• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of biochemjBJ Latest papers and much more!
Biochem J. Nov 1, 1997; 327(Pt 3): 625–635.
PMCID: PMC1218878

Furin: a mammalian subtilisin/Kex2p-like endoprotease involved in processing of a wide variety of precursor proteins.


Limited endoproteolysis of inactive precursor proteins at sites marked by paired or multiple basic amino acids is a widespread process by which biologically active peptides and proteins are produced within the secretory pathway in eukaryotic cells. The identification of a novel family of endoproteases homologous with bacterial subtilisins and yeast Kex2p has accelerated progress in understanding the complex mechanisms underlying the production of the bioactive materials. Seven distinct proprotein convertases of this family (furin, PC2, PC1/PC3, PC4, PACE4, PC5/PC6, LPC/PC7/PC8/SPC7) have been identified in mammalian species, some having isoforms generated via alternative splicing. The family has been shown to be responsible for conversion of precursors of peptide hormones, neuropeptides, and many other proteins into their biologically active forms. Furin, the first proprotein convertase to be identified, has been most extensively studied. It has been shown to be expressed in all tissues and cell lines examined and to be mainly localized in the trans-Golgi network, although some proportion of the furin molecules cycle between this compartment and the cell surface. This endoprotease is capable of cleaving precursors of a wide variety of proteins, including growth factors, serum proteins, including proteases of the blood-clotting and complement systems, matrix metalloproteinases, receptors, viral-envelope glycoproteins and bacterial exotoxins, typically at sites marked by the consensus Arg-Xaa-(Lys/Arg)-Arg sequence. The present review covers the structure and function of mammalian subtilisin/Kex2p-like proprotein convertases, focusing on furin (EC

Full Text

The Full Text of this article is available as a PDF (513K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Steiner DF, Cunningham D, Spigelman L, Aten B. Insulin biosynthesis: evidence for a precursor. Science. 1967 Aug 11;157(3789):697–700. [PubMed]
  • Chrétien M, Li CH. Isolation, purification, and characterization of gamma-lipotropic hormone from sheep pituitary glands. Can J Biochem. 1967 Jul;45(7):1163–1174. [PubMed]
  • Chance RE, Ellis RM, Bromer WW. Porcine proinsulin: characterization and amino acid sequence. Science. 1968 Jul 12;161(3837):165–167. [PubMed]
  • Andrews PC, Brayton K, Dixon JE. Precursors to regulatory peptides: their proteolytic processing. Experientia. 1987 Jul 15;43(7):784–790. [PubMed]
  • Darby NJ, Smyth DG. Endopeptidases and prohormone processing. Biosci Rep. 1990 Feb;10(1):1–13. [PubMed]
  • Furie B, Furie BC. The molecular basis of blood coagulation. Cell. 1988 May 20;53(4):505–518. [PubMed]
  • Klenk HD, Rott R. The molecular biology of influenza virus pathogenicity. Adv Virus Res. 1988;34:247–281. [PubMed]
  • Gordon VM, Leppla SH. Proteolytic activation of bacterial toxins: role of bacterial and host cell proteases. Infect Immun. 1994 Feb;62(2):333–340. [PMC free article] [PubMed]
  • Barr PJ. Mammalian subtilisins: the long-sought dibasic processing endoproteases. Cell. 1991 Jul 12;66(1):1–3. [PubMed]
  • Hosaka M, Nagahama M, Kim WS, Watanabe T, Hatsuzawa K, Ikemizu J, Murakami K, Nakayama K. Arg-X-Lys/Arg-Arg motif as a signal for precursor cleavage catalyzed by furin within the constitutive secretory pathway. J Biol Chem. 1991 Jul 5;266(19):12127–12130. [PubMed]
  • Brennan SO, Peach RJ. Calcium-dependent KEX2-like protease found in hepatic secretory vesicles converts proalbumin to albumin. FEBS Lett. 1988 Feb 29;229(1):167–170. [PubMed]
  • Davidson HW, Rhodes CJ, Hutton JC. Intraorganellar calcium and pH control proinsulin cleavage in the pancreatic beta cell via two distinct site-specific endopeptidases. Nature. 1988 May 5;333(6168):93–96. [PubMed]
  • Fuller RS, Sterne RE, Thorner J. Enzymes required for yeast prohormone processing. Annu Rev Physiol. 1988;50:345–362. [PubMed]
  • Mizuno K, Nakamura T, Ohshima T, Tanaka S, Matsuo H. Yeast KEX2 genes encodes an endopeptidase homologous to subtilisin-like serine proteases. Biochem Biophys Res Commun. 1988 Oct 14;156(1):246–254. [PubMed]
  • Bathurst IC, Brennan SO, Carrell RW, Cousens LS, Brake AJ, Barr PJ. Yeast KEX2 protease has the properties of a human proalbumin converting enzyme. Science. 1987 Jan 16;235(4786):348–350. [PubMed]
  • Thomas G, Thorne BA, Thomas L, Allen RG, Hruby DE, Fuller R, Thorner J. Yeast KEX2 endopeptidase correctly cleaves a neuroendocrine prohormone in mammalian cells. Science. 1988 Jul 8;241(4862):226–230. [PubMed]
  • Fuller RS, Brake AJ, Thorner J. Intracellular targeting and structural conservation of a prohormone-processing endoprotease. Science. 1989 Oct 27;246(4929):482–486. [PubMed]
