Logo of biochemjBJ Latest papers and much more!
Biochem J. 1998 Nov 1; 335(Pt 3): 481–490.
PMCID: PMC1219805

Mechanism of activation of the gastric aspartic proteinases: pepsinogen, progastricsin and prochymosin.


The gastric aspartic proteinases (pepsin A, pepsin B, gastricsin and chymosin) are synthesized in the gastric mucosa as inactive precursors, known as zymogens. The gastric zymogens each contain a prosegment (i.e. additional residues at the N-terminus of the active enzyme) that serves to stabilize the inactive form and prevent entry of the substrate to the active site. Upon ingestion of food, each of the zymogens is released into the gastric lumen and undergoes conversion into active enzyme in the acidic gastric juice. This activation reaction is initiated by the disruption of electrostatic interactions between the prosegment and the active enzyme moiety at acidic pH values. The conversion of the zymogen into its active form is a complex process, involving a series of conformational changes and bond cleavage steps that lead to the unveiling of the active site and ultimately the removal and dissociation of the prosegment from the active centre of the enzyme. During this activation reaction, both the prosegment and the active enzyme undergo changes in conformation, and the proteolytic cleavage of the prosegment can occur in one or more steps by either an intra- or inter-molecular reaction. This variability in the mechanism of proteolysis appears to be attributable in part to the structure of the prosegment. Because of the differences in the activation mechanisms among the four types of gastric zymogens and between species of the same zymogen type, no single model of activation can be proposed. The mechanism of activation of the gastric aspartic proteinases and the contribution of the prosegment to this mechanism are discussed, along with future directions for research.

Full Text

The Full Text of this article is available as a PDF (645K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Foltmann B. Gastric proteinases--structure, function, evolution and mechanism of action. Essays Biochem. 1981;17:52–84. [PubMed]
  • Foltmann B. Structure and function of proparts in zymogens for aspartic proteinases. Biol Chem Hoppe Seyler. 1988 May;369 (Suppl):311–314. [PubMed]
  • Tang J, Wong RN. Evolution in the structure and function of aspartic proteases. J Cell Biochem. 1987 Jan;33(1):53–63. [PubMed]
  • Davies DR. The structure and function of the aspartic proteinases. Annu Rev Biophys Biophys Chem. 1990;19:189–215. [PubMed]
  • Khan AR, James MN. Molecular mechanisms for the conversion of zymogens to active proteolytic enzymes. Protein Sci. 1998 Apr;7(4):815–836. [PMC free article] [PubMed]
  • Sogawa K, Fujii-Kuriyama Y, Mizukami Y, Ichihara Y, Takahashi K. Primary structure of human pepsinogen gene. J Biol Chem. 1983 Apr 25;258(8):5306–5311. [PubMed]
  • Evers MP, Zelle B, Bebelman JP, Pronk JC, Mager WH, Planta RJ, Eriksson AW, Frants RR. Cloning and sequencing of rhesus monkey pepsinogen A cDNA. Gene. 1988 May 30;65(2):179–185. [PubMed]
  • Kageyama T, Takahashi K. The complete amino acid sequence of monkey pepsinogen A. J Biol Chem. 1986 Apr 5;261(10):4395–4405. [PubMed]
  • Kageyama T, Tanabe K, Koiwai O. Development-dependent expression of isozymogens of monkey pepsinogens and structural differences between them. Eur J Biochem. 1991 Nov 15;202(1):205–215. [PubMed]
  • Ong EB, Perlmann GE. The amino-terminal sequence of porcine pepsinogen. J Biol Chem. 1968 Dec 10;243(23):6104–6109. [PubMed]
