• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of biochemjBJ Latest papers and much more!
Biochem J. Dec 1, 1998; 336(Pt 2): 405–411.
PMCID: PMC1219885

Regulation of gene expression by alternative polyadenylation and mRNA instability in hyperglycaemic mesangial cells.


We have used mRNA differential display to identify a novel high-glucose-regulated gene (HGRG-14) in human mesangial cells cultured for up to 21 days in 30 mM d-glucose. The mRNA of HGRG-14 seems to be regulated post-transcriptionally and encodes a small polypeptide of molecular mass 13 kDa. The native protein occurs as a dimer. The recombinant protein is a substrate for casein kinase II kinase. At high glucose concentrations, HGRG-14 protein levels decrease. This correlates with the appearance of a long form of HGRG-14 mRNA under high-glucose conditions. This form has a long 3' untranslated region containing several ATTTA RNA-destabilizing sequences and has a short half-life. A truncated, more stable mRNA that lacks the long 3' untranslated region is produced at 4 mM d-glucose. The switch from the truncated to the long-form transcript is detected within 2 h of exposure to 30 mM d-glucose, indicating that hyperglycaemic conditions have an acute effect on HGRG-14 mRNA processing.

Full Text

The Full Text of this article is available as a PDF (196K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Mauer SM, Steffes MW, Ellis EN, Sutherland DE, Brown DM, Goetz FC. Structural-functional relationships in diabetic nephropathy. J Clin Invest. 1984 Oct;74(4):1143–1155. [PMC free article] [PubMed]
  • Wahab NA, Harper K, Mason RM. Expression of extracellular matrix molecules in human mesangial cells in response to prolonged hyperglycaemia. Biochem J. 1996 Jun 15;316(Pt 3):985–992. [PMC free article] [PubMed]
  • Abdel Wahab N, Mason RM. Modulation of neutral protease expression in human mesangial cells by hyperglycaemic culture. Biochem J. 1996 Dec 15;320(Pt 3):777–783. [PMC free article] [PubMed]
  • Liang P, Pardee AB. Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science. 1992 Aug 14;257(5072):967–971. [PubMed]
  • Liang P, Averboukh L, Pardee AB. Distribution and cloning of eukaryotic mRNAs by means of differential display: refinements and optimization. Nucleic Acids Res. 1993 Jul 11;21(14):3269–3275. [PMC free article] [PubMed]
  • Bauer D, Müller H, Reich J, Riedel H, Ahrenkiel V, Warthoe P, Strauss M. Identification of differentially expressed mRNA species by an improved display technique (DDRT-PCR). Nucleic Acids Res. 1993 Sep 11;21(18):4272–4280. [PMC free article] [PubMed]
  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. [PubMed]
  • Ercolani L, Florence B, Denaro M, Alexander M. Isolation and complete sequence of a functional human glyceraldehyde-3-phosphate dehydrogenase gene. J Biol Chem. 1988 Oct 25;263(30):15335–15341. [PubMed]
  • Nakajima-Iijima S, Hamada H, Reddy P, Kakunaga T. Molecular structure of the human cytoplasmic beta-actin gene: interspecies homology of sequences in the introns. Proc Natl Acad Sci U S A. 1985 Sep;82(18):6133–6137. [PMC free article] [PubMed]
  • Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. [PubMed]
  • Towbin H, Staehelin T, Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. [PMC free article] [PubMed]
  • Roux AF, Rommens J, McDowell C, Anson-Cartwright L, Bell S, Schappert K, Fishman GA, Musarella M. Identification of a gene from Xp21 with similarity to the tctex-1 gene of the murine t complex. Hum Mol Genet. 1994 Feb;3(2):257–263. [PubMed]
  • Shaw G, Kamen R. A conserved AU sequence from the 3' untranslated region of GM-CSF mRNA mediates selective mRNA degradation. Cell. 1986 Aug 29;46(5):659–667. [PubMed]
  • Edwalds-Gilbert G, Veraldi KL, Milcarek C. Alternative poly(A) site selection in complex transcription units: means to an end? Nucleic Acids Res. 1997 Jul 1;25(13):2547–2561. [PMC free article] [PubMed]
  • Foulkes NS, Schlotter F, Pévet P, Sassone-Corsi P. Pituitary hormone FSH directs the CREM functional switch during spermatogenesis. Nature. 1993 Mar 18;362(6417):264–267. [PubMed]
  • Chen CY, Shyu AB. AU-rich elements: characterization and importance in mRNA degradation. Trends Biochem Sci. 1995 Nov;20(11):465–470. [PubMed]
  • Wennborg A, Sohlberg B, Angerer D, Klein G, von Gabain A. A human RNase E-like activity that cleaves RNA sequences involved in mRNA stability control. Proc Natl Acad Sci U S A. 1995 Aug 1;92(16):7322–7326. [PMC free article] [PubMed]
  • Mather EL, Nelson KJ, Haimovich J, Perry RP. Mode of regulation of immunoglobulin mu- and delta-chain expression varies during B-lymphocyte maturation. Cell. 1984 Feb;36(2):329–338. [PubMed]
  • Amara SG, Evans RM, Rosenfeld MG. Calcitonin/calcitonin gene-related peptide transcription unit: tissue-specific expression involves selective use of alternative polyadenylation sites. Mol Cell Biol. 1984 Oct;4(10):2151–2160. [PMC free article] [PubMed]
  • Wang YC, Rubenstein PA. Choice of 3' cleavage/polyadenylation site in beta-tropomyosin RNA processing is differentiation-dependent in mouse BC3H1 muscle cells. J Biol Chem. 1992 Feb 5;267(4):2728–2736. [PubMed]
  • Peattie DA, Hsiao K, Benasutti M, Lippke JA. Three distinct messenger RNAs can encode the human immunosuppressant-binding protein FKBP12. Gene. 1994 Dec 15;150(2):251–257. [PubMed]
  • Batista FD, Efremov DG, Tkach T, Burrone OR. Characterization of the human immunoglobulin epsilon mRNAs and their polyadenylation sites. Nucleic Acids Res. 1995 Dec 11;23(23):4805–4811. [PMC free article] [PubMed]
  • Edwalds-Gilbert G, Milcarek C. The binding of a subunit of the general polyadenylation factor cleavage-polyadenylation specificity factor (CPSF) to polyadenylation sites changes during B cell development. Nucleic Acids Symp Ser. 1995;(33):229–233. [PubMed]
  • Green MR. Biochemical mechanisms of constitutive and regulated pre-mRNA splicing. Annu Rev Cell Biol. 1991;7:559–599. [PubMed]
  • Wahle E, Keller W. The biochemistry of polyadenylation. Trends Biochem Sci. 1996 Jul;21(7):247–250. [PubMed]
  • Keller W. No end yet to messenger RNA 3' processing! Cell. 1995 Jun 16;81(6):829–832. [PubMed]
  • Manley JL. A complex protein assembly catalyzes polyadenylation of mRNA precursors. Curr Opin Genet Dev. 1995 Apr;5(2):222–228. [PubMed]
  • Allende JE, Allende CC. Protein kinases. 4. Protein kinase CK2: an enzyme with multiple substrates and a puzzling regulation. FASEB J. 1995 Mar;9(5):313–323. [PubMed]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society


Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...


  • Compound
    PubChem Compound links
  • MedGen
    Related information in MedGen
  • PubMed
    PubMed citations for these articles
  • Substance
    PubChem Substance links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...