  • Roebroek AJ, Schalken JA, Bussemakers MJ, van Heerikhuizen H, Onnekink C, Debruyne FM, Bloemers HP, Van de Ven WJ. Characterization of human c-fes/fps reveals a new transcription unit (fur) in the immediately upstream region of the proto-oncogene. Mol Biol Rep. 1986;11(2):117–125. [PubMed]
  • Roebroek AJ, Schalken JA, Leunissen JA, Onnekink C, Bloemers HP, Van de Ven WJ. Evolutionary conserved close linkage of the c-fes/fps proto-oncogene and genetic sequences encoding a receptor-like protein. EMBO J. 1986 Sep;5(9):2197–2202. [PMC free article] [PubMed]
  • Smeekens SP, Steiner DF. Identification of a human insulinoma cDNA encoding a novel mammalian protein structurally related to the yeast dibasic processing protease Kex2. J Biol Chem. 1990 Feb 25;265(6):2997–3000. [PubMed]
  • Seidah NG, Gaspar L, Mion P, Marcinkiewicz M, Mbikay M, Chrétien M. cDNA sequence of two distinct pituitary proteins homologous to Kex2 and furin gene products: tissue-specific mRNAs encoding candidates for pro-hormone processing proteinases. DNA Cell Biol. 1990 Jul-Aug;9(6):415–424. [PubMed]
  • Seidah NG, Marcinkiewicz M, Benjannet S, Gaspar L, Beaubien G, Mattei MG, Lazure C, Mbikay M, Chrétien M. Cloning and primary sequence of a mouse candidate prohormone convertase PC1 homologous to PC2, Furin, and Kex2: distinct chromosomal localization and messenger RNA distribution in brain and pituitary compared to PC2. Mol Endocrinol. 1991 Jan;5(1):111–122. [PubMed]
  • Smeekens SP, Avruch AS, LaMendola J, Chan SJ, Steiner DF. Identification of a cDNA encoding a second putative prohormone convertase related to PC2 in AtT20 cells and islets of Langerhans. Proc Natl Acad Sci U S A. 1991 Jan 15;88(2):340–344. [PMC free article] [PubMed]
  • Nakayama K, Hosaka M, Hatsuzawa K, Murakami K. Cloning and functional expression of a novel endoprotease involved in prohormone processing at dibasic sites. J Biochem. 1991 Jun;109(6):803–806. [PubMed]
  • Kiefer MC, Tucker JE, Joh R, Landsberg KE, Saltman D, Barr PJ. Identification of a second human subtilisin-like protease gene in the fes/fps region of chromosome 15. DNA Cell Biol. 1991 Dec;10(10):757–769. [PubMed]
  • Nakayama K, Kim WS, Torii S, Hosaka M, Nakagawa T, Ikemizu J, Baba T, Murakami K. Identification of the fourth member of the mammalian endoprotease family homologous to the yeast Kex2 protease. Its testis-specific expression. J Biol Chem. 1992 Mar 25;267(9):5897–5900. [PubMed]
  • Seidah NG, Day R, Hamelin J, Gaspar A, Collard MW, Chrétien M. Testicular expression of PC4 in the rat: molecular diversity of a novel germ cell-specific Kex2/subtilisin-like proprotein convertase. Mol Endocrinol. 1992 Oct;6(10):1559–1570. [PubMed]
  • Nakagawa T, Hosaka M, Torii S, Watanabe T, Murakami K, Nakayama K. Identification and functional expression of a new member of the mammalian Kex2-like processing endoprotease family: its striking structural similarity to PACE4. J Biochem. 1993 Feb;113(2):132–135. [PubMed]
  • Lusson J, Vieau D, Hamelin J, Day R, Chrétien M, Seidah NG. cDNA structure of the mouse and rat subtilisin/kexin-like PC5: a candidate proprotein convertase expressed in endocrine and nonendocrine cells. Proc Natl Acad Sci U S A. 1993 Jul 15;90(14):6691–6695. [PMC free article] [PubMed]
  • Meerabux J, Yaspo ML, Roebroek AJ, Van de Ven WJ, Lister TA, Young BD. A new member of the proprotein convertase gene family (LPC) is located at a chromosome translocation breakpoint in lymphomas. Cancer Res. 1996 Feb 1;56(3):448–451. [PubMed]
  • Bruzzaniti A, Goodge K, Jay P, Taviaux SA, Lam MH, Berta P, Martin TJ, Moseley JM, Gillespie MT. PC8 [corrected], a new member of the convertase family. Biochem J. 1996 Mar 15;314(Pt 3):727–731. [PMC free article] [PubMed]
  • Seidah NG, Hamelin J, Mamarbachi M, Dong W, Tardos H, Mbikay M, Chretien M, Day R. cDNA structure, tissue distribution, and chromosomal localization of rat PC7, a novel mammalian proprotein convertase closest to yeast kexin-like proteinases. Proc Natl Acad Sci U S A. 1996 Apr 16;93(8):3388–3393. [PMC free article] [PubMed]
  • Constam DB, Calfon M, Robertson EJ. SPC4, SPC6, and the novel protease SPC7 are coexpressed with bone morphogenetic proteins at distinct sites during embryogenesis. J Cell Biol. 1996 Jul;134(1):181–191. [PMC free article] [PubMed]
  • Tsuji A, Higashine K, Hine C, Mori K, Tamai Y, Nagamune H, Matsuda Y. Identification of novel cDNAs encoding human kexin-like protease, PACE4 isoforms. Biochem Biophys Res Commun. 1994 Apr 29;200(2):943–950. [PubMed]
  • Zhong M, Benjannet S, Lazure C, Munzer S, Seidah NG. Functional analysis of human PACE4-A and PACE4-C isoforms: identification of a new PACE4-CS isoform. FEBS Lett. 1996 Oct 28;396(1):31–36. [PubMed]
  • Mori K, Kii S, Tsuji A, Nagahama M, Imamaki A, Hayashi K, Akamatsu T, Nagamune H, Matsuda Y. A novel human PACE4 isoform, PACE4E is an active processing protease containing a hydrophobic cluster at the carboxy terminus. J Biochem. 1997 May;121(5):941–948. [PubMed]