  • Pedersen VB, Foltmann B. The amino acid sequence of a hitherto unobserved segment from porcine pepsinogen preceeding the N-terminus of pepsin. FEBS Lett. 1973 Sep 15;35(2):255–256. [PubMed]
  • Tang J, Sepulveda P, Marciniszyn J, Jr, Chen KC, Huang WY, Tao N, Liu D, Lanier JP. Amino-acid sequence of porcine pepsin. Proc Natl Acad Sci U S A. 1973 Dec;70(12):3437–3439. [PMC free article] [PubMed]
  • Sepulveda P, Marciniszyn J, Jr, Liu D, Tang J. Primary structure of porcine pepsin. III. Amino acid sequence of a cyanogen bromide fragment, CB2A, and the complete structure of porcine pepsin. J Biol Chem. 1975 Jul 10;250(13):5082–5088. [PubMed]
  • Tsukagoshi N, Ando Y, Tomita Y, Uchida R, Takemura T, Sasaki T, Yamagata H, Udaka S, Ichihara Y, Takahashi K. Nucleotide sequence and expression in Escherichia coli of cDNA of swine pepsinogen: involvement of the amino-terminal portion of the activation peptide segment in restoration of the functional protein. Gene. 1988 May 30;65(2):285–292. [PubMed]
  • Lin XL, Wong RN, Tang J. Synthesis, purification, and active site mutagenesis of recombinant porcine pepsinogen. J Biol Chem. 1989 Mar 15;264(8):4482–4489. [PubMed]
  • Baudys M, Kostka V. Covalent structure of chicken pepsinogen. Eur J Biochem. 1983 Oct 17;136(1):89–99. [PubMed]
  • Kageyama T, Tanabe K, Koiwai O. Structure and development of rabbit pepsinogens. Stage-specific zymogens, nucleotide sequences of cDNAs, molecular evolution, and gene expression during development. J Biol Chem. 1990 Oct 5;265(28):17031–17038. [PubMed]
  • Hirasawa A, Athauda SB, Takahashi K. Purification and characterization of turtle pepsinogen and pepsin. J Biochem. 1996 Aug;120(2):407–414. [PubMed]
  • Kageyama T, Ichinose M, Tsukada S, Miki K, Kurokawa K, Koiwai O, Tanji M, Yakabe E, Athauda SB, Takahashi K. Gastric procathepsin E and progastricsin from guinea pig. Purification, molecular cloning of cDNAs, and characterization of enzymatic properties, with special reference to procathepsin E. J Biol Chem. 1992 Aug 15;267(23):16450–16459. [PubMed]
  • Yakabe E, Tanji M, Ichinose M, Goto S, Miki K, Kurokawa K, Ito H, Kageyama T, Takahashi K. Purification, characterization, and amino acid sequences of pepsinogens and pepsins from the esophageal mucosa of bullfrog (Rana catesbeiana) J Biol Chem. 1991 Nov 25;266(33):22436–22443. [PubMed]
  • Hayano T, Sogawa K, Ichihara Y, Fujii-Kuriyama Y, Takahashi K. Primary structure of human pepsinogen C gene. J Biol Chem. 1988 Jan 25;263(3):1382–1385. [PubMed]
  • Kageyama T, Takahashi K. The complete amino acid sequence of monkey progastricsin. J Biol Chem. 1986 Apr 5;261(10):4406–4419. [PubMed]
  • Ichihara Y, Sogawa K, Morohashi K, Fujii-Kuriyama Y, Takahashi K. Nucleotide sequence of a nearly full-length cDNA coding for pepsinogen of rat gastric mucosa. Eur J Biochem. 1986 Nov 17;161(1):7–12. [PubMed]
  • Ishihara T, Ichihara Y, Hayano T, Katsura I, Sogawa K, Fujii-Kuriyama Y, Takahashi K. Primary structure and transcriptional regulation of rat pepsinogen C gene. J Biol Chem. 1989 Jun 15;264(17):10193–10199. [PubMed]
  • Foltmann B, Pedersen VB, Jacobsen H, Kauffman D, Wybrandt G. The complete amino acid sequence of prochymosin. Proc Natl Acad Sci U S A. 1977 Jun;74(6):2321–2324. [PMC free article] [PubMed]
  • Hidaka M, Sasaki K, Uozumi T, Beppu T. Cloning and structural analysis of the calf prochymosin gene. Gene. 1986;43(3):197–203. [PubMed]
  • Harris TJ, Lowe PA, Lyons A, Thomas PG, Eaton MA, Millican TA, Patel TP, Bose CC, Carey NH, Doel MT. Molecular cloning and nucleotide sequence of cDNA coding for calf preprochymosin. Nucleic Acids Res. 1982 Apr 10;10(7):2177–2187. [PMC free article] [PubMed]
