• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of biochemjBJ Latest papers and much more!
Biochem J. Oct 15, 1997; 327(Pt 2): 321–333.
PMCID: PMC1218797

Mechanism and regulation of Mg-chelatase.

Abstract

Mg-chelatase catalyses the insertion of Mg into protoporphyrin IX (Proto). This seemingly simple reaction also is potentially one of the most interesting and crucial steps in the (bacterio)chlorophyll (Bchl/Chl)-synthesis pathway, owing to its position at the branch-point between haem and Bchl/Chl synthesis. Up until the level of Proto, haem and Bchl/Chl synthesis share a common pathway. However, at the point of metal-ion insertion there are two choices: Mg2+ insertion to make Bchl/Chl (catalysed by Mg-chelatase) or Fe2+ insertion to make haem (catalysed by ferrochelatase). Thus the relative activities of Mg-chelatase and ferrochelatase must be regulated with respect to the organism's requirements for these end products. How is this regulation achieved? For Mg-chelatase, the recent design of an in vitro assay combined with the identification of Bchl-biosynthetic enzyme genes has now made it possible to address this question. In all photosynthetic organisms studied to date, Mg-chelatase is a three-component enzyme, and in several species these proteins have been cloned and expressed in an active form. The reaction takes place in two steps, with an ATP-dependent activation followed by an ATP-dependent chelation step. The activation step may be the key to regulation, although variations in subunit levels during diurnal growth may also play a role in determining the flux through the Bchl/Chl and haem branches of the pathway.