  • Nakagawa T, Murakami K, Nakayama K. Identification of an isoform with an extremely large Cys-rich region of PC6, a Kex2-like processing endoprotease. FEBS Lett. 1993 Jul 26;327(2):165–171. [PubMed]
  • Bryan P, Pantoliano MW, Quill SG, Hsiao HY, Poulos T. Site-directed mutagenesis and the role of the oxyanion hole in subtilisin. Proc Natl Acad Sci U S A. 1986 Jun;83(11):3743–3745. [PMC free article] [PubMed]
  • Hatsuzawa K, Murakami K, Nakayama K. Molecular and enzymatic properties of furin, a Kex2-like endoprotease involved in precursor cleavage at Arg-X-Lys/Arg-Arg sites. J Biochem. 1992 Mar;111(3):296–301. [PubMed]
  • Takahashi S, Kasai K, Hatsuzawa K, Kitamura N, Misumi Y, Ikehara Y, Murakami K, Nakayama K. A mutation of furin causes the lack of precursor-processing activity in human colon carcinoma LoVo cells. Biochem Biophys Res Commun. 1993 Sep 15;195(2):1019–1026. [PubMed]
  • Takahashi S, Nakagawa T, Kasai K, Banno T, Duguay SJ, Van de Ven WJ, Murakami K, Nakayama K. A second mutant allele of furin in the processing-incompetent cell line, LoVo. Evidence for involvement of the homo B domain in autocatalytic activation. J Biol Chem. 1995 Nov 3;270(44):26565–26569. [PubMed]
  • Lusson J, Benjannet S, Hamelin J, Savaria D, Chrétien M, Seidah NG. The integrity of the RRGDL sequence of the proprotein convertase PC1 is critical for its zymogen and C-terminal processing and for its cellular trafficking. Biochem J. 1997 Sep 15;326(Pt 3):737–744. [PMC free article] [PubMed]
  • Roebroek AJ, Creemers JW, Pauli IG, Kurzik-Dumke U, Rentrop M, Gateff EA, Leunissen JA, Van de Ven WJ. Cloning and functional expression of Dfurin2, a subtilisin-like proprotein processing enzyme of Drosophila melanogaster with multiple repeats of a cysteine motif. J Biol Chem. 1992 Aug 25;267(24):17208–17215. [PubMed]
  • Schalken JA, Roebroek AJ, Oomen PP, Wagenaar SS, Debruyne FM, Bloemers HP, Van de Ven WJ. fur gene expression as a discriminating marker for small cell and nonsmall cell lung carcinomas. J Clin Invest. 1987 Dec;80(6):1545–1549. [PMC free article] [PubMed]
  • Hatsuzawa K, Hosaka M, Nakagawa T, Nagase M, Shoda A, Murakami K, Nakayama K. Structure and expression of mouse furin, a yeast Kex2-related protease. Lack of processing of coexpressed prorenin in GH4C1 cells. J Biol Chem. 1990 Dec 25;265(36):22075–22078. [PubMed]
  • Day R, Schafer MK, Cullinan WE, Watson SJ, Chrétien M, Seidah NG. Region specific expression of furin mRNA in the rat brain. Neurosci Lett. 1993 Jan 4;149(1):27–30. [PubMed]
  • Schäfer MK, Day R, Cullinan WE, Chrétien M, Seidah NG, Watson SJ. Gene expression of prohormone and proprotein convertases in the rat CNS: a comparative in situ hybridization analysis. J Neurosci. 1993 Mar;13(3):1258–1279. [PubMed]
  • Zheng M, Streck RD, Scott RE, Seidah NG, Pintar JE. The developmental expression in rat of proteases furin, PC1, PC2, and carboxypeptidase E: implications for early maturation of proteolytic processing capacity. J Neurosci. 1994 Aug;14(8):4656–4673. [PubMed]
  • Dong W, Marcinkiewicz M, Vieau D, Chrétien M, Seidah NG, Day R. Distinct mRNA expression of the highly homologous convertases PC5 and PACE4 in the rat brain and pituitary. J Neurosci. 1995 Mar;15(3 Pt 1):1778–1796. [PubMed]
  • Zheng M, Seidah NG, Pintar JE. The developmental expression in the rat CNS and peripheral tissues of proteases PC5 and PACE4 mRNAs: comparison with other proprotein processing enzymes. Dev Biol. 1997 Jan 15;181(2):268–283. [PubMed]
  • Nagamune H, Muramatsu K, Akamatsu T, Tamai Y, Izumi K, Tsuji A, Matsuda Y. Distribution of the Kexin family proteases in pancreatic islets: PACE4C is specifically expressed in B cells of pancreatic islets. Endocrinology. 1995 Jan;136(1):357–360. [PubMed]
  • Marcinkiewicz M, Day R, Seidah NG, Chrétien M. Ontogeny of the prohormone convertases PC1 and PC2 in the mouse hypophysis and their colocalization with corticotropin and alpha-melanotropin. Proc Natl Acad Sci U S A. 1993 Jun 1;90(11):4922–4926. [PMC free article] [PubMed]
  • Marcinkiewicz M, Ramla D, Seidah NG, Chrétien M. Developmental expression of the prohormone convertases PC1 and PC2 in mouse pancreatic islets. Endocrinology. 1994 Oct;135(4):1651–1660. [PubMed]
  • Torii S, Yamagishi T, Murakami K, Nakayama K. Localization of Kex2-like processing endoproteases, furin and PC4, within mouse testis by in situ hybridization. FEBS Lett. 1993 Jan 18;316(1):12–16. [PubMed]
  • Molloy SS, Thomas L, VanSlyke JK, Stenberg PE, Thomas G. Intracellular trafficking and activation of the furin proprotein convertase: localization to the TGN and recycling from the cell surface. EMBO J. 1994 Jan 1;13(1):18–33. [PMC free article] [PubMed]
  • Schäfer W, Stroh A, Berghöfer S, Seiler J, Vey M, Kruse ML, Kern HF, Klenk HD, Garten W. Two independent targeting signals in the cytoplasmic domain determine trans-Golgi network localization and endosomal trafficking of the proprotein convertase furin. EMBO J. 1995 Jun 1;14(11):2424–2435. [PMC free article] [PubMed]
