Logo of biochemjBJ Latest papers and much more!
Biochem J. 1998 Nov 15; 336(Pt 1): 1–17.
PMCID: PMC1219836

Arginine metabolism: nitric oxide and beyond.


Arginine is one of the most versatile amino acids in animal cells, serving as a precursor for the synthesis not only of proteins but also of nitric oxide, urea, polyamines, proline, glutamate, creatine and agmatine. Of the enzymes that catalyse rate-controlling steps in arginine synthesis and catabolism, argininosuccinate synthase, the two arginase isoenzymes, the three nitric oxide synthase isoenzymes and arginine decarboxylase have been recognized in recent years as key factors in regulating newly identified aspects of arginine metabolism. In particular, changes in the activities of argininosuccinate synthase, the arginases, the inducible isoenzyme of nitric oxide synthase and also cationic amino acid transporters play major roles in determining the metabolic fates of arginine in health and disease, and recent studies have identified complex patterns of interaction among these enzymes. There is growing interest in the potential roles of the arginase isoenzymes as regulators of the synthesis of nitric oxide, polyamines, proline and glutamate. Physiological roles and relationships between the pathways of arginine synthesis and catabolism in vivo are complex and difficult to analyse, owing to compartmentalized expression of various enzymes at both organ (e.g. liver, small intestine and kidney) and subcellular (cytosol and mitochondria) levels, as well as to changes in expression during development and in response to diet, hormones and cytokines. The ongoing development of new cell lines and animal models using cDNA clones and genes for key arginine metabolic enzymes will provide new approaches more clearly elucidating the physiological roles of these enzymes.

Full Text

The Full Text of this article is available as a PDF (494K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Rehberg PB. Studies on Kidney Function: The Rate of Filtration and Reabsorption in the Human Kidney. Biochem J. 1926;20(3):447–460. [PMC free article] [PubMed]
  • ROSE WC, HAINES WJ, WARNER DT. The amino acid requirements of man. V. The rôle of lysine, arginine, and tryptophan. J Biol Chem. 1954 Jan;206(1):421–430. [PubMed]
  • MERTZ ET, BEESON WM, JACKSON HD. Classification of essential amino acids for the weanling pig. Arch Biochem Biophys. 1952 Jul;38:121–128. [PubMed]
  • Ha YH, Milner JA, Corbin JE. Arginine requirements in immature dogs. J Nutr. 1978 Feb;108(2):203–210. [PubMed]
  • Heird WC, Nicholson JF, Driscoll JM, Jr, Schullinger JN, Winters RW. Hyperammonemia resulting from intravenous alimentation using a mixture of synthetic l-amino acids: a preliminary report. J Pediatr. 1972 Jul;81(1):162–165. [PubMed]
  • Morris JG, Rogers QR. Arginine: an essential amino acid for the cat. J Nutr. 1978 Dec;108(12):1944–1953. [PubMed]
  • Deshmukh DR, Shope TC. Arginine requirement and ammonia toxicity in ferrets. J Nutr. 1983 Aug;113(8):1664–1667. [PubMed]
  • Windmueller HG, Spaeth AE. Source and fate of circulating citrulline. Am J Physiol. 1981 Dec;241(6):E473–E480. [PubMed]
  • Wakabayashi Y, Jones ME. Pyrroline-5-carboxylate synthesis from glutamate by rat intestinal mucosa. J Biol Chem. 1983 Mar 25;258(6):3865–3872. [PubMed]
  • Wakabayashi Y, Henslee JG, Jones ME. Pyrroline-5-carboxylate synthesis from glutamate by rat intestinal mucosa. Subcellular localization and temperature stability. J Biol Chem. 1983 Mar 25;258(6):3873–3882. [PubMed]
  • Barbul A. Arginine: biochemistry, physiology, and therapeutic implications. JPEN J Parenter Enteral Nutr. 1986 Mar-Apr;10(2):227–238. [PubMed]
  • Furchgott RF, Zawadzki JV. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature. 1980 Nov 27;288(5789):373–376. [PubMed]
  • Stuehr DJ, Marletta MA. Mammalian nitrate biosynthesis: mouse macrophages produce nitrite and nitrate in response to Escherichia coli lipopolysaccharide. Proc Natl Acad Sci U S A. 1985 Nov;82(22):7738–7742. [PMC free article] [PubMed]
  • Green LC, Ruiz de Luzuriaga K, Wagner DA, Rand W, Istfan N, Young VR, Tannenbaum SR. Nitrate biosynthesis in man. Proc Natl Acad Sci U S A. 1981 Dec;78(12):7764–7768. [PMC free article] [PubMed]
  • Green LC, Tannenbaum SR, Goldman P. Nitrate synthesis in the germfree and conventional rat. Science. 1981 Apr 3;212(4490):56–58. [PubMed]
  • Wagner DA, Young VR, Tannenbaum SR. Mammalian nitrate biosynthesis: incorporation of 15NH3 into nitrate is enhanced by endotoxin treatment. Proc Natl Acad Sci U S A. 1983 Jul;80(14):4518–4521. [PMC free article] [PubMed]
  • Hibbs JB, Jr, Taintor RR, Vavrin Z. Macrophage cytotoxicity: role for L-arginine deiminase and imino nitrogen oxidation to nitrite. Science. 1987 Jan 23;235(4787):473–476. [PubMed]
  • Palmer RM, Ferrige AG, Moncada S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature. 1987 Jun 11;327(6122):524–526. [PubMed]
  • Ignarro LJ, Buga GM, Wood KS, Byrns RE, Chaudhuri G. Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci U S A. 1987 Dec;84(24):9265–9269. [PMC free article] [PubMed]
  • Hibbs JB, Jr, Taintor RR, Vavrin Z, Rachlin EM. Nitric oxide: a cytotoxic activated macrophage effector molecule. Biochem Biophys Res Commun. 1988 Nov 30;157(1):87–94. [PubMed]
  • Marletta MA, Yoon PS, Iyengar R, Leaf CD, Wishnok JS. Macrophage oxidation of L-arginine to nitrite and nitrate: nitric oxide is an intermediate. Biochemistry. 1988 Nov 29;27(24):8706–8711. [PubMed]
  • Palmer RM, Ashton DS, Moncada S. Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature. 1988 Jun 16;333(6174):664–666. [PubMed]
  • Bredt DS, Snyder SH. Nitric oxide: a physiologic messenger molecule. Annu Rev Biochem. 1994;63:175–195. [PubMed]
  • Moncada S, Higgs EA. Molecular mechanisms and therapeutic strategies related to nitric oxide. FASEB J. 1995 Oct;9(13):1319–1330. [PubMed]
  • Williams K. Interactions of polyamines with ion channels. Biochem J. 1997 Jul 15;325(Pt 2):289–297. [PMC free article] [PubMed]
  • Ferber S, Ciechanover A. Role of arginine-tRNA in protein degradation by the ubiquitin pathway. Nature. 1987 Apr 23;326(6115):808–811. [PubMed]
  • Meijer AJ, Lamers WH, Chamuleau RA. Nitrogen metabolism and ornithine cycle function. Physiol Rev. 1990 Jul;70(3):701–748. [PubMed]
  • Reyes AA, Karl IE, Klahr S. Role of arginine in health and in renal disease. Am J Physiol. 1994 Sep;267(3 Pt 2):F331–F346. [PubMed]
  • Aral B, Schlenzig JS, Liu G, Kamoun P. Database cloning human delta 1-pyrroline-5-carboxylate synthetase (P5CS) cDNA: a bifunctional enzyme catalyzing the first 2 steps in proline biosynthesis. C R Acad Sci III. 1996 Mar;319(3):171–178. [PubMed]
  • Wu G, Davis PK, Flynn NE, Knabe DA, Davidson JT. Endogenous synthesis of arginine plays an important role in maintaining arginine homeostasis in postweaning growing pigs. J Nutr. 1997 Dec;127(12):2342–2349. [PubMed]