  • Moir D, Mao J, Schumm JW, Vovis GF, Alford BL, Taunton-Rigby A. Molecular cloning and characterization of double-stranded cDNA coding for bovine chymosin. Gene. 1982 Jul-Aug;19(1):127–138. [PubMed]
  • Houen G, Madsen MT, Harlow KW, Lønblad P, Foltmann B. The primary structure and enzymic properties of porcine prochymosin and chymosin. Int J Biochem Cell Biol. 1996 Jun;28(6):667–675. [PubMed]
  • Tanji M, Yakabe E, Kageyama T, Takahashi K. The primary structure of the major pepsinogen from the gastric mucosa of tuna stomach. J Biochem. 1996 Sep;120(3):647–656. [PubMed]
  • Harboe M, Andersen PM, Foltmann B, Kay J, Kassell B. The activation of bovine pepsinogen. Sequence of the peptides released, identification of a pepsin inhibitor. J Biol Chem. 1974 Jul 25;249(14):4487–4494. [PubMed]
  • Kageyama T, Moriyama A, Takahashi K. Purification and characterization of pepsinogens and pepsins from Asiatic black bear, and amino acid sequence determination of the NH2-terminal 60 residues of the major pepsinogen. J Biochem. 1983 Nov;94(5):1557–1567. [PubMed]
  • Nielsen PK, Foltmann B. Purification and characterization of porcine pepsinogen B and pepsin B. Arch Biochem Biophys. 1995 Oct 1;322(2):417–422. [PubMed]
  • Foltmann B, Drøhse HB, Nielsen PK, James MN. Separation of porcine pepsinogen A and progastricsin. Sequencing of the first 73 amino acid residues in progastricsin. Biochim Biophys Acta. 1992 May 22;1121(1-2):75–82. [PubMed]
  • Narita Y, Oda S, Moriyama A, Takenaka O, Kageyama T. Pepsinogens and pepsins from house musk shrew, Suncus murinus: purification, characterization, determination of the amino-acid sequences of the activation segments, and analysis of proteolytic specificities. J Biochem. 1997 Jun;121(6):1010–1017. [PubMed]
  • Tanji M, Kageyama T, Takahashi K. Tuna pepsinogens and pepsins. Purification, characterization and amino-terminal sequences. Eur J Biochem. 1988 Nov 1;177(2):251–259. [PubMed]
  • James MN, Sielecki AR. Molecular structure of an aspartic proteinase zymogen, porcine pepsinogen, at 1.8 A resolution. Nature. 1986 Jan 2;319(6048):33–38. [PubMed]
  • Sielecki AR, Fujinaga M, Read RJ, James MN. Refined structure of porcine pepsinogen at 1.8 A resolution. J Mol Biol. 1991 Jun 20;219(4):671–692. [PubMed]
  • Hartsuck JA, Koelsch G, Remington SJ. The high-resolution crystal structure of porcine pepsinogen. Proteins. 1992 May;13(1):1–25. [PubMed]
  • Moore SA, Sielecki AR, Chernaia MM, Tarasova NI, James MN. Crystal and molecular structures of human progastricsin at 1.62 A resolution. J Mol Biol. 1995 Mar 31;247(3):466–485. [PubMed]
  • Nielsen FS, Foltmann B. Activation of porcine pepsinogen A. The stability of two non-covalent activation intermediates at pH 8.5. Eur J Biochem. 1993 Oct 1;217(1):137–142. [PubMed]
  • Kageyama T, Takahashi K. Rabbit pepsinogens. Purification, characterization, analysis of the conversion process to pepsin and determination of the NH2-terminal amino-acid sequences. Eur J Biochem. 1984 Jun 1;141(2):261–269. [PubMed]
  • Koelsch G, Mares M, Metcalf P, Fusek M. Multiple functions of pro-parts of aspartic proteinase zymogens. FEBS Lett. 1994 Apr 18;343(1):6–10. [PubMed]
  • al-Janabi J, Hartsuck JA, Tang J. Kinetics and mechanism of pepsinogen activation. J Biol Chem. 1972 Jul 25;247(14):4628–4632. [PubMed]
  • McPhie P. A spectrophotometric investigation of the pepsinogen-pepsin conversion. J Biol Chem. 1972 Jul 10;247(13):4277–4281. [PubMed]
  • Bohak Z. The kinetics of the conversion of chicken pepsinogen to chicken pepsin. Eur J Biochem. 1973 Feb 1;32(3):547–554. [PubMed]