  • De Bie I, Marcinkiewicz M, Malide D, Lazure C, Nakayama K, Bendayan M, Seidah NG. The isoforms of proprotein convertase PC5 are sorted to different subcellular compartments. J Cell Biol. 1996 Dec;135(5):1261–1275. [PMC free article] [PubMed]
  • Smeekens SP, Montag AG, Thomas G, Albiges-Rizo C, Carroll R, Benig M, Phillips LA, Martin S, Ohagi S, Gardner P, et al. Proinsulin processing by the subtilisin-related proprotein convertases furin, PC2, and PC3. Proc Natl Acad Sci U S A. 1992 Sep 15;89(18):8822–8826. [PMC free article] [PubMed]
  • Malide D, Seidah NG, Chrétien M, Bendayan M. Electron microscopic immunocytochemical evidence for the involvement of the convertases PC1 and PC2 in the processing of proinsulin in pancreatic beta-cells. J Histochem Cytochem. 1995 Jan;43(1):11–19. [PubMed]
  • Tanaka S, Kurabuchi S, Mochida H, Kato T, Takahashi S, Watanabe T, Nakayama K. Immunocytochemical localization of prohormone convertases PC1/PC3 and PC2 in rat pancreatic islets. Arch Histol Cytol. 1996 Aug;59(3):261–271. [PubMed]
  • Ayoubi TA, Creemers JW, Roebroek AJ, Van de Ven WJ. Expression of the dibasic proprotein processing enzyme furin is directed by multiple promoters. J Biol Chem. 1994 Mar 25;269(12):9298–9303. [PubMed]
  • Kayo T, Konda Y, Tanaka S, Takata K, Koizumi A, Takeuchi T. Developmental expression of proprotein-processing endoprotease furin in rat pancreatic islets. Endocrinology. 1996 Nov;137(11):5126–5134. [PubMed]
  • Kayo T, Sawada Y, Suda M, Konda Y, Izumi T, Tanaka S, Shibata H, Takeuchi T. Proprotein-processing endoprotease furin controls growth of pancreatic beta-cells. Diabetes. 1997 Aug;46(8):1296–1304. [PubMed]
  • Konda Y, Yokota H, Kayo T, Horiuchi T, Sugiyama N, Tanaka S, Takata K, Takeuchi T. Proprotein-processing endoprotease furin controls the growth and differentiation of gastric surface mucous cells. J Clin Invest. 1997 Apr 15;99(8):1842–1851. [PMC free article] [PubMed]
  • Vey M, Schäfer W, Berghöfer S, Klenk HD, Garten W. Maturation of the trans-Golgi network protease furin: compartmentalization of propeptide removal, substrate cleavage, and COOH-terminal truncation. J Cell Biol. 1994 Dec;127(6 Pt 2):1829–1842. [PMC free article] [PubMed]
  • Creemers JW, Vey M, Schäfer W, Ayoubi TA, Roebroek AJ, Klenk HD, Garten W, Van de Ven WJ. Endoproteolytic cleavage of its propeptide is a prerequisite for efficient transport of furin out of the endoplasmic reticulum. J Biol Chem. 1995 Feb 10;270(6):2695–2702. [PubMed]
  • Misumi Y, Oda K, Fujiwara T, Takami N, Tashiro K, Ikehara Y. Functional expression of furin demonstrating its intracellular localization and endoprotease activity for processing of proalbumin and complement pro-C3. J Biol Chem. 1991 Sep 5;266(25):16954–16959. [PubMed]
  • Leduc R, Molloy SS, Thorne BA, Thomas G. Activation of human furin precursor processing endoprotease occurs by an intramolecular autoproteolytic cleavage. J Biol Chem. 1992 Jul 15;267(20):14304–14308. [PubMed]
  • Creemers JW, Siezen RJ, Roebroek AJ, Ayoubi TA, Huylebroeck D, Van de Ven WJ. Modulation of furin-mediated proprotein processing activity by site-directed mutagenesis. J Biol Chem. 1993 Oct 15;268(29):21826–21834. [PubMed]
  • Anderson ED, VanSlyke JK, Thulin CD, Jean F, Thomas G. Activation of the furin endoprotease is a multiple-step process: requirements for acidification and internal propeptide cleavage. EMBO J. 1997 Apr 1;16(7):1508–1518. [PMC free article] [PubMed]
  • Rehemtulla A, Dorner AJ, Kaufman RJ. Regulation of PACE propeptide-processing activity: requirement for a post-endoplasmic reticulum compartment and autoproteolytic activation. Proc Natl Acad Sci U S A. 1992 Sep 1;89(17):8235–8239. [PMC free article] [PubMed]
  • Shapiro J, Sciaky N, Lee J, Bosshart H, Angeletti RH, Bonifacino JS. Localization of endogenous furin in cultured cell lines. J Histochem Cytochem. 1997 Jan;45(1):3–12. [PubMed]
  • Klimpel KR, Molloy SS, Thomas G, Leppla SH. Anthrax toxin protective antigen is activated by a cell surface protease with the sequence specificity and catalytic properties of furin. Proc Natl Acad Sci U S A. 1992 Nov 1;89(21):10277–10281. [PMC free article] [PubMed]
  • Tsuneoka M, Nakayama K, Hatsuzawa K, Komada M, Kitamura N, Mekada E. Evidence for involvement of furin in cleavage and activation of diphtheria toxin. J Biol Chem. 1993 Dec 15;268(35):26461–26465. [PubMed]
  • Banting G, Ponnambalam S. TGN38 and its orthologues: roles in post-TGN vesicle formation and maintenance of TGN morphology. Biochim Biophys Acta. 1997 Mar 1;1355(3):209–217. [PubMed]
  • Bosshart H, Humphrey J, Deignan E, Davidson J, Drazba J, Yuan L, Oorschot V, Peters PJ, Bonifacino JS. The cytoplasmic domain mediates localization of furin to the trans-Golgi network en route to the endosomal/lysosomal system. J Cell Biol. 1994 Sep;126(5):1157–1172. [PMC free article] [PubMed]
  • Chapman RE, Munro S. Retrieval of TGN proteins from the cell surface requires endosomal acidification. EMBO J. 1994 May 15;13(10):2305–2312. [PMC free article] [PubMed]