Full Text

The Full Text of this article is available as a PDF (644K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Walker CJ, Weinstein JD. In vitro assay of the chlorophyll biosynthetic enzyme Mg-chelatase: resolution of the activity into soluble and membrane-bound fractions. Proc Natl Acad Sci U S A. 1991 Jul 1;88(13):5789–5793. [PMC free article] [PubMed]
  • Gibson LC, Willows RD, Kannangara CG, von Wettstein D, Hunter CN. Magnesium-protoporphyrin chelatase of Rhodobacter sphaeroides: reconstitution of activity by combining the products of the bchH, -I, and -D genes expressed in Escherichia coli. Proc Natl Acad Sci U S A. 1995 Mar 14;92(6):1941–1944. [PMC free article] [PubMed]
  • Gibson LC, Marrison JL, Leech RM, Jensen PE, Bassham DC, Gibson M, Hunter CN. A putative Mg chelatase subunit from Arabidopsis thaliana cv C24. Sequence and transcript analysis of the gene, import of the protein into chloroplasts, and in situ localization of the transcript and protein. Plant Physiol. 1996 May;111(1):61–71. [PMC free article] [PubMed]
  • Jensen PE, Gibson LC, Henningsen KW, Hunter CN. Expression of the chlI, chlD, and chlH genes from the Cyanobacterium synechocystis PCC6803 in Escherichia coli and demonstration that the three cognate proteins are required for magnesium-protoporphyrin chelatase activity. J Biol Chem. 1996 Jul 12;271(28):16662–16667. [PubMed]
  • Jensen PE, Willows RD, Petersen BL, Vothknecht UC, Stummann BM, Kannangara CG, von Wettstein D, Henningsen KW. Structural genes for Mg-chelatase subunits in barley: Xantha-f, -g and -h. Mol Gen Genet. 1996 Mar 7;250(4):383–394. [PubMed]
  • Hudson A, Carpenter R, Doyle S, Coen ES. Olive: a key gene required for chlorophyll biosynthesis in Antirrhinum majus. EMBO J. 1993 Oct;12(10):3711–3719. [PMC free article] [PubMed]
  • Koncz C, Mayerhofer R, Koncz-Kalman Z, Nawrath C, Reiss B, Redei GP, Schell J. Isolation of a gene encoding a novel chloroplast protein by T-DNA tagging in Arabidopsis thaliana. EMBO J. 1990 May;9(5):1337–1346. [PMC free article] [PubMed]
  • Nakayama M, Masuda T, Sato N, Yamagata H, Bowler C, Ohta H, Shioi Y, Takamiya K. Cloning, subcellular localization and expression of CHL1, a subunit of magnesium-chelatase in soybean. Biochem Biophys Res Commun. 1995 Oct 4;215(1):422–428. [PubMed]
  • Gorchein A. Magnesium protoporphyrin chelatase activity in Rhodopseudomonas spheroides. Studies with whole cells. Biochem J. 1972 Mar;127(1):97–106. [PMC free article] [PubMed]
  • Gorchein A. Control of magnesium-protoporphyrin chelatase activity in Rhodopseudomonas spheroides. Role of light, oxygen, and electron and energy transfer. Biochem J. 1973 Aug;134(4):833–845. [PMC free article] [PubMed]
  • Castelfranco PA, Weinstein JD, Schwarcz S, Pardo AD, Wezelman BE. The Mg insertion step in chlorophyll biosynthesis. Arch Biochem Biophys. 1979 Feb;192(2):592–598. [PubMed]
  • Pardo AD, Chereskin BM, Castelfranco PA, Franceschi VR, Wezelman BE. ATP requirement for mg chelatase in developing chloroplasts. Plant Physiol. 1980 May;65(5):956–960. [PMC free article] [PubMed]
  • Walker CJ, Weinstein JD. Further characterization of the magnesium chelatase in isolated developing cucumber chloroplasts : substrate specificity, regulation, intactness, and ATP requirements. Plant Physiol. 1991 Apr;95(4):1189–1196. [PMC free article] [PubMed]
  • Lee HJ, Ball MD, Parham R, Rebeiz CA. Chloroplast Biogenesis 65 : Enzymic Conversion of Protoporphyrin IX to Mg-Protoporphyrin IX in a Subplastidic Membrane Fraction of Cucumber Etiochloroplasts. Plant Physiol. 1992 Jul;99(3):1134–1140. [PMC free article] [PubMed]
  • Kannangara CG, Vothknecht UC, Hansson M, von Wettstein D. Magnesium chelatase: association with ribosomes and mutant complementation studies identify barley subunit Xantha-G as a functional counterpart of Rhodobacter subunit BchD. Mol Gen Genet. 1997 Mar 18;254(1):85–92. [PubMed]
  • Walker CJ, Weinstein JD. The magnesium-insertion step of chlorophyll biosynthesis is a two-stage reaction. Biochem J. 1994 Apr 1;299(Pt 1):277–284. [PMC free article] [PubMed]
  • Willows RD, Gibson LC, Kanangara CG, Hunter CN, von Wettstein D. Three separate proteins constitute the magnesium chelatase of Rhodobacter sphaeroides. Eur J Biochem. 1996 Jan 15;235(1-2):438–443. [PubMed]
  • Bollivar DW, Suzuki JY, Beatty JT, Dobrowolski JM, Bauer CE. Directed mutational analysis of bacteriochlorophyll a biosynthesis in Rhodobacter capsulatus. J Mol Biol. 1994 Apr 15;237(5):622–640. [PubMed]
  • Bollivar DW, Jiang ZY, Bauer CE, Beale SI. Heterologous expression of the bchM gene product from Rhodobacter capsulatus and demonstration that it encodes S-adenosyl-L-methionine:Mg-protoporphyrin IX methyltransferase. J Bacteriol. 1994 Sep;176(17):5290–5296. [PMC free article] [PubMed]
  • Halliwell B, Gutteridge JM. The antioxidants of human extracellular fluids. Arch Biochem Biophys. 1990 Jul;280(1):1–8. [PubMed]
  • Rubin BB, Rotstein OD, Lukacs G, Bailey D, Romaschin A, Walker PM. Decreased leukocyte adhesion with anti-CD18 monoclonal antibodies is mediated by receptor internalization. Surgery. 1992 Aug;112(2):263–269. [PubMed]
  • Köhler S, Delwiche CF, Denny PW, Tilney LG, Webster P, Wilson RJ, Palmer JD, Roos DS. A plastid of probable green algal origin in Apicomplexan parasites. Science. 1997 Mar 7;275(5305):1485–1489. [PubMed]
  • Koonin EV. A common set of conserved motifs in a vast variety of putative nucleic acid-dependent ATPases including MCM proteins involved in the initiation of eukaryotic DNA replication. Nucleic Acids Res. 1993 Jun 11;21(11):2541–2547. [PMC free article] [PubMed]