  • Jackson MJ, Beaudet AL, O'Brien WE. Mammalian urea cycle enzymes. Annu Rev Genet. 1986;20:431–464. [PubMed]
  • Curthoys NP, Watford M. Regulation of glutaminase activity and glutamine metabolism. Annu Rev Nutr. 1995;15:133–159. [PubMed]
  • Abruzzese F, Greco M, Perlino E, Doonan S, Marra E. Lack of correlation between mRNA expression and enzymatic activity of the aspartate aminotransferase isoenzymes in various tissues of the rat. FEBS Lett. 1995 Jun 12;366(2-3):170–172. [PubMed]
  • Morris SM., Jr Regulation of enzymes of urea and arginine synthesis. Annu Rev Nutr. 1992;12:81–101. [PubMed]
  • Reuber BE, Karl C, Reimann SA, Mihalik SJ, Dodt G. Cloning and functional expression of a mammalian gene for a peroxisomal sarcosine oxidase. J Biol Chem. 1997 Mar 7;272(10):6766–6776. [PubMed]
  • Dhanakoti SN, Brosnan JT, Herzberg GR, Brosnan ME. Renal arginine synthesis: studies in vitro and in vivo. Am J Physiol. 1990 Sep;259(3 Pt 1):E437–E442. [PubMed]
  • Featherston WR, Rogers QR, Freedland RA. Relative importance of kidney and liver in synthesis of arginine by the rat. Am J Physiol. 1973 Jan;224(1):127–129. [PubMed]
  • Castillo L, DeRojas-Walker T, Yu YM, Sanchez M, Chapman TE, Shannon D, Tannenbaum S, Burke JF, Young VR. Whole body arginine metabolism and nitric oxide synthesis in newborns with persistent pulmonary hypertension. Pediatr Res. 1995 Jul;38(1):17–24. [PubMed]
  • Castillo L, Chapman TE, Sanchez M, Yu YM, Burke JF, Ajami AM, Vogt J, Young VR. Plasma arginine and citrulline kinetics in adults given adequate and arginine-free diets. Proc Natl Acad Sci U S A. 1993 Aug 15;90(16):7749–7753. [PMC free article] [PubMed]
  • Reeds PJ, Cadenhead A, Fuller MF, Lobley GE, McDonald JD. Protein turnover in growing pigs. Effects of age and food intake. Br J Nutr. 1980 May;43(3):445–455. [PubMed]
  • Davis TA, Fiorotto ML, Reeds PJ. Amino acid compositions of body and milk protein change during the suckling period in rats. J Nutr. 1993 May;123(5):947–956. [PubMed]
  • Cherel Y, Attaix D, Rosolowska-Huszcz D, Belkhou R, Robin JP, Arnal M, Le Maho Y. Whole-body and tissue protein synthesis during brief and prolonged fasting in the rat. Clin Sci (Lond) 1991 Nov;81(5):611–619. [PubMed]
  • Dhanakoti SN, Brosnan JT, Brosnan ME, Herzberg GR. Net renal arginine flux in rats is not affected by dietary arginine or dietary protein intake. J Nutr. 1992 May;122(5):1127–1134. [PubMed]
  • Yu YM, Burke JF, Tompkins RG, Martin R, Young VR. Quantitative aspects of interorgan relationships among arginine and citrulline metabolism. Am J Physiol. 1996 Dec;271(6 Pt 1):E1098–E1109. [PubMed]
  • Flynn NE, Wu G. An important role for endogenous synthesis of arginine in maintaining arginine homeostasis in neonatal pigs. Am J Physiol. 1996 Nov;271(5 Pt 2):R1149–R1155. [PubMed]
  • Castillo L, Beaumier L, Ajami AM, Young VR. Whole body nitric oxide synthesis in healthy men determined from [15N] arginine-to-[15N]citrulline labeling. Proc Natl Acad Sci U S A. 1996 Oct 15;93(21):11460–11465. [PMC free article] [PubMed]
  • Windmueller HG, Spaeth AE. Intestinal metabolism of glutamine and glutamate from the lumen as compared to glutamine from blood. Arch Biochem Biophys. 1975 Dec;171(2):662–672. [PubMed]
  • Stoll B, Henry J, Reeds PJ, Yu H, Jahoor F, Burrin DG. Catabolism dominates the first-pass intestinal metabolism of dietary essential amino acids in milk protein-fed piglets. J Nutr. 1998 Mar;128(3):606–614. [PubMed]
  • Matthews DE, Marano MA, Campbell RG. Splanchnic bed utilization of glutamine and glutamic acid in humans. Am J Physiol. 1993 Jun;264(6 Pt 1):E848–E854. [PubMed]
  • Wu G. Intestinal mucosal amino acid catabolism. J Nutr. 1998 Aug;128(8):1249–1252. [PubMed]
  • Berthold HK, Reeds PJ, Klein PD. Isotopic evidence for the differential regulation of arginine and proline synthesis in man. Metabolism. 1995 Apr;44(4):466–473. [PubMed]
  • Windmueller HG, Spaeth AE. Uptake and metabolism of plasma glutamine by the small intestine. J Biol Chem. 1974 Aug 25;249(16):5070–5079. [PubMed]
  • Weber FL, Maddrey WC, Walser M. Amino acid metabolism of dog jejunum before and during absorption of keto analogues. Am J Physiol. 1977 Mar;232(3):E263–E269. [PubMed]
  • Wu G, Borbolla AG, Knabe DA. The uptake of glutamine and release of arginine, citrulline and proline by the small intestine of developing pigs. J Nutr. 1994 Dec;124(12):2437–2444. [PubMed]
  • Bergman EN, Heitmann RN. Metabolism of amino acids by the gut, liver, kidneys, and peripheral tissues. Fed Proc. 1978 Apr;37(5):1228–1232. [PubMed]
  • Wu G, Knabe DA. Arginine synthesis in enterocytes of neonatal pigs. Am J Physiol. 1995 Sep;269(3 Pt 2):R621–R629. [PubMed]
  • Wu G, Knabe DA, Flynn NE. Synthesis of citrulline from glutamine in pig enterocytes. Biochem J. 1994 Apr 1;299(Pt 1):115–121. [PMC free article] [PubMed]
  • Blachier F, M'Rabet-Touil H, Posho L, Darcy-Vrillon B, Duée PH. Intestinal arginine metabolism during development. Evidence for de novo synthesis of L-arginine in newborn pig enterocytes. Eur J Biochem. 1993 Aug 15;216(1):109–117. [PubMed]
  • Wu G, Knabe DA, Yan W, Flynn NE. Glutamine and glucose metabolism in enterocytes of the neonatal pig. Am J Physiol. 1995 Feb;268(2 Pt 2):R334–R342. [PubMed]
  • Herzfeld A, Raper SM. Enzymes of ornithine metabolism in adult and developing rat intestine. Biochim Biophys Acta. 1976 May 28;428(3):600–610. [PubMed]
  • Hurwitz R, Kretchmer N. Development of arginine-synthesizing enzymes in mouse intestine. Am J Physiol. 1986 Jul;251(1 Pt 1):G103–G110. [PubMed]
  • De Jonge WJ, Dingemanse MA, de Boer PA, Lamers WH, Moorman AF. Arginine-metabolizing enzymes in the developing rat small intestine. Pediatr Res. 1998 Apr;43(4 Pt 1):442–451. [PubMed]
  • Morris SM, Jr, Sweeney WE, Jr, Kepka DM, O'Brien WE, Avner ED. Localization of arginine biosynthetic enzymes in renal proximal tubules and abundance of mRNA during development. Pediatr Res. 1991 Feb;29(2):151–154. [PubMed]
  • Wu G. Synthesis of citrulline and arginine from proline in enterocytes of postnatal pigs. Am J Physiol. 1997 Jun;272(6 Pt 1):G1382–G1390. [PubMed]
  • Murphy JM, Murch SJ, Ball RO. Proline is synthesized from glutamate during intragastric infusion but not during intravenous infusion in neonatal piglets. J Nutr. 1996 Apr;126(4):878–886. [PubMed]
  • Jones ME. Conversion of glutamate to ornithine and proline: pyrroline-5-carboxylate, a possible modulator of arginine requirements. J Nutr. 1985 Apr;115(4):509–515. [PubMed]
  • Samuels SE, Aarts HL, Ball RO. Effect of dietary proline on proline metabolism in the neonatal pig. J Nutr. 1989 Dec;119(12):1900–1906. [PubMed]