  • Voorhees P, Deignan E, van Donselaar E, Humphrey J, Marks MS, Peters PJ, Bonifacino JS. An acidic sequence within the cytoplasmic domain of furin functions as a determinant of trans-Golgi network localization and internalization from the cell surface. EMBO J. 1995 Oct 16;14(20):4961–4975. [PMC free article] [PubMed]
  • Jones BG, Thomas L, Molloy SS, Thulin CD, Fry MD, Walsh KA, Thomas G. Intracellular trafficking of furin is modulated by the phosphorylation state of a casein kinase II site in its cytoplasmic tail. EMBO J. 1995 Dec 1;14(23):5869–5883. [PMC free article] [PubMed]
  • Takahashi S, Nakagawa T, Banno T, Watanabe T, Murakami K, Nakayama K. Localization of furin to the trans-Golgi network and recycling from the cell surface involves Ser and Tyr residues within the cytoplasmic domain. J Biol Chem. 1995 Nov 24;270(47):28397–28401. [PubMed]
  • Honda N, Machida K, Mamiya T, Takahashi T, Takishima T, Hasegawa N, Kamano T, Hashimoto M, Ohno K, Hosoba M. The optimum Butterworth-Wiener filter for I-123 IMP brain SPECT. Radiat Med. 1989 May-Jun;7(3):124–128. [PubMed]
  • Kennelly PJ, Krebs EG. Consensus sequences as substrate specificity determinants for protein kinases and protein phosphatases. J Biol Chem. 1991 Aug 25;266(24):15555–15558. [PubMed]
  • Vidricaire G, Denault JB, Leduc R. Characterization of a secreted form of human furin endoprotease. Biochem Biophys Res Commun. 1993 Sep 15;195(2):1011–1018. [PubMed]
  • Wise RJ, Barr PJ, Wong PA, Kiefer MC, Brake AJ, Kaufman RJ. Expression of a human proprotein processing enzyme: correct cleavage of the von Willebrand factor precursor at a paired basic amino acid site. Proc Natl Acad Sci U S A. 1990 Dec;87(23):9378–9382. [PMC free article] [PubMed]
  • Bresnahan PA, Leduc R, Thomas L, Thorner J, Gibson HL, Brake AJ, Barr PJ, Thomas G. Human fur gene encodes a yeast KEX2-like endoprotease that cleaves pro-beta-NGF in vivo. J Cell Biol. 1990 Dec;111(6 Pt 2):2851–2859. [PMC free article] [PubMed]
  • van de Ven WJ, Voorberg J, Fontijn R, Pannekoek H, van den Ouweland AM, van Duijnhoven HL, Roebroek AJ, Siezen RJ. Furin is a subtilisin-like proprotein processing enzyme in higher eukaryotes. Mol Biol Rep. 1990 Nov;14(4):265–275. [PubMed]
  • Molloy SS, Bresnahan PA, Leppla SH, Klimpel KR, Thomas G. Human furin is a calcium-dependent serine endoprotease that recognizes the sequence Arg-X-X-Arg and efficiently cleaves anthrax toxin protective antigen. J Biol Chem. 1992 Aug 15;267(23):16396–16402. [PubMed]
  • Watanabe T, Nakagawa T, Ikemizu J, Nagahama M, Murakami K, Nakayama K. Sequence requirements for precursor cleavage within the constitutive secretory pathway. J Biol Chem. 1992 Apr 25;267(12):8270–8274. [PubMed]
  • Watanabe T, Murakami K, Nakayama K. Positional and additive effects of basic amino acids on processing of precursor proteins within the constitutive secretory pathway. FEBS Lett. 1993 Apr 12;320(3):215–218. [PubMed]
  • Takahashi S, Hatsuzawa K, Watanabe T, Murakami K, Nakayama K. Sequence requirements for endoproteolytic processing of precursor proteins by furin: transfection and in vitro experiments. J Biochem. 1994 Jul;116(1):47–52. [PubMed]
  • Hatsuzawa K, Nagahama M, Takahashi S, Takada K, Murakami K, Nakayama K. Purification and characterization of furin, a Kex2-like processing endoprotease, produced in Chinese hamster ovary cells. J Biol Chem. 1992 Aug 15;267(23):16094–16099. [PubMed]
  • Brennan SO, Nakayama K. Furin has the proalbumin substrate specificity and serpin inhibitory properties of an in situ hepatic convertase. FEBS Lett. 1994 Jan 31;338(2):147–151. [PubMed]
  • Brennan SO, Nakayama K. Cleavage of proalbumin peptides by furin reveals unexpected restrictions at the P2 and P'1 sites. FEBS Lett. 1994 Jun 20;347(1):80–84. [PubMed]
  • Siezen RJ, Creemers JW, Van de Ven WJ. Homology modelling of the catalytic domain of human furin. A model for the eukaryotic subtilisin-like proprotein convertases. Eur J Biochem. 1994 Jun 1;222(2):255–266. [PubMed]
  • Siezen RJ. Modelling and engineering of enzyme/substrate interactions in subtilisin-like enzymes of unknown 3-dimensional structure. Adv Exp Med Biol. 1996;379:63–73. [PubMed]
  • Ballinger MD, Tom J, Wells JA. Designing subtilisin BPN' to cleave substrates containing dibasic residues. Biochemistry. 1995 Oct 17;34(41):13312–13319. [PubMed]
  • Ballinger MD, Tom J, Wells JA. Furilisin: a variant of subtilisin BPN' engineered for cleaving tribasic substrates. Biochemistry. 1996 Oct 22;35(42):13579–13585. [PubMed]
  • Mondino A, Giordano S, Comoglio PM. Defective posttranslational processing activates the tyrosine kinase encoded by the MET proto-oncogene (hepatocyte growth factor receptor). Mol Cell Biol. 1991 Dec;11(12):6084–6092. [PMC free article] [PubMed]
  • Komada M, Hatsuzawa K, Shibamoto S, Ito F, Nakayama K, Kitamura N. Proteolytic processing of the hepatocyte growth factor/scatter factor receptor by furin. FEBS Lett. 1993 Aug 9;328(1-2):25–29. [PubMed]