  • Pedersen VB, Christensen KA, Foltmann B. Investigations on the activation of bovine prochymosin. Eur J Biochem. 1979 Mar;94(2):573–580. [PubMed]
  • Twining SS, Huibregtse K, Glick DM. A pepsinogen from dog stomach. Comp Biochem Physiol B. 1983;75(1):103–107. [PubMed]
  • Twining SS, Alexander PA, Huibregtse K, Glick DM. A pepsinogen from rainbow trout. Comp Biochem Physiol B. 1983;75(1):109–112. [PubMed]
  • Wang JL, Edelman GM. Fluorescent probes for conformational states of proteins. IV. The pepsinogen-pepsin conversion. J Biol Chem. 1971 Mar 10;246(5):1185–1191. [PubMed]
  • Sanny CG, Hartsuck JA, Tang J. Conversion of pepsinogen to pepsin. Further evidence for intramolecular and pepsin-catalyzed activation. J Biol Chem. 1975 Apr 10;250(7):2635–2639. [PubMed]
  • Auer HE, Glick DM. Early events of pepsinogen activation. Biochemistry. 1984 Jun 5;23(12):2735–2739. [PubMed]
  • Glick DM, Auer HE, Rich DH, Kawai M, Kamath A. Pepsinogen activation: genesis of the binding site. Biochemistry. 1986 Apr 22;25(8):1858–1864. [PubMed]
  • Glick DM, Shalitin Y, Hilt CR. Studies on the irreversible step of pepsinogen activation. Biochemistry. 1989 Mar 21;28(6):2626–2630. [PubMed]
  • Glick DM, Hilt CR, Mende-Mueller L. Conformational change that accompanies pepsinogen activation observed in real time by fluorescence energy transfer. Int J Pept Protein Res. 1991 Mar;37(3):230–235. [PubMed]
  • Glick DM. A kinetic analysis of the activation of pig pepsinogen by chemical and physical techniques. Biol Chem Hoppe Seyler. 1990 May;371 (Suppl):289–293. [PubMed]
  • Marciniszyn J, Jr, Huang JS, Hartsuck JA, Tang J. Mechanism of intramolecular activation of pepsinogen. Evidence for an intermediate delta and the involvement of the active site of pepsin in the intramolecular activation of pepsinogen. J Biol Chem. 1976 Nov 25;251(22):7095–7102. [PubMed]
  • Abad-Zapatero C, Rydel TJ, Erickson J. Revised 2.3 A structure of porcine pepsin: evidence for a flexible subdomain. Proteins. 1990;8(1):62–81. [PubMed]
  • Cooper JB, Khan G, Taylor G, Tickle IJ, Blundell TL. X-ray analyses of aspartic proteinases. II. Three-dimensional structure of the hexagonal crystal form of porcine pepsin at 2.3 A resolution. J Mol Biol. 1990 Jul 5;214(1):199–222. [PubMed]
  • Sielecki AR, Fedorov AA, Boodhoo A, Andreeva NS, James MN. Molecular and crystal structures of monoclinic porcine pepsin refined at 1.8 A resolution. J Mol Biol. 1990 Jul 5;214(1):143–170. [PubMed]
  • Kageyama T, Takahashi K. Monkey pepsinogens and pepsins. VI. One-step activation of Japanese monkey pepsinogen to pepsin. J Biochem. 1982 Oct;92(4):1179–1188. [PubMed]
  • Kageyama T, Takahashi K. Activation mechanism of monkey and porcine pepsinogens A. One-step and stepwise activation pathways and their relation to intramolecular and intermolecular reactions. Eur J Biochem. 1987 Jun 15;165(3):483–490. [PubMed]
  • Inokuchi T, Kobayashi K, Horiuchi S. Isolation of pepsinogen A from gastric mucosa of bullfrog, Rana catesbeiana. Comp Biochem Physiol B Biochem Mol Biol. 1995 May;111(1):111–117. [PubMed]
  • Foltmann B. Activation of human pepsinogens. FEBS Lett. 1988 Dec 5;241(1-2):69–72. [PubMed]
  • Athauda SB, Tanji M, Kageyama T, Takahashi K. A comparative study on the NH2-terminal amino acid sequences and some other properties of six isozymic forms of human pepsinogens and pepsins. J Biochem. 1989 Nov;106(5):920–927. [PubMed]
  • Kageyama T, Ichinose M, Miki K, Athauda SB, Tanji M, Takahashi K. Difference of activation processes and structure of activation peptides in human pepsinogens A and progastricsin. J Biochem. 1989 Jan;105(1):15–22. [PubMed]