  • Hoogenraad N, Totino N, Elmer H, Wraight C, Alewood P, Johns RB. Inhibition of intestinal citrulline synthesis causes severe growth retardation in rats. Am J Physiol. 1985 Dec;249(6 Pt 1):G792–G799. [PubMed]
  • Wakabayashi Y, Yamada E, Yoshida T, Takahashi H. Arginine becomes an essential amino acid after massive resection of rat small intestine. J Biol Chem. 1994 Dec 23;269(51):32667–32671. [PubMed]
  • Wakabayashi Y, Yamada E, Yoshida T, Takahashi N. Effect of intestinal resection and arginine-free diet on rat physiology. Am J Physiol. 1995 Aug;269(2 Pt 1):G313–G318. [PubMed]
  • Rabier D, Narcy C, Bardet J, Parvy P, Saudubray JM, Kamoun P. Arginine remains an essential amino acid after liver transplantation in urea cycle enzyme deficiencies. J Inherit Metab Dis. 1991;14(3):277–280. [PubMed]
  • Wang T, Lawler AM, Steel G, Sipila I, Milam AH, Valle D. Mice lacking ornithine-delta-aminotransferase have paradoxical neonatal hypoornithinaemia and retinal degeneration. Nat Genet. 1995 Oct;11(2):185–190. [PubMed]
  • Kamoun P, Aral B, Saudubray JM. Une nouvelle maladie héréditaire du métabolisme: le déficit en delta 1-pyrroline 5-carboxylate synthétase. Bull Acad Natl Med. 1998;182(1):131–139. [PubMed]
  • Morris JG, Rogers QR. Ammonia intoxication in the near-adult cat as a result of a dietary deficiency of arginine. Science. 1978 Jan 27;199(4327):431–432. [PubMed]
  • Levillain O, Parvy P, Hus-Citharel A. Arginine metabolism in cat kidney. J Physiol. 1996 Mar 1;491(Pt 2):471–477. [PMC free article] [PubMed]
  • Rogers QR, Phang JM. Deficiency of pyrroline-5-carboxylate synthase in the intestinal mucosa of the cat. J Nutr. 1985 Jan;115(1):146–150. [PubMed]
  • Deshmukh DR, Shope TC. Arginine requirement and ammonia toxicity in ferrets. J Nutr. 1983 Aug;113(8):1664–1667. [PubMed]
  • Herzfeld A, Raper SM. Effects of cortisol or starvation on the activities of four enzymes in small intestine and liver of the rat during development. J Dev Physiol. 1979 Aug;1(4):315–327. [PubMed]
  • Salleh M, Ardawi M, Majzoub MF, Newsholme EA. Effect of glucocorticoid treatment on glucose and glutamine metabolism by the small intestine of the rat. Clin Sci (Lond) 1988 Jul;75(1):93–100. [PubMed]
  • Flynn NE, Wu G. Enhanced metabolism of arginine and glutamine in enterocytes of cortisol-treated pigs. Am J Physiol. 1997 Mar;272(3 Pt 1):G474–G480. [PubMed]
  • Flynn NE, Wu G. Glucocorticoids play an important role in mediating the enhanced metabolism of arginine and glutamine in enterocytes of postweaning pigs. J Nutr. 1997 May;127(5):732–737. [PubMed]
  • Henning SJ. Postnatal development: coordination of feeding, digestion, and metabolism. Am J Physiol. 1981 Sep;241(3):G199–G214. [PubMed]
  • Tsai FJ, Tsai CH, Wu SF, Liu YH, Yeh TF. Catabolic effect in premature infants with early dexamethasone treatment. Acta Paediatr. 1996 Dec;85(12):1487–1490. [PubMed]
  • Wraight C, Hoogenraad N. Dietary regulation of ornithine transcarbamylase mRNA in liver and small intestine. Aust J Biol Sci. 1988;41(4):435–440. [PubMed]
  • Wraight C, Lingelbach K, Hoogenraad N. Comparison of ornithine transcarbamylase from rat liver and intestine. Evidence for differential regulation of enzyme levels. Eur J Biochem. 1985 Dec 2;153(2):239–242. [PubMed]
  • Matsuzawa T, Kobayashi T, Tashiro K, Kasahara M. Changes in ornithine metabolic enzymes induced by dietary protein in small intestine and liver: intestine-liver relationship in ornithine supply to liver. J Biochem. 1994 Oct;116(4):721–727. [PubMed]
  • Ryall JC, Quantz MA, Shore GC. Rat liver and intestinal mucosa differ in the developmental pattern and hormonal regulation of carbamoyl-phosphate synthetase I and ornithine carbamoyl transferase gene expression. Eur J Biochem. 1986 May 2;156(3):453–458. [PubMed]
  • Hartman WJ, Prior RL. Dietary arginine deficiency alters flux of glutamine and urea cycle intermediates across the portal-drained viscera and liver of rats. J Nutr. 1992 Jul;122(7):1472–1482. [PubMed]
  • Prior RL, Gross KL. Dietary arginine deficiency and gut ammonium infusion alter flux of urea cycle intermediates across the portal-drained viscera of pigs. J Nutr. 1995 Feb;125(2):251–263. [PubMed]
  • Levillain O, Hus-Citharel A, Morel F, Bankir L. Localization of arginine synthesis along rat nephron. Am J Physiol. 1990 Dec;259(6 Pt 2):F916–F923. [PubMed]
  • Dhanakoti SN, Brosnan ME, Herzberg GR, Brosnan JT. Cellular and subcellular localization of enzymes of arginine metabolism in rat kidney. Biochem J. 1992 Mar 1;282(Pt 2):369–375. [PMC free article] [PubMed]
  • Wakui H, Komatsuda A, Itoh H, Kobayashi R, Nakamoto Y, Miura AB. Renal argininosuccinate synthetase: purification, immunohistochemical localization, and elastin-binding property. Ren Physiol Biochem. 1992 Jan-Feb;15(1):1–9. [PubMed]
  • Levillain O, Hus-Citharel A, Morel F, Bankir L. Arginine synthesis in mouse and rabbit nephron: localization and functional significance. Am J Physiol. 1993 Jun;264(6 Pt 2):F1038–F1045. [PubMed]
  • Tizianello A, De Ferrari G, Garibotto G, Gurreri G, Robaudo C. Renal metabolism of amino acids and ammonia in subjects with normal renal function and in patients with chronic renal insufficiency. J Clin Invest. 1980 May;65(5):1162–1173. [PMC free article] [PubMed]
  • Rogers QR, Freedland RA, Symmons RA. In vivo synthesis and utilization of arginine in the rat. Am J Physiol. 1972 Jul;223(1):236–240. [PubMed]
  • Morris SM, Jr, Moncman CL, Holub JS, Hod Y. Nutritional and hormonal regulation of mRNA abundance for arginine biosynthetic enzymes in kidney. Arch Biochem Biophys. 1989 Aug 15;273(1):230–237. [PubMed]
  • Morel F, Hus-Citharel A, Levillain O. Biochemical heterogeneity of arginine metabolism along kidney proximal tubules. Kidney Int. 1996 Jun;49(6):1608–1610. [PubMed]
  • Tizianello A, De Ferrari G, Garibotto G, Robaudo C. Amino acid metabolism and the liver in renal failure. Am J Clin Nutr. 1980 Jul;33(7):1354–1362. [PubMed]
  • Laidlaw SA, Berg RL, Kopple JD, Naito H, Walker WG, Walser M. Patterns of fasting plasma amino acid levels in chronic renal insufficiency: results from the feasibility phase of the Modification of Diet in Renal Disease Study. Am J Kidney Dis. 1994 Apr;23(4):504–513. [PubMed]
  • Bouby N, Hassler C, Parvy P, Bankir L. Renal synthesis of arginine in chronic renal failure: in vivo and in vitro studies in rats with 5/6 nephrectomy. Kidney Int. 1993 Oct;44(4):676–683. [PubMed]
  • Visek WJ. Arginine needs, physiological state and usual diets. A reevaluation. J Nutr. 1986 Jan;116(1):36–46. [PubMed]
  • Watford M. The urea cycle: a two-compartment system. Essays Biochem. 1991;26:49–58. [PubMed]
  • Cheung CW, Cohen NS, Raijman L. Channeling of urea cycle intermediates in situ in permeabilized hepatocytes. J Biol Chem. 1989 Mar 5;264(7):4038–4044. [PubMed]