  • Moehring JM, Moehring TJ. Strains of CHO-K1 cells resistant to Pseudomonas exotoxin A and cross-resistant to diphtheria toxin and viruses. Infect Immun. 1983 Sep;41(3):998–1009. [PMC free article] [PubMed]
  • Watson DG, Moehring JM, Moehring TJ. A mutant CHO-K1 strain with resistance to Pseudomonas exotoxin A and alphaviruses fails to cleave Sindbis virus glycoprotein PE2. J Virol. 1991 May;65(5):2332–2339. [PMC free article] [PubMed]
  • Inocencio NM, Moehring JM, Moehring TJ. A mutant CHO-K1 strain with resistance to Pseudomonas exotoxin A is unable to process the precursor fusion glycoprotein of Newcastle disease virus. J Virol. 1993 Jan;67(1):593–595. [PMC free article] [PubMed]
  • Moehring JM, Inocencio NM, Robertson BJ, Moehring TJ. Expression of mouse furin in a Chinese hamster cell resistant to Pseudomonas exotoxin A and viruses complements the genetic lesion. J Biol Chem. 1993 Feb 5;268(4):2590–2594. [PubMed]
  • Spence MJ, Sucic JF, Foley BT, Moehring TJ. Analysis of mutations in alleles of the fur gene from an endoprotease-deficient Chinese hamster ovary cell strain. Somat Cell Mol Genet. 1995 Jan;21(1):1–18. [PubMed]
  • Zhou Y, Lindberg I. Purification and characterization of the prohormone convertase PC1(PC3). J Biol Chem. 1993 Mar 15;268(8):5615–5623. [PubMed]
  • Jean F, Basak A, Rondeau N, Benjannet S, Hendy GN, Seidah NG, Chrétien M, Lazure C. Enzymic characterization of murine and human prohormone convertase-1 (mPC1 and hPC1) expressed in mammalian GH4C1 cells. Biochem J. 1993 Jun 15;292(Pt 3):891–900. [PMC free article] [PubMed]
  • Rufaut NW, Brennan SO, Hakes DJ, Dixon JE, Birch NP. Purification and characterization of the candidate prohormone-processing enzyme SPC3 produced in a mouse L cell line. J Biol Chem. 1993 Sep 25;268(27):20291–20298. [PubMed]
  • Fuller RS, Brake A, Thorner J. Yeast prohormone processing enzyme (KEX2 gene product) is a Ca2+-dependent serine protease. Proc Natl Acad Sci U S A. 1989 Mar;86(5):1434–1438. [PMC free article] [PubMed]
  • Brenner C, Fuller RS. Structural and enzymatic characterization of a purified prohormone-processing enzyme: secreted, soluble Kex2 protease. Proc Natl Acad Sci U S A. 1992 Feb 1;89(3):922–926. [PMC free article] [PubMed]
  • Mizuno K, Nakamura T, Ohshima T, Tanaka S, Matsuo H. Characterization of KEX2-encoded endopeptidase from yeast Saccharomyces cerevisiae. Biochem Biophys Res Commun. 1989 Feb 28;159(1):305–311. [PubMed]
  • Jean F, Boudreault A, Basak A, Seidah NG, Lazure C. Fluorescent peptidyl substrates as an aid in studying the substrate specificity of human prohormone convertase PC1 and human furin and designing a potent irreversible inhibitor. J Biol Chem. 1995 Aug 18;270(33):19225–19231. [PubMed]
  • Brennan SO, Carrell RW. A circulating variant of human proalbumin. Nature. 1978 Aug 31;274(5674):908–909. [PubMed]
  • Matsuda Y, Ogushi F, Ogawa K, Katunuma N. Structure and properties of albumin Tokushima and its proteolytic processing by cathepsin B in vitro. J Biochem. 1986 Aug;100(2):375–379. [PubMed]
  • Oda K, Misumi Y, Sohda M, Takami N, Sakaki Y, Ikehara Y. Selective processing of proalbumin determined by site-specific mutagenesis. Biochem Biophys Res Commun. 1991 Mar 15;175(2):690–696. [PubMed]
  • Brennan SO, Hammonds B, George PM. Aberrant hepatic processing causes removal of activation peptide and primary polymerisation site from fibrinogen Canterbury (A alpha 20 Val --> Asp). J Clin Invest. 1995 Dec;96(6):2854–2858. [PMC free article] [PubMed]
  • Bentley AK, Rees DJ, Rizza C, Brownlee GG. Defective propeptide processing of blood clotting factor IX caused by mutation of arginine to glutamine at position -4. Cell. 1986 May 9;45(3):343–348. [PubMed]
  • Giannelli F, Green PM, High KA, Lozier JN, Lillicrap DP, Ludwig M, Olek K, Reitsma PH, Goossens M, Yoshioka A, et al. Haemophilia B: database of point mutations and short additions and deletions. Nucleic Acids Res. 1990 Jul 25;18(14):4053–4059. [PMC free article] [PubMed]
  • Yoshimasa Y, Seino S, Whittaker J, Kakehi T, Kosaki A, Kuzuya H, Imura H, Bell GI, Steiner DF. Insulin-resistant diabetes due to a point mutation that prevents insulin proreceptor processing. Science. 1988 May 6;240(4853):784–787. [PubMed]
  • Kobayashi M, Sasaoka T, Takata Y, Ishibashi O, Sugibayashi M, Shigeta Y, Hisatomi A, Nakamura E, Tamaki M, Teraoka H. Insulin resistance by unprocessed insulin proreceptors point mutation at the cleavage site. Biochem Biophys Res Commun. 1988 Jun 16;153(2):657–663. [PubMed]
  • Kido H, Yokogoshi Y, Sakai K, Tashiro M, Kishino Y, Fukutomi A, Katunuma N. Isolation and characterization of a novel trypsin-like protease found in rat bronchiolar epithelial Clara cells. A possible activator of the viral fusion glycoprotein. J Biol Chem. 1992 Jul 5;267(19):13573–13579. [PubMed]