  • Kageyama T, Takahashi K. Monkey pepsinogens and pepsins. VII. Analysis of the activation process and determination of the NH2-terminal 60-residue sequence of Japanese monkey progastricsin, and molecular evolution of pepsinogens. J Biochem. 1985 Apr;97(4):1235–1246. [PubMed]
  • Foltmann B, Jensen AL. Human progastricsin. Analysis of intermediates during activation into gastricsin and determination of the amino acid sequence of the propart. Eur J Biochem. 1982 Nov;128(1):63–70. [PubMed]
  • Kageyama T. Analysis of the activation of pepsinogen in the presence of protein substrates and estimation of the intrinsic proteolytic activity of pepsinogen. Eur J Biochem. 1988 Oct 1;176(3):543–549. [PubMed]
  • Kageyama T, Takahashi K. Occurrence of two different pathways in the activation of porcine pepsinogen to pepsin. J Biochem. 1983 Mar;93(3):743–754. [PubMed]
  • Dykes CW, Kay J. Conversion of pepsinogen into pepsin is not a one-step process. Biochem J. 1976 Jan 1;153(1):141–144. [PMC free article] [PubMed]
  • Christensen KA, Pedersen VB, Foltmann B. Identification of an enzymatically active intermediate in the activation of porcine pepsinogen. FEBS Lett. 1977 Apr 15;76(2):214–218. [PubMed]
  • Hartsuck JA, Marciniszyn J, Jr, Huang JS, Tang J. Intramolecular activation of pepsinogen. Adv Exp Med Biol. 1977;95:85–102. [PubMed]
  • McCaman MT, Cummings DB. A mutated bovine prochymosin zymogen can be activated without proteolytic processing at low pH. J Biol Chem. 1986 Nov 25;261(33):15345–15348. [PubMed]
  • Tanaka T, Yada RY. Engineered porcine pepsinogen exhibits dominant unimolecular activation. Arch Biochem Biophys. 1997 Apr 15;340(2):355–358. [PubMed]
  • Twining SS, Sealy RC, Glick DM. Preparation and activation of a spin-labeled pepsinogen. Biochemistry. 1981 Mar 3;20(5):1267–1272. [PubMed]
  • Glick DM, Valler MJ, Rowlands CC, Evans JC, Kay J. Activation of spin-labeled chicken pepsinogen. Biochemistry. 1982 Aug 3;21(16):3746–3750. [PubMed]
  • McCaman MT, Cummings DB. Unusual zymogen-processing properties of a mutated form of prochymosin. Proteins. 1988;3(4):256–261. [PubMed]
  • Khan AR, Cherney MM, Tarasova NI, James MN. Structural characterization of activation 'intermediate 2' on the pathway to human gastricsin. Nat Struct Biol. 1997 Dec;4(12):1010–1015. [PubMed]
  • Squires EJ, Haard NF, Feltham LA. Gastric proteases of the Greenland cod Gadus ogac. I. Isolation and kinetic properties. Biochem Cell Biol. 1986 Mar;64(3):205–214. [PubMed]
  • Pohl J, Baudys M, Kostka V. Chromophoric peptide substrates for activity determination of animal aspartic proteinases in the presence of their zymogens: a novel assay. Anal Biochem. 1983 Aug;133(1):104–109. [PubMed]
  • Bank RA, Russell RB, Pals G, James MN. Consequences of intramolecular ionic interactions for the activation rate of human pepsinogens A and C as revealed by molecular modelling. Adv Exp Med Biol. 1991;306:101–105. [PubMed]
  • Bank RA, Crusius BC, Zwiers T, Meuwissen SG, Arwert F, Pronk JC. Identification of a Glu greater than Lys substitution in the activation segment of human pepsinogen A-3 and -5 isozymogens by peptide mapping using endoproteinase Lys-C. FEBS Lett. 1988 Sep 26;238(1):105–108. [PubMed]
  • Bustin M, Conway-Jacobs A. Intramolecular activation of porcine pepsinogen. J Biol Chem. 1971 Feb 10;246(3):615–620. [PubMed]
  • McPhie P. Pepsinogen: activation by a unimolecular mechanism. Biochem Biophys Res Commun. 1974 Feb 4;56(3):789–792. [PubMed]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society


Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...


Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...