  • Morris SM, Jr, Kepka DM, Sweeney WE, Jr, Avner ED. Abundance of mRNAs encoding urea cycle enzymes in fetal and neonatal mouse liver. Arch Biochem Biophys. 1989 Feb 15;269(1):175–180. [PubMed]
  • Rogers QR, Morris JG, Freedland RA. Lack of hepatic enzymatic adaptation to low and high levels of dietary protein in the adult cat. Enzyme. 1977;22(5):348–356. [PubMed]
  • Takiguchi M, Mori M. Transcriptional regulation of genes for ornithine cycle enzymes. Biochem J. 1995 Dec 15;312(Pt 3):649–659. [PMC free article] [PubMed]
  • Nussler AK, Billiar TR. Inflammation, immunoregulation, and inducible nitric oxide synthase. J Leukoc Biol. 1993 Aug;54(2):171–178. [PubMed]
  • Wettstein M, Gerok W, Häussinger D. Endotoxin-induced nitric oxide synthesis in the perfused rat liver: effects of L-arginine and ammonium chloride. Hepatology. 1994 Mar;19(3):641–647. [PubMed]
  • Pastor CM, Morris SM, Jr, Billiar TR. Sources of arginine for induced nitric oxide synthesis in the isolated perfused liver. Am J Physiol. 1995 Dec;269(6 Pt 1):G861–G866. [PubMed]
  • Stadler J, Barton D, Beil-Moeller H, Diekmann S, Hierholzer C, Erhard W, Heidecke CD. Hepatocyte nitric oxide biosynthesis inhibits glucose output and competes with urea synthesis for L-arginine. Am J Physiol. 1995 Jan;268(1 Pt 1):G183–G188. [PubMed]
  • Hattori Y, Shimoda S, Gross SS. Effect of lipopolysaccharide treatment in vivo on tissue expression of argininosuccinate synthetase and argininosuccinate lyase mRNAs: relationship to nitric oxide synthase. Biochem Biophys Res Commun. 1995 Oct 4;215(1):148–153. [PubMed]
  • Nagasaki A, Gotoh T, Takeya M, Yu Y, Takiguchi M, Matsuzaki H, Takatsuki K, Mori M. Coinduction of nitric oxide synthase, argininosuccinate synthetase, and argininosuccinate lyase in lipopolysaccharide-treated rats. RNA blot, immunoblot, and immunohistochemical analyses. J Biol Chem. 1996 Feb 2;271(5):2658–2662. [PubMed]
  • Hecker M, Sessa WC, Harris HJ, Anggård EE, Vane JR. The metabolism of L-arginine and its significance for the biosynthesis of endothelium-derived relaxing factor: cultured endothelial cells recycle L-citrulline to L-arginine. Proc Natl Acad Sci U S A. 1990 Nov;87(21):8612–8616. [PMC free article] [PubMed]
  • Marzinzig M, Nussler AK, Stadler J, Marzinzig E, Barthlen W, Nussler NC, Beger HG, Morris SM, Jr, Brückner UB. Improved methods to measure end products of nitric oxide in biological fluids: nitrite, nitrate, and S-nitrosothiols. Nitric Oxide. 1997 Apr;1(2):177–189. [PubMed]
  • Hattori Y, Campbell EB, Gross SS. Argininosuccinate synthetase mRNA and activity are induced by immunostimulants in vascular smooth muscle. Role in the regeneration or arginine for nitric oxide synthesis. J Biol Chem. 1994 Apr 1;269(13):9405–9408. [PubMed]
  • Nussler AK, Billiar TR, Liu ZZ, Morris SM., Jr Coinduction of nitric oxide synthase and argininosuccinate synthetase in a murine macrophage cell line. Implications for regulation of nitric oxide production. J Biol Chem. 1994 Jan 14;269(2):1257–1261. [PubMed]
  • Flodström M, Morris SM, Jr, Eizirik DL. Role of the citrulline-nitric oxide cycle in the functional response of adult human and rodent pancreatic islets to cytokines. Cytokine. 1996 Aug;8(8):642–650. [PubMed]
  • Norris KA, Schrimpf JE, Flynn JL, Morris SM., Jr Enhancement of macrophage microbicidal activity: supplemental arginine and citrulline augment nitric oxide production in murine peritoneal macrophages and promote intracellular killing of Trypanosoma cruzi. Infect Immun. 1995 Jul;63(7):2793–2796. [PMC free article] [PubMed]
  • Wu GY, Brosnan JT. Macrophages can convert citrulline into arginine. Biochem J. 1992 Jan 1;281(Pt 1):45–48. [PMC free article] [PubMed]
  • Flodström M, Niemann A, Bedoya FJ, Morris SM, Jr, Eizirik DL. Expression of the citrulline-nitric oxide cycle in rodent and human pancreatic beta-cells: induction of argininosuccinate synthetase by cytokines. Endocrinology. 1995 Aug;136(8):3200–3206. [PubMed]
  • Gotoh T, Sonoki T, Nagasaki A, Terada K, Takiguchi M, Mori M. Molecular cloning of cDNA for nonhepatic mitochondrial arginase (arginase II) and comparison of its induction with nitric oxide synthase in a murine macrophage-like cell line. FEBS Lett. 1996 Oct 21;395(2-3):119–122. [PubMed]
  • Nussler AK, Liu ZZ, Hatakeyama K, Geller DA, Billiar TR, Morris SM., Jr A cohort of supporting metabolic enzymes is coinduced with nitric oxide synthase in human tumor cell lines. Cancer Lett. 1996 May 15;103(1):79–84. [PubMed]
  • Simmons WW, Closs EI, Cunningham JM, Smith TW, Kelly RA. Cytokines and insulin induce cationic amino acid transporter (CAT) expression in cardiac myocytes. Regulation of L-arginine transport and no production by CAT-1, CAT-2A, and CAT-2B. J Biol Chem. 1996 May 17;271(20):11694–11702. [PubMed]
  • Morris SM, Jr, Billiar TR. New insights into the regulation of inducible nitric oxide synthesis. Am J Physiol. 1994 Jun;266(6 Pt 1):E829–E839. [PubMed]
  • Xie L, Gross SS. Argininosuccinate synthetase overexpression in vascular smooth muscle cells potentiates immunostimulant-induced NO production. J Biol Chem. 1997 Jun 27;272(26):16624–16630. [PubMed]
  • Sessa WC, Hecker M, Mitchell JA, Vane JR. The metabolism of L-arginine and its significance for the biosynthesis of endothelium-derived relaxing factor: L-glutamine inhibits the generation of L-arginine by cultured endothelial cells. Proc Natl Acad Sci U S A. 1990 Nov;87(21):8607–8611. [PMC free article] [PubMed]
  • Wu G, Meininger CJ. Regulation of L-arginine synthesis from L-citrulline by L-glutamine in endothelial cells. Am J Physiol. 1993 Dec;265(6 Pt 2):H1965–H1971. [PubMed]
  • Su Y, Block ER. Hypoxia inhibits L-arginine synthesis from L-citrulline in porcine pulmonary artery endothelial cells. Am J Physiol. 1995 Nov;269(5 Pt 1):L581–L587. [PubMed]
  • Chen FY, Lee TJ. Arginine synthesis from citrulline in perivascular nerves of cerebral artery. J Pharmacol Exp Ther. 1995 May;273(2):895–901. [PubMed]
  • Knowles RG, Moncada S. Nitric oxide synthases in mammals. Biochem J. 1994 Mar 1;298(Pt 2):249–258. [PMC free article] [PubMed]
  • Walker JB. Creatine: biosynthesis, regulation, and function. Adv Enzymol Relat Areas Mol Biol. 1979;50:177–242. [PubMed]
  • McGuire DM, Gross MD, Elde RP, van Pilsum JF. Localization of L-arginine-glycine amidinotransferase protein in rat tissues by immunofluorescence microscopy. J Histochem Cytochem. 1986 Apr;34(4):429–435. [PubMed]
  • Vockley JG, Jenkinson CP, Shukla H, Kern RM, Grody WW, Cederbaum SD. Cloning and characterization of the human type II arginase gene. Genomics. 1996 Dec 1;38(2):118–123. [PubMed]
  • Gotoh T, Araki M, Mori M. Chromosomal localization of the human arginase II gene and tissue distribution of its mRNA. Biochem Biophys Res Commun. 1997 Apr 17;233(2):487–491. [PubMed]
  • Morris SM, Jr, Bhamidipati D, Kepka-Lenhart D. Human type II arginase: sequence analysis and tissue-specific expression. Gene. 1997 Jul 9;193(2):157–161. [PubMed]