  • Kido H, Niwa Y, Beppu Y, Towatari T. Cellular proteases involved in the pathogenicity of enveloped animal viruses, human immunodeficiency virus, influenza virus A and Sendai virus. Adv Enzyme Regul. 1996;36:325–347. [PubMed]
  • Stieneke-Gröber A, Vey M, Angliker H, Shaw E, Thomas G, Roberts C, Klenk HD, Garten W. Influenza virus hemagglutinin with multibasic cleavage site is activated by furin, a subtilisin-like endoprotease. EMBO J. 1992 Jul;11(7):2407–2414. [PMC free article] [PubMed]
  • Gotoh B, Ohnishi Y, Inocencio NM, Esaki E, Nakayama K, Barr PJ, Thomas G, Nagai Y. Mammalian subtilisin-related proteinases in cleavage activation of the paramyxovirus fusion glycoprotein: superiority of furin/PACE to PC2 or PC1/PC3. J Virol. 1992 Nov;66(11):6391–6397. [PMC free article] [PubMed]
  • Walker JA, Molloy SS, Thomas G, Sakaguchi T, Yoshida T, Chambers TM, Kawaoka Y. Sequence specificity of furin, a proprotein-processing endoprotease, for the hemagglutinin of a virulent avian influenza virus. J Virol. 1994 Feb;68(2):1213–1218. [PMC free article] [PubMed]
  • Ohnishi Y, Shioda T, Nakayama K, Iwata S, Gotoh B, Hamaguchi M, Nagai Y. A furin-defective cell line is able to process correctly the gp160 of human immunodeficiency virus type 1. J Virol. 1994 Jun;68(6):4075–4079. [PMC free article] [PubMed]
  • Horimoto T, Nakayama K, Smeekens SP, Kawaoka Y. Proprotein-processing endoproteases PC6 and furin both activate hemagglutinin of virulent avian influenza viruses. J Virol. 1994 Sep;68(9):6074–6078. [PMC free article] [PubMed]
  • Hallenberger S, Bosch V, Angliker H, Shaw E, Klenk HD, Garten W. Inhibition of furin-mediated cleavage activation of HIV-1 glycoprotein gp160. Nature. 1992 Nov 26;360(6402):358–361. [PubMed]
  • Decroly E, Vandenbranden M, Ruysschaert JM, Cogniaux J, Jacob GS, Howard SC, Marshall G, Kompelli A, Basak A, Jean F, et al. The convertases furin and PC1 can both cleave the human immunodeficiency virus (HIV)-1 envelope glycoprotein gp160 into gp120 (HIV-1 SU) and gp41 (HIV-I TM). J Biol Chem. 1994 Apr 22;269(16):12240–12247. [PubMed]
  • Vollenweider F, Benjannet S, Decroly E, Savaria D, Lazure C, Thomas G, Chrétien M, Seidah NG. Comparative cellular processing of the human immunodeficiency virus (HIV-1) envelope glycoprotein gp160 by the mammalian subtilisin/kexin-like convertases. Biochem J. 1996 Mar 1;314(Pt 2):521–532. [PMC free article] [PubMed]
  • Hallenberger S, Moulard M, Sordel M, Klenk HD, Garten W. The role of eukaryotic subtilisin-like endoproteases for the activation of human immunodeficiency virus glycoproteins in natural host cells. J Virol. 1997 Feb;71(2):1036–1045. [PMC free article] [PubMed]
  • Decroly E, Wouters S, Di Bello C, Lazure C, Ruysschaert JM, Seidah NG. Identification of the paired basic convertases implicated in HIV gp160 processing based on in vitro assays and expression in CD4(+) cell lines. J Biol Chem. 1996 Nov 29;271(48):30442–30450. [PubMed]
  • Decroly E, Benjannet S, Savaria D, Seidah NG. Comparative functional role of PC7 and furin in the processing of the HIV envelope glycoprotein gp160. FEBS Lett. 1997 Mar 17;405(1):68–72. [PubMed]
  • Miranda L, Wolf J, Pichuantes S, Duke R, Franzusoff A. Isolation of the human PC6 gene encoding the putative host protease for HIV-1 gp160 processing in CD4+ T lymphocytes. Proc Natl Acad Sci U S A. 1996 Jul 23;93(15):7695–7700. [PMC free article] [PubMed]
  • Vey M, Schäfer W, Reis B, Ohuchi R, Britt W, Garten W, Klenk HD, Radsak K. Proteolytic processing of human cytomegalovirus glycoprotein B (gpUL55) is mediated by the human endoprotease furin. Virology. 1995 Jan 10;206(1):746–749. [PubMed]
  • Ortmann D, Ohuchi M, Angliker H, Shaw E, Garten W, Klenk HD. Proteolytic cleavage of wild type and mutants of the F protein of human parainfluenza virus type 3 by two subtilisin-like endoproteases, furin and Kex2. J Virol. 1994 Apr;68(4):2772–2776. [PMC free article] [PubMed]
  • Angliker H. Synthesis of tight binding inhibitors and their action on the proprotein-processing enzyme furin. J Med Chem. 1995 Sep 29;38(20):4014–4018. [PubMed]
  • Basak A, Jean F, Seidah NG, Lazure C. Design and synthesis of novel inhibitors of prohormone convertases. Int J Pept Protein Res. 1994 Sep;44(3):253–261. [PubMed]
  • Basak A, Schmidt C, Ismail AA, Seidah NG, Chrétien M, Lazure C. Peptidyl substrates containing unnatural amino acid at the P'1 position are potent inhibitors of prohormone convertases. Int J Pept Protein Res. 1995 Sep-Oct;46(3-4):228–237. [PubMed]
  • Misumi Y, Ohkubo K, Sohda M, Takami N, Oda K, Ikehara Y. Intracellular processing of complement pro-C3 and proalbumin is inhibited by rat alpha 1-protease inhibitor variant (Met352----Arg) in transfected cells. Biochem Biophys Res Commun. 1990 Aug 31;171(1):236–242. [PubMed]
  • Anderson ED, Thomas L, Hayflick JS, Thomas G. Inhibition of HIV-1 gp160-dependent membrane fusion by a furin-directed alpha 1-antitrypsin variant. J Biol Chem. 1993 Nov 25;268(33):24887–24891. [PubMed]
