  • Schmidt HH, Walter U. NO at work. Cell. 1994 Sep 23;78(6):919–925. [PubMed]
  • Kunz D, Mühl H, Walker G, Pfeilschifter J. Two distinct signaling pathways trigger the expression of inducible nitric oxide synthase in rat renal mesangial cells. Proc Natl Acad Sci U S A. 1994 Jun 7;91(12):5387–5391. [PMC free article] [PubMed]
  • Plüss C, Werner ER, Blau N, Wachter H, Pfeilschifter J. Interleukin 1 beta and cAMP trigger the expression of GTP cyclohydrolase I in rat renal mesangial cells. Biochem J. 1996 Sep 1;318(Pt 2):665–671. [PMC free article] [PubMed]
  • Kashgarian M, Sterzel RB. The pathobiology of the mesangium. Kidney Int. 1992 Mar;41(3):524–529. [PubMed]
  • Chin K, Kurashima Y, Ogura T, Tajiri H, Yoshida S, Esumi H. Induction of vascular endothelial growth factor by nitric oxide in human glioblastoma and hepatocellular carcinoma cells. Oncogene. 1997 Jul 24;15(4):437–442. [PubMed]
  • Tsurumi Y, Murohara T, Krasinski K, Chen D, Witzenbichler B, Kearney M, Couffinhal T, Isner JM. Reciprocal relation between VEGF and NO in the regulation of endothelial integrity. Nat Med. 1997 Aug;3(8):879–886. [PubMed]
  • Frank S, Hübner G, Breier G, Longaker MT, Greenhalgh DG, Werner S. Regulation of vascular endothelial growth factor expression in cultured keratinocytes. Implications for normal and impaired wound healing. J Biol Chem. 1995 May 26;270(21):12607–12613. [PubMed]
  • Li J, Perrella MA, Tsai JC, Yet SF, Hsieh CM, Yoshizumi M, Patterson C, Endege WO, Zhou F, Lee ME. Induction of vascular endothelial growth factor gene expression by interleukin-1 beta in rat aortic smooth muscle cells. J Biol Chem. 1995 Jan 6;270(1):308–312. [PubMed]
  • Ben-Av P, Crofford LJ, Wilder RL, Hla T. Induction of vascular endothelial growth factor expression in synovial fibroblasts by prostaglandin E and interleukin-1: a potential mechanism for inflammatory angiogenesis. FEBS Lett. 1995 Sep 18;372(1):83–87. [PubMed]
  • Garbers DL. Guanylyl cyclase receptors and their endocrine, paracrine, and autocrine ligands. Cell. 1992 Oct 2;71(1):1–4. [PubMed]
  • Schmidt HH, Lohmann SM, Walter U. The nitric oxide and cGMP signal transduction system: regulation and mechanism of action. Biochim Biophys Acta. 1993 Aug 18;1178(2):153–175. [PubMed]
  • Mühl H, Pfeilschifter J. Amplification of nitric oxide synthase expression by nitric oxide in interleukin 1 beta-stimulated rat mesangial cells. J Clin Invest. 1995 Apr;95(4):1941–1946. [PMC free article] [PubMed]
  • Garrido C, Saule S, Gospodarowicz D. Transcriptional regulation of vascular endothelial growth factor gene expression in ovarian bovine granulosa cells. Growth Factors. 1993;8(2):109–117. [PubMed]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

Formats:

Save items

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

  • Compound
    Compound
    PubChem Compound links
  • MedGen
    MedGen
    Related information in MedGen
  • PubMed
    PubMed
    PubMed citations for these articles
  • Substance
    Substance
    PubChem Substance links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...