  • Kilberg MS, Stevens BR, Novak DA. Recent advances in mammalian amino acid transport. Annu Rev Nutr. 1993;13:137–165. [PubMed]
  • Van Winkle LJ. Endogenous amino acid transport systems and expression of mammalian amino acid transport proteins in Xenopus oocytes. Biochim Biophys Acta. 1993 Oct 29;1154(2):157–172. [PubMed]
  • Malandro MS, Kilberg MS. Molecular biology of mammalian amino acid transporters. Annu Rev Biochem. 1996;65:305–336. [PubMed]
  • Devés R, Boyd CA. Transporters for cationic amino acids in animal cells: discovery, structure, and function. Physiol Rev. 1998 Apr;78(2):487–545. [PubMed]
  • Hosokawa H, Sawamura T, Kobayashi S, Ninomiya H, Miwa S, Masaki T. Cloning and characterization of a brain-specific cationic amino acid transporter. J Biol Chem. 1997 Mar 28;272(13):8717–8722. [PubMed]
  • Bogle RG, Moncada S, Pearson JD, Mann GE. Identification of inhibitors of nitric oxide synthase that do not interact with the endothelial cell L-arginine transporter. Br J Pharmacol. 1992 Apr;105(4):768–770. [PMC free article] [PubMed]
  • Schmidt K, Klatt P, Mayer B. Characterization of endothelial cell amino acid transport systems involved in the actions of nitric oxide synthase inhibitors. Mol Pharmacol. 1993 Sep;44(3):615–621. [PubMed]
  • Baydoun AR, Mann GE. Selective targeting of nitric oxide synthase inhibitors to system y+ in activated macrophages. Biochem Biophys Res Commun. 1994 Apr 29;200(2):726–731. [PubMed]
  • Schmidt K, Klatt P, Mayer B. Uptake of nitric oxide synthase inhibitors by macrophage RAW 264.7 cells. Biochem J. 1994 Jul 15;301(Pt 2):313–316. [PMC free article] [PubMed]
  • Bogle RG, MacAllister RJ, Whitley GS, Vallance P. Induction of NG-monomethyl-L-arginine uptake: a mechanism for differential inhibition of NO synthases? Am J Physiol. 1995 Sep;269(3 Pt 1):C750–C756. [PubMed]
  • DeGeorge GL, Heck DE, Laskin JD. Arginine metabolism in keratinocytes and macrophages during nitric oxide biosynthesis: multiple modes of action of nitric oxide synthase inhibitors. Biochem Pharmacol. 1997 Jul 1;54(1):103–112. [PubMed]
  • Robertson CA, Green BG, Niedzwiecki L, Harrison RK, Grant SK. Effect of nitric oxide synthase substrate analog inhibitors on rat liver arginase. Biochem Biophys Res Commun. 1993 Dec 15;197(2):523–528. [PubMed]
  • Hrabák A, Bajor T, Temesi A. Comparison of substrate and inhibitor specificity of arginase and nitric oxide (NO) synthase for arginine analogues and related compounds in murine and rat macrophages. Biochem Biophys Res Commun. 1994 Jan 14;198(1):206–212. [PubMed]
  • O'sullivan D, Brosnan JT, Brosnan ME. Hepatic zonation of the catabolism of arginine and ornithine in the perfused rat liver. Biochem J. 1998 Mar 1;330(Pt 2):627–632. [PMC free article] [PubMed]
  • Bogle RG, Baydoun AR, Pearson JD, Moncada S, Mann GE. L-arginine transport is increased in macrophages generating nitric oxide. Biochem J. 1992 May 15;284(Pt 1):15–18. [PMC free article] [PubMed]
  • Durante W, Liao L, Schafer AI. Differential regulation of L-arginine transport and inducible NOS in cultured vascular smooth muscle cells. Am J Physiol. 1995 Mar;268(3 Pt 2):H1158–H1164. [PubMed]
  • Schmidlin A, Wiesinger H. Stimulation of arginine transport and nitric oxide production by lipopolysaccharide is mediated by different signaling pathways in astrocytes. J Neurochem. 1995 Aug;65(2):590–594. [PubMed]
  • Cendan JC, Topping DL, Pruitt J, Snowdy S, Copeland EM, 3rd, Lind DS. Inflammatory mediators stimulate arginine transport and arginine-derived nitric oxide production in a murine breast cancer cell line. J Surg Res. 1996 Feb 1;60(2):284–288. [PubMed]
  • Gill DJ, Low BC, Grigor MR. Interleukin-1 beta and tumor necrosis factor-alpha stimulate the cat-2 gene of the L-arginine transporter in cultured vascular smooth muscle cells. J Biol Chem. 1996 May 10;271(19):11280–11283. [PubMed]
  • Stevens BR, Kakuda DK, Yu K, Waters M, Vo CB, Raizada MK. Induced nitric oxide synthesis is dependent on induced alternatively spliced CAT-2 encoding L-arginine transport in brain astrocytes. J Biol Chem. 1996 Sep 27;271(39):24017–24022. [PubMed]
  • Kurz S, Harrison DG. Insulin and the arginine paradox. J Clin Invest. 1997 Feb 1;99(3):369–370. [PMC free article] [PubMed]
  • Granger DL, Hibbs JB, Jr, Perfect JR, Durack DT. Metabolic fate of L-arginine in relation to microbiostatic capability of murine macrophages. J Clin Invest. 1990 Jan;85(1):264–273. [PMC free article] [PubMed]
  • Iyengar R, Stuehr DJ, Marletta MA. Macrophage synthesis of nitrite, nitrate, and N-nitrosamines: precursors and role of the respiratory burst. Proc Natl Acad Sci U S A. 1987 Sep;84(18):6369–6373. [PMC free article] [PubMed]
  • McDonald KK, Zharikov S, Block ER, Kilberg MS. A caveolar complex between the cationic amino acid transporter 1 and endothelial nitric-oxide synthase may explain the "arginine paradox". J Biol Chem. 1997 Dec 12;272(50):31213–31216. [PubMed]
  • Castillo L, Sánchez M, Vogt J, Chapman TE, DeRojas-Walker TC, Tannenbaum SR, Ajami AM, Young VR. Plasma arginine, citrulline, and ornithine kinetics in adults, with observations on nitric oxide synthesis. Am J Physiol. 1995 Feb;268(2 Pt 1):E360–E367. [PubMed]
  • Windmueller HG, Spaeth AE. Metabolism of absorbed aspartate, asparagine, and arginine by rat small intestine in vivo. Arch Biochem Biophys. 1976 Aug;175(2):670–676. [PubMed]
  • Castillo L, Chapman TE, Yu YM, Ajami A, Burke JF, Young VR. Dietary arginine uptake by the splanchnic region in adult humans. Am J Physiol. 1993 Oct;265(4 Pt 1):E532–E539. [PubMed]
  • Wu G, Knabe DA, Flynn NE, Yan W, Flynn SP. Arginine degradation in developing porcine enterocytes. Am J Physiol. 1996 Nov;271(5 Pt 1):G913–G919. [PubMed]
  • Daghigh F, Fukuto JM, Ash DE. Inhibition of rat liver arginase by an intermediate in NO biosynthesis, NG-hydroxy-L-arginine: implications for the regulation of nitric oxide biosynthesis by arginase. Biochem Biophys Res Commun. 1994 Jul 15;202(1):174–180. [PubMed]
  • Grody WW, Dizikes GJ, Cederbaum SD. Human arginase isozymes. Isozymes Curr Top Biol Med Res. 1987;13:181–214. [PubMed]
  • Jenkinson CP, Grody WW, Cederbaum SD. Comparative properties of arginases. Comp Biochem Physiol B Biochem Mol Biol. 1996 May;114(1):107–132. [PubMed]
  • Buga GM, Singh R, Pervin S, Rogers NE, Schmitz DA, Jenkinson CP, Cederbaum SD, Ignarro LJ. Arginase activity in endothelial cells: inhibition by NG-hydroxy-L-arginine during high-output NO production. Am J Physiol. 1996 Nov;271(5 Pt 2):H1988–H1998. [PubMed]
  • Louis CA, Reichner JS, Henry WL, Jr, Mastrofrancesco B, Gotoh T, Mori M, Albina JE. Distinct arginase isoforms expressed in primary and transformed macrophages: regulation by oxygen tension. Am J Physiol. 1998 Mar;274(3 Pt 2):R775–R782. [PubMed]