  • Watanabe M, Hirano A, Stenglein S, Nelson J, Thomas G, Wong TC. Engineered serine protease inhibitor prevents furin-catalyzed activation of the fusion glycoprotein and production of infectious measles virus. J Virol. 1995 May;69(5):3206–3210. [PMC free article] [PubMed]
  • Zarkik S, Decroly E, Wattiez R, Seidah NG, Burny A, Ruysschaert JM. Comparative processing of bovine leukemia virus envelope glycoprotein gp72 by subtilisin/kexin-like mammalian convertases. FEBS Lett. 1997 Apr 7;406(1-2):205–210. [PubMed]
  • Lu W, Zhang W, Molloy SS, Thomas G, Ryan K, Chiang Y, Anderson S, Laskowski M., Jr Arg15-Lys17-Arg18 turkey ovomucoid third domain inhibits human furin. J Biol Chem. 1993 Jul 15;268(20):14583–14585. [PubMed]
  • Seidah NG, Benjannet S, Pareek S, Chrétien M, Murphy RA. Cellular processing of the neurotrophin precursors of NT3 and BDNF by the mammalian proprotein convertases. FEBS Lett. 1996 Feb 5;379(3):247–250. [PubMed]
  • Dubois CM, Laprise MH, Blanchette F, Gentry LE, Leduc R. Processing of transforming growth factor beta 1 precursor by human furin convertase. J Biol Chem. 1995 May 5;270(18):10618–10624. [PubMed]
  • Nachtigal MW, Ingraham HA. Bioactivation of Müllerian inhibiting substance during gonadal development by a kex2/subtilisin-like endoprotease. Proc Natl Acad Sci U S A. 1996 Jul 23;93(15):7711–7716. [PMC free article] [PubMed]
  • Duguay SJ, Lai-Zhang J, Steiner DF. Mutational analysis of the insulin-like growth factor I prohormone processing site. J Biol Chem. 1995 Jul 21;270(29):17566–17574. [PubMed]
  • Denault JB, Claing A, D'Orléans-Juste P, Sawamura T, Kido T, Masaki T, Leduc R. Processing of proendothelin-1 by human furin convertase. FEBS Lett. 1995 Apr 10;362(3):276–280. [PubMed]
  • Liu B, Goltzman D, Rabbani SA. Processing of pro-PTHRP by the prohormone convertase, furin: effect on biological activity. Am J Physiol. 1995 May;268(5 Pt 1):E832–E838. [PubMed]
  • Hendy GN, Bennett HP, Gibbs BF, Lazure C, Day R, Seidah NG. Proparathyroid hormone is preferentially cleaved to parathyroid hormone by the prohormone convertase furin. A mass spectrometric study. J Biol Chem. 1995 Apr 21;270(16):9517–9525. [PubMed]
  • Bravo DA, Gleason JB, Sanchez RI, Roth RA, Fuller RS. Accurate and efficient cleavage of the human insulin proreceptor by the human proprotein-processing protease furin. Characterization and kinetic parameters using the purified, secreted soluble protease expressed by a recombinant baculovirus. J Biol Chem. 1994 Oct 14;269(41):25830–25837. [PubMed]
  • Willnow TE, Moehring JM, Inocencio NM, Moehring TJ, Herz J. The low-density-lipoprotein receptor-related protein (LRP) is processed by furin in vivo and in vitro. Biochem J. 1996 Jan 1;313(Pt 1):71–76. [PMC free article] [PubMed]
  • Lehmann M, Rigot V, Seidah NG, Marvaldi J, Lissitzky JC. Lack of integrin alpha-chain endoproteolytic cleavage in furin-deficient human colon adenocarcinoma cells LoVo. Biochem J. 1996 Aug 1;317(Pt 3):803–809. [PMC free article] [PubMed]
  • Wasley LC, Rehemtulla A, Bristol JA, Kaufman RJ. PACE/furin can process the vitamin K-dependent pro-factor IX precursor within the secretory pathway. J Biol Chem. 1993 Apr 25;268(12):8458–8465. [PubMed]
  • Wallin R, Stanton C, Ross RP. Intracellular proteolytic processing of the two-chain vitamin K-dependent coagulation factor X. Thromb Res. 1994 Mar 15;73(6):395–403. [PubMed]
  • Drews R, Paleyanda RK, Lee TK, Chang RR, Rehemtulla A, Kaufman RJ, Drohan WN, Luboń H. Proteolytic maturation of protein C upon engineering the mouse mammary gland to express furin. Proc Natl Acad Sci U S A. 1995 Nov 7;92(23):10462–10466. [PMC free article] [PubMed]
  • Pei D, Weiss SJ. Furin-dependent intracellular activation of the human stromelysin-3 zymogen. Nature. 1995 May 18;375(6528):244–247. [PubMed]
  • Sato H, Kinoshita T, Takino T, Nakayama K, Seiki M. Activation of a recombinant membrane type 1-matrix metalloproteinase (MT1-MMP) by furin and its interaction with tissue inhibitor of metalloproteinases (TIMP)-2. FEBS Lett. 1996 Sep 9;393(1):101–104. [PubMed]
  • Park CG, Jung MY, Choi Y, Winslow GM. Proteolytic processing is required for viral superantigen activity. J Exp Med. 1995 May 1;181(5):1899–1904. [PMC free article] [PubMed]
  • Garred O, van Deurs B, Sandvig K. Furin-induced cleavage and activation of Shiga toxin. J Biol Chem. 1995 May 5;270(18):10817–10821. [PubMed]
  • Milhiet PE, Chevallier S, Corbeil D, Seidah NG, Crine P, Boileau G. Proteolytic processing of the alpha-subunit of rat endopeptidase-24.18 by furin. Biochem J. 1995 Jul 15;309(Pt 2):683–688. [PMC free article] [PubMed]
  • Paquet L, Bergeron F, Boudreault A, Seidah NG, Chrétien M, Mbikay M, Lazure C. The neuroendocrine precursor 7B2 is a sulfated protein proteolytically processed by a ubiquitous furin-like convertase. J Biol Chem. 1994 Jul 29;269(30):19279–19285. [PubMed]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society


Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...


Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...