  • Davis PK, Wu G. Compartmentation and kinetics of urea cycle enzymes in porcine enterocytes. Comp Biochem Physiol B Biochem Mol Biol. 1998 Mar;119(3):527–537. [PubMed]
  • Gamble JG, Lehninger AL. Transport of ornithine and citrulline across the mitochondrial membrane. J Biol Chem. 1973 Jan 25;248(2):610–618. [PubMed]
  • McGivan JD, Bradford NM, Beavis AD. Factors influencing the activity of ornithine aminotransferase in isolated rat liver mitochondria. Biochem J. 1977 Jan 15;162(1):147–156. [PMC free article] [PubMed]
  • Bradford NM, McGivan JD. Evidence for the existence of an ornithine/citrulline antiporter in rat liver mitochondria. FEBS Lett. 1980 May 5;113(2):294–298. [PubMed]
  • Passarella S, Atlante A, Quagliariello E. Ornithine/phosphate antiport in rat kidney mitochondria. Some characteristics of the process. Eur J Biochem. 1990 Oct 5;193(1):221–227. [PubMed]
  • Indiveri C, Tonazzi A, Stipani I, Palmieri F. The purified and reconstituted ornithine/citrulline carrier from rat liver mitochondria: electrical nature and coupling of the exchange reaction with H+ translocation. Biochem J. 1997 Oct 15;327(Pt 2):349–355. [PMC free article] [PubMed]
  • Spector EB, Rice SC, Cederbaum SD. Immunologic studies of arginase in tissues of normal human adult and arginase-deficient patients. Pediatr Res. 1983 Dec;17(12):941–944. [PubMed]
  • Grody WW, Argyle C, Kern RM, Dizikes GJ, Spector EB, Strickland AD, Klein D, Cederbaum SD. Differential expression of the two human arginase genes in hyperargininemia. Enzymatic, pathologic, and molecular analysis. J Clin Invest. 1989 Feb;83(2):602–609. [PMC free article] [PubMed]
  • Kuhn NJ, Ward S, Piponski M, Young TW. Purification of human hepatic arginase and its manganese (II)-dependent and pH-dependent interconversion between active and inactive forms: a possible pH-sensing function of the enzyme on the ornithine cycle. Arch Biochem Biophys. 1995 Jun 20;320(1):24–34. [PubMed]
  • Boon L, Blommaart PJ, Meijer AJ, Lamers WH, Schoolwerth AC. Acute acidosis inhibits liver amino acid transport: no primary role for the urea cycle in acid-base balance. Am J Physiol. 1994 Dec;267(6 Pt 2):F1015–F1020. [PubMed]
  • Boon L, Blommaart PJ, Meijer AJ, Lamers WH, Schoolwerth AC. Response of hepatic amino acid consumption to chronic metabolic acidosis. Am J Physiol. 1996 Jul;271(1 Pt 2):F198–F202. [PubMed]
  • HALL LM, JOHNSON RC, COHEN PP. The presence of carbamyl phosphate synthetase in intestinal mucosa. Biochim Biophys Acta. 1960 Jan 1;37:144–145. [PubMed]
  • JONES ME, ANDERSON AD, ANDERSON C, HODES S. Citrulline synthesis in rat tissues. Arch Biochem Biophys. 1961 Dec;95:499–507. [PubMed]
  • Raijman L. Citrulline synthesis in rat tissues and liver content of carbamoyl phosphate and ornithine. Biochem J. 1974 Feb;138(2):225–232. [PMC free article] [PubMed]
  • Wu G. Urea synthesis in enterocytes of developing pigs. Biochem J. 1995 Dec 15;312(Pt 3):717–723. [PMC free article] [PubMed]
  • Long CL, Jeevanandam M, Kinney JM. Metabolism and recycling of urea in man. Am J Clin Nutr. 1978 Aug;31(8):1367–1382. [PubMed]
  • Campbell JW. Mitochondrial ammonia metabolism and the proton-neutral theory of hepatic ammonia detoxication. J Exp Zool. 1997 Aug 1;278(5):308–321. [PubMed]
  • Griffith OW, Stuehr DJ. Nitric oxide synthases: properties and catalytic mechanism. Annu Rev Physiol. 1995;57:707–736. [PubMed]
  • Reczkowski RS, Ash DE. Rat liver arginase: kinetic mechanism, alternate substrates, and inhibitors. Arch Biochem Biophys. 1994 Jul;312(1):31–37. [PubMed]
  • Currie GA, Gyure L, Cifuentes L. Microenvironmental arginine depletion by macrophages in vivo. Br J Cancer. 1979 Jun;39(6):613–620. [PMC free article] [PubMed]
  • Albina JE, Mills CD, Barbul A, Thirkill CE, Henry WL, Jr, Mastrofrancesco B, Caldwell MD. Arginine metabolism in wounds. Am J Physiol. 1988 Apr;254(4 Pt 1):E459–E467. [PubMed]
  • Albina JE, Abate JA, Mastrofrancesco B. Role of ornithine as a proline precursor in healing wounds. J Surg Res. 1993 Jul;55(1):97–102. [PubMed]
  • Kung JT, Brooks SB, Jakway JP, Leonard LL, Talmage DW. Suppression of in vitro cytotoxic response by macrophages due to induced arginase. J Exp Med. 1977 Sep 1;146(3):665–672. [PMC free article] [PubMed]
  • Vodovotz Y, Kwon NS, Pospischil M, Manning J, Paik J, Nathan C. Inactivation of nitric oxide synthase after prolonged incubation of mouse macrophages with IFN-gamma and bacterial lipopolysaccharide. J Immunol. 1994 Apr 15;152(8):4110–4118. [PubMed]
  • Hey C, Boucher JL, Vadon-Le Goff S, Ketterer G, Wessler I, Racké K. Inhibition of arginase in rat and rabbit alveolar macrophages by N omega-hydroxy-D,L-indospicine, effects on L-arginine utilization by nitric oxide synthase. Br J Pharmacol. 1997 Jun;121(3):395–400. [PMC free article] [PubMed]
  • Hecker M, Nematollahi H, Hey C, Busse R, Racké K. Inhibition of arginase by NG-hydroxy-L-arginine in alveolar macrophages: implications for the utilization of L-arginine for nitric oxide synthesis. FEBS Lett. 1995 Feb 13;359(2-3):251–254. [PubMed]
  • Meyer J, Richter N, Hecker M. High-performance liquid chromatographic determination of nitric oxide synthase-related arginine derivatives in vitro and in vivo. Anal Biochem. 1997 Apr 5;247(1):11–16. [PubMed]
  • Boucher JL, Genet A, Vadon S, Delaforge M, Henry Y, Mansuy D. Cytochrome P450 catalyzes the oxidation of N omega-hydroxy-L-arginine by NADPH and O2 to nitric oxide and citrulline. Biochem Biophys Res Commun. 1992 Sep 16;187(2):880–886. [PubMed]
  • Boucher JL, Genet A, Vadon S, Delaforge M, Mansuy D. Formation of nitrogen oxides and citrulline upon oxidation of N omega-hydroxy-L-arginine by hemeproteins. Biochem Biophys Res Commun. 1992 May 15;184(3):1158–1164. [PubMed]
  • Modolell M, Eichmann K, Soler G. Oxidation of N(G)-hydroxyl-L-arginine to nitric oxide mediated by respiratory burst: an alternative pathway to NO synthesis. FEBS Lett. 1997 Jan 20;401(2-3):123–126. [PubMed]
  • Pegg AE. Recent advances in the biochemistry of polyamines in eukaryotes. Biochem J. 1986 Mar 1;234(2):249–262. [PMC free article] [PubMed]
  • Hölttä E, Pohjanpelto P. Polyamine dependence of Chinese hamster ovary cells in serum-free culture is due to deficient arginase activity. Biochim Biophys Acta. 1982 Dec 30;721(4):321–327. [PubMed]
  • Hirvonen A, Eloranta T, Hyvönen T, Alhonen L, Jänne J. Characterization of difluoromethylornithine-resistant mouse and human tumour cell lines. Biochem J. 1989 Mar 15;258(3):709–713. [PMC free article] [PubMed]
  • Swank RT, Paigen K, Ganschow RE. Genetic control of glucuronidase induction in mice. J Mol Biol. 1973 Dec 5;81(2):225–243. [PubMed]
  • Manteuffel-Cymborowska M, Chmurzyńska W, Peska M, Grzelakowska-Sztabert B. Arginine and ornithine metabolizing enzymes in testosterone-induced hypertrophic mouse kidney. Int J Biochem Cell Biol. 1995 Mar;27(3):287–295. [PubMed]
  • Seely JE, Pegg AE. Changes in mouse kidney ornithine decarboxylase activity are brought about by changes in the amount of enzyme protein as measured by radioimmunoassay. J Biol Chem. 1983 Feb 25;258(4):2496–2500. [PubMed]
  • Berger FG, Szymanski P, Read E, Watson G. Androgen-regulated ornithine decarboxylase mRNAs of mouse kidney. J Biol Chem. 1984 Jun 25;259(12):7941–7946. [PubMed]
  • Wang WW, Jenkinson CP, Griscavage JM, Kern RM, Arabolos NS, Byrns RE, Cederbaum SD, Ignarro LJ. Co-induction of arginase and nitric oxide synthase in murine macrophages activated by lipopolysaccharide. Biochem Biophys Res Commun. 1995 May 25;210(3):1009–1016. [PubMed]
  • Nichols WK, Prosser FH. Induction of ornithine decarboxylase in macrophages by bacterial lipopolysaccharides (LPS) and mycobacterial cell wall material. Life Sci. 1980 Sep 15;27(11):913–920. [PubMed]
  • Shurtleff SA, McElwain CM, Taffet SM. Rapid expression of ornithine decarboxylase mRNA in a macrophage-like cell line: cAMP repression of the requirement for prior protein synthesis. J Cell Physiol. 1988 Mar;134(3):453–459. [PubMed]
  • Blachier F, Darcy-Vrillon B, Sener A, Duée PH, Malaisse WJ. Arginine metabolism in rat enterocytes. Biochim Biophys Acta. 1991 May 17;1092(3):304–310. [PubMed]
  • Blachier F, M'Rabet-Touil H, Posho L, Morel MT, Bernard F, Darcy-Vrillon B, Duée PH. Polyamine metabolism in enterocytes isolated from newborn pigs. Biochim Biophys Acta. 1992 Dec 15;1175(1):21–26. [PubMed]
  • Nsi-Emvo E, Chaton B, Foltzer-Jourdainne C, Gosse F, Raul F. Premature expression of sucrase-isomaltase triggered by corticoid-dependent changes in polyamine metabolism. Am J Physiol. 1996 Jan;270(1 Pt 1):G54–G59. [PubMed]
  • Herzfeld A, Mezl VA, Knox WE. Enzymes metabolizing delta1-pyrroline-5-carboxylate in rat tissues. Biochem J. 1977 Jul 15;166(1):95–103. [PMC free article] [PubMed]
  • Mezl VA, Knox WE. Metabolism of arginine in lactating rat mammary gland. Biochem J. 1977 Jul 15;166(1):105–113. [PMC free article] [PubMed]
  • Edmonds MS, Lowry KR, Baker DH. Urea cycle metabolism: effects of supplemental ornithine or citrulline on performance, tissue amino acid concentrations and enzymatic activity in young pigs fed arginine-deficient diets. J Anim Sci. 1987 Sep;65(3):706–716. [PubMed]
  • Milner JA, Visek WJ. Urinary metabolites characteristic of urea-cycle amino acid deficiency. Metabolism. 1975 May;24(5):643–651. [PubMed]
  • Morris JG, Rogers QR, Winterrowd DL, Kamikawa EM. The utilization of ornithine and citrulline by the growing kitten. J Nutr. 1979 Apr;109(4):724–729. [PubMed]
  • Albina JE, Mills CD, Henry WL, Jr, Caldwell MD. Temporal expression of different pathways of 1-arginine metabolism in healing wounds. J Immunol. 1990 May 15;144(10):3877–3880. [PubMed]
  • Shearer JD, Richards JR, Mills CD, Caldwell MD. Differential regulation of macrophage arginine metabolism: a proposed role in wound healing. Am J Physiol. 1997 Feb;272(2 Pt 1):E181–E190. [PubMed]
  • Mepham TB, Linzell JL. A quantitative assessment of the contribution of individual plasma amino acids to the synthesis of milk proteins by the goat mammary gland. Biochem J. 1966 Oct;101(1):76–83. [PMC free article] [PubMed]
  • Davis SR, Bickerstaffe R, Hart DS. Amino acid uptake by the mammary gland of the lactating ewe. Aust J Biol Sci. 1978 Apr;31(2):123–132. [PubMed]
  • Clark JH, Derrig RG, Davis CL, Spires HR. Metabolism of arginine and ornithine in the cow and rabbit mammary tissue. J Dairy Sci. 1975 Dec;58(12):1808–1813. [PubMed]
  • Trottier NL, Shipley CF, Easter RA. Plasma amino acid uptake by the mammary gland of the lactating sow. J Anim Sci. 1997 May;75(5):1266–1278. [PubMed]
  • Spincer J, Rook JA, Towers KG. The uptake of plasma constituents by the mammary gland of the sow. Biochem J. 1969 Mar;111(5):727–732. [PMC free article] [PubMed]
  • Wu G, Knabe DA. Free and protein-bound amino acids in sow's colostrum and milk. J Nutr. 1994 Mar;124(3):415–424. [PubMed]
  • Yip MC, Knox WE. Function of arginase in lactating mammary gland. Biochem J. 1972 May;127(5):893–899. [PMC free article] [PubMed]
  • Basch JJ, Wickham ED, Farrell HM., Jr Arginase in lactating bovine mammary glands: implications in proline synthesis. J Dairy Sci. 1997 Dec;80(12):3241–3248. [PubMed]
  • Jenkinson CP, Grigor MR. Rat mammary arginase: isolation and characterization. Biochem Med Metab Biol. 1994 Apr;51(2):156–165. [PubMed]
  • Davis TA, Nguyen HV, Garcia-Bravo R, Fiorotto ML, Jackson EM, Lewis DS, Lee DR, Reeds PJ. Amino acid composition of human milk is not unique. J Nutr. 1994 Jul;124(7):1126–1132. [PubMed]
  • Linzell JL, Mepham TB, Annison EF, West CE. Mammary metabolism in lactating sows: arteriovenous differences of milk precursors and the mammary metabolism of [14C]glucose and [14C]acetate. Br J Nutr. 1969 Jun;23(2):319–332. [PubMed]
  • Kuo FC, Hwu WL, Valle D, Darnell JE., Jr Colocalization in pericentral hepatocytes in adult mice and similarity in developmental expression pattern of ornithine aminotransferase and glutamine synthetase mRNA. Proc Natl Acad Sci U S A. 1991 Nov 1;88(21):9468–9472. [PMC free article] [PubMed]
  • Gebhardt R, Mecke D. Heterogeneous distribution of glutamine synthetase among rat liver parenchymal cells in situ and in primary culture. EMBO J. 1983;2(4):567–570. [PMC free article] [PubMed]
  • Moorman AF, de Boer PA, Geerts WJ, van den Zande L, Lamers WH, Charles R. Complementary distribution of carbamoylphosphate synthetase (ammonia) and glutamine synthetase in rat liver acinus is regulated at a pretranslational level. J Histochem Cytochem. 1988 Jul;36(7):751–755. [PubMed]
  • Tabor CW, Tabor H. Polyamines. Annu Rev Biochem. 1984;53:749–790. [PubMed]
  • Li G, Regunathan S, Barrow CJ, Eshraghi J, Cooper R, Reis DJ. Agmatine: an endogenous clonidine-displacing substance in the brain. Science. 1994 Feb 18;263(5149):966–969. [PubMed]
  • Morrissey J, McCracken R, Ishidoya S, Klahr S. Partial cloning and characterization of an arginine decarboxylase in the kidney. Kidney Int. 1995 May;47(5):1458–1461. [PubMed]
  • Lortie MJ, Novotny WF, Peterson OW, Vallon V, Malvey K, Mendonca M, Satriano J, Insel P, Thomson SC, Blantz RC. Agmatine, a bioactive metabolite of arginine. Production, degradation, and functional effects in the kidney of the rat. J Clin Invest. 1996 Jan 15;97(2):413–420. [PMC free article] [PubMed]
  • Sastre M, Galea E, Feinstein D, Reis DJ, Regunathan S. Metabolism of agmatine in macrophages: modulation by lipopolysaccharide and inhibitory cytokines. Biochem J. 1998 Mar 15;330(Pt 3):1405–1409. [PMC free article] [PubMed]
  • Li G, Regunathan S, Reis DJ. Agmatine is synthesized by a mitochondrial arginine decarboxylase in rat brain. Ann N Y Acad Sci. 1995 Jul 12;763:325–329. [PubMed]
  • Schwartz D, Peterson OW, Mendonca M, Satriano J, Lortie M, Blantz RC. Agmatine affects glomerular filtration via a nitric oxide synthase-dependent mechanism. Am J Physiol. 1997 May;272(5 Pt 2):F597–F601. [PubMed]
  • Morrissey JJ, Klahr S. Agmatine activation of nitric oxide synthase in endothelial cells. Proc Assoc Am Physicians. 1997 Jan;109(1):51–57. [PubMed]
  • Satriano J, Matsufuji S, Murakami Y, Lortie MJ, Schwartz D, Kelly CJ, Hayashi S, Blantz RC. Agmatine suppresses proliferation by frameshift induction of antizyme and attenuation of cellular polyamine levels. J Biol Chem. 1998 Jun 19;273(25):15313–15316. [PubMed]
  • Galea E, Regunathan S, Eliopoulos V, Feinstein DL, Reis DJ. Inhibition of mammalian nitric oxide synthases by agmatine, an endogenous polyamine formed by decarboxylation of arginine. Biochem J. 1996 May 15;316(Pt 1):247–249. [PMC free article] [PubMed]
  • Kerwin JF, Jr, Lancaster JR, Jr, Feldman PL. Nitric oxide: a new paradigm for second messengers. J Med Chem. 1995 Oct 27;38(22):4343–4362. [PubMed]
  • MacMicking J, Xie QW, Nathan C. Nitric oxide and macrophage function. Annu Rev Immunol. 1997;15:323–350. [PubMed]
  • Stuehr DJ. Structure-function aspects in the nitric oxide synthases. Annu Rev Pharmacol Toxicol. 1997;37:339–359. [PubMed]
  • Michel T, Feron O. Nitric oxide synthases: which, where, how, and why? J Clin Invest. 1997 Nov 1;100(9):2146–2152. [PMC free article] [PubMed]
  • Xia H, Bredt DS. Cloned and expressed nitric oxide synthase proteins. Methods Enzymol. 1996;268:427–436. [PubMed]
  • Christopherson KS, Bredt DS. Nitric oxide in excitable tissues: physiological roles and disease. J Clin Invest. 1997 Nov 15;100(10):2424–2429. [PMC free article] [PubMed]
  • Vodovotz Y, Russell D, Xie QW, Bogdan C, Nathan C. Vesicle membrane association of nitric oxide synthase in primary mouse macrophages. J Immunol. 1995 Mar 15;154(6):2914–2925. [PubMed]
  • García-Cardeña G, Martasek P, Masters BS, Skidd PM, Couet J, Li S, Lisanti MP, Sessa WC. Dissecting the interaction between nitric oxide synthase (NOS) and caveolin. Functional significance of the nos caveolin binding domain in vivo. J Biol Chem. 1997 Oct 10;272(41):25437–25440. [PubMed]
  • Feron O, Saldana F, Michel JB, Michel T. The endothelial nitric-oxide synthase-caveolin regulatory cycle. J Biol Chem. 1998 Feb 6;273(6):3125–3128. [PubMed]
  • Tatoyan A, Giulivi C. Purification and characterization of a nitric-oxide synthase from rat liver mitochondria. J Biol Chem. 1998 May 1;273(18):11044–11048. [PubMed]
  • Wu G, Meininger CJ. Impaired arginine metabolism and NO synthesis in coronary endothelial cells of the spontaneously diabetic BB rat. Am J Physiol. 1995 Oct;269(4 Pt 2):H1312–H1318. [PubMed]
  • Mills CD, Shearer J, Evans R, Caldwell MD. Macrophage arginine metabolism and the inhibition or stimulation of cancer. J Immunol. 1992 Oct 15;149(8):2709–2714. [PubMed]
  • Hrabák A, Temesi A, Csuka I, Antoni F. Inverse relation in the de novo arginase synthesis and nitric oxide production in murine and rat peritoneal macrophages in long-term cultures in vitro. Comp Biochem Physiol B. 1992 Dec;103(4):839–845. [PubMed]
  • Schneemann M, Schoedon G, Hofer S, Blau N, Guerrero L, Schaffner A. Nitric oxide synthase is not a constituent of the antimicrobial armature of human mononuclear phagocytes. J Infect Dis. 1993 Jun;167(6):1358–1363. [PubMed]
  • Albina JE. On the expression of nitric oxide synthase by human macrophages. Why no NO? J Leukoc Biol. 1995 Dec;58(6):643–649. [PubMed]
  • Arnal JF, Münzel T, Venema RC, James NL, Bai CL, Mitch WE, Harrison DG. Interactions between L-arginine and L-glutamine change endothelial NO production. An effect independent of NO synthase substrate availability. J Clin Invest. 1995 Jun;95(6):2565–2572. [PMC free article] [PubMed]
  • Meininger CJ, Wu G. L-glutamine inhibits nitric oxide synthesis in bovine venular endothelial cells. J Pharmacol Exp Ther. 1997 Apr;281(1):448–453. [PubMed]
  • Van Pilsum JF, Stephens GC, Taylor D. Distribution of creatine, guanidinoacetate and the enzymes for their biosynthesis in the animal kingdom. Implications for phylogeny. Biochem J. 1972 Jan;126(2):325–345. [PMC free article] [PubMed]
  • Sorenson RL, Stout LE, Brelje TC, Van Pilsum JF, McGuire DM. Evidence for the role of pancreatic acinar cells in the production of ornithine and guanidinoacetic acid by L-arginine:glycine amidinotransferase. Pancreas. 1995 May;10(4):389–394. [PubMed]
  • Stöckler S, Isbrandt D, Hanefeld F, Schmidt B, von Figura K. Guanidinoacetate methyltransferase deficiency: the first inborn error of creatine metabolism in man. Am J Hum Genet. 1996 May;58(5):914–922. [PMC free article] [PubMed]
  • Guthmiller P, Van Pilsum JF, Boen JR, McGuire DM. Cloning and sequencing of rat kidney L-arginine:glycine amidinotransferase. Studies on the mechanism of regulation by growth hormone and creatine. J Biol Chem. 1994 Jul 1;269(26):17556–17560. [PubMed]
  • Gu H, Marth JD, Orban PC, Mossmann H, Rajewsky K. Deletion of a DNA polymerase beta gene segment in T cells using cell type-specific gene targeting. Science. 1994 Jul 1;265(5168):103–106. [PubMed]
  • Harbrecht BG, Wirant EM, Kim YM, Billiar TR. Glucagon inhibits hepatocyte nitric oxide synthesis. Arch Surg. 1996 Dec;131(12):1266–1272. [PubMed]
  • Imai T, Hirata Y, Kanno K, Marumo F. Induction of nitric oxide synthase by cyclic AMP in rat vascular smooth muscle cells. J Clin Invest. 1994 Feb;93(2):543–549. [PMC free article] [PubMed]
  • Kunz D, Mühl H, Walker G, Pfeilschifter J. Two distinct signaling pathways trigger the expression of inducible nitric oxide synthase in rat renal mesangial cells. Proc Natl Acad Sci U S A. 1994 Jun 7;91(12):5387–5391. [PMC free article] [PubMed]
  • Smith FS, Ceppi ED, Titheradge MA. Inhibition of cytokine-induced inducible nitric oxide synthase expression by glucagon and cAMP in cultured hepatocytes. Biochem J. 1997 Aug 15;326(Pt 1):187–192. [PMC free article] [PubMed]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society


Save items

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...


  • Cited in Books
    Cited in Books
    NCBI Bookshelf books that cite the current articles.
  • Compound
    PubChem chemical compound records that cite the current articles. These references are taken from those provided on submitted PubChem chemical substance records. Multiple substance records may contribute to the PubChem compound record.
  • MedGen
    Related information in MedGen
  • PubMed
    PubMed citations for these articles
  • Substance
    PubChem chemical substance records that cite the current articles. These references are taken from those provided on submitted PubChem chemical substance records.

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...