  • Koonin EV. Evidence for a family of archaeal ATPases. Science. 1997 Mar 7;275(5305):1489–1490. [PubMed]
  • Bult CJ, White O, Olsen GJ, Zhou L, Fleischmann RD, Sutton GG, Blake JA, FitzGerald LM, Clayton RA, Gocayne JD, et al. Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii. Science. 1996 Aug 23;273(5278):1058–1073. [PubMed]
  • Maizel JV, Jr, Lenk RP. Enhanced graphic matrix analysis of nucleic acid and protein sequences. Proc Natl Acad Sci U S A. 1981 Dec;78(12):7665–7669. [PMC free article] [PubMed]
  • Debussche L, Couder M, Thibaut D, Cameron B, Crouzet J, Blanche F. Assay, purification, and characterization of cobaltochelatase, a unique complex enzyme catalyzing cobalt insertion in hydrogenobyrinic acid a,c-diamide during coenzyme B12 biosynthesis in Pseudomonas denitrificans. J Bacteriol. 1992 Nov;174(22):7445–7451. [PMC free article] [PubMed]
  • Fuesler TP, Wong YS, Castelfranco PA. Localization of Mg-Chelatase and Mg-Protoporphyrin IX Monomethyl Ester (Oxidative) Cyclase Activities within Isolated, Developing Cucumber Chloroplasts. Plant Physiol. 1984 Jul;75(3):662–664. [PMC free article] [PubMed]
  • Joyard J, Block M, Pineau B, Albrieux C, Douce R. Envelope membranes from mature spinach chloroplasts contain a NADPH:protochlorophyllide reductase on the cytosolic side of the outer membrane. J Biol Chem. 1990 Dec 15;265(35):21820–21827. [PubMed]
  • Matringe M, Camadro JM, Block MA, Joyard J, Scalla R, Labbe P, Douce R. Localization within chloroplasts of protoporphyrinogen oxidase, the target enzyme for diphenylether-like herbicides. J Biol Chem. 1992 Mar 5;267(7):4646–4651. [PubMed]
  • Matringe M, Camadro JM, Joyard J, Douce R. Localization of ferrochelatase activity within mature pea chloroplasts. J Biol Chem. 1994 May 27;269(21):15010–15015. [PubMed]
  • Pineau B, Gerard-Hirne C, Douce R, Joyard J. Identification of the Main Species of Tetrapyrrolic Pigments in Envelope Membranes from Spinach Chloroplasts. Plant Physiol. 1993 Jul;102(3):821–828. [PMC free article] [PubMed]
  • Douce R, Holtz RB, Benson AA. Isolation and properties of the envelope of spinach chloroplasts. J Biol Chem. 1973 Oct 25;248(20):7215–7222. [PubMed]
  • Reinbothe S, Reinbothe C. The regulation of enzymes involved in chlorophyll biosynthesis. Eur J Biochem. 1996 Apr 15;237(2):323–343. [PubMed]
  • Reinbothe S, Reinbothe C. Regulation of Chlorophyll Biosynthesis in Angiosperms. Plant Physiol. 1996 May;111(1):1–7. [PMC free article] [PubMed]
  • Reinbothe S, Runge S, Reinbothe C, van Cleve B, Apel K. Substrate-dependent transport of the NADPH:protochlorophyllide oxidoreductase into isolated plastids. Plant Cell. 1995 Feb;7(2):161–172. [PMC free article] [PubMed]
  • Roper JM, Smith AG. Molecular localisation of ferrochelatase in higher plant chloroplasts. Eur J Biochem. 1997 May 15;246(1):32–37. [PubMed]
  • Goldin BR, Little HN. Metalloporphyrin chelatase from barley. Biochim Biophys Acta. 1969 Feb 11;171(2):321–332. [PubMed]
  • Thomas J, Weinstein JD. Measurement of heme efflux and heme content in isolated developing chloroplasts. Plant Physiol. 1990 Nov;94(3):1414–1423. [PMC free article] [PubMed]
  • Jacobs JM, Jacobs NJ. Porphyrin Accumulation and Export by Isolated Barley (Hordeum vulgare) Plastids (Effect of Diphenyl Ether Herbicides). Plant Physiol. 1993 Apr;101(4):1181–1187. [PMC free article] [PubMed]
  • Jacobs JM, Jacobs NJ. Terminal enzymes of heme biosynthesis in the plant plasma membrane. Arch Biochem Biophys. 1995 Nov 10;323(2):274–278. [PubMed]
  • Coomber SA, Chaudhri M, Connor A, Britton G, Hunter CN. Localized transposon Tn5 mutagenesis of the photosynthetic gene cluster of Rhodobacter sphaeroides. Mol Microbiol. 1990 Jun;4(6):977–989. [PubMed]
  • Marrs B. Mobilization of the genes for photosynthesis from Rhodopseudomonas capsulata by a promiscuous plasmid. J Bacteriol. 1981 Jun;146(3):1003–1012. [PMC free article] [PubMed]
  • Bauer CE, Bird TH. Regulatory circuits controlling photosynthesis gene expression. Cell. 1996 Apr 5;85(1):5–8. [PubMed]
  • Hinchigeri SB, Hundle B, Richards WR. Demonstration that the BchH protein of Rhodobacter capsulatus activates S-adenosyl-L-methionine:magnesium protoporphyrin IX methyltransferase. FEBS Lett. 1997 May 5;407(3):337–342. [PubMed]
  • Orsat B, Monfort A, Chatellard P, Stutz E. Mapping and sequencing of an actively transcribed Euglena gracilis chloroplast gene (ccsA) homologous to the Arabidopsis thaliana nuclear gene cs(ch-42). FEBS Lett. 1992 Jun 1;303(2-3):181–184. [PubMed]
  • Pontoppidan B, Kannangara CG. Purification and partial characterisation of barley glutamyl-tRNA(Glu) reductase, the enzyme that directs glutamate to chlorophyll biosynthesis. Eur J Biochem. 1994 Oct 15;225(2):529–537. [PubMed]
  • Yang ZM, Bauer CE. Rhodobacter capsulatus genes involved in early steps of the bacteriochlorophyll biosynthetic pathway. J Bacteriol. 1990 Sep;172(9):5001–5010. [PMC free article] [PubMed]
  • Gorchein A, Gibson LC, Hunter CN. Gene expression and control of enzymes for synthesis of magnesium protoporphyrin monomethyl ester in Rhodobacter sphaeroides. Biochem Soc Trans. 1993 May;21(2):201S–201S. [PubMed]
  • Gough S. Defective synthesis of porphyrins in barley plastids caused by mutation in nuclear genes. Biochim Biophys Acta. 1972 Nov 24;286(1):36–54. [PubMed]
  • Falbel TG, Staehelin LA. Characterization of a family of chlorophyll-deficient wheat (Triticum) and barley (Hordeum vulgare) mutants with defects in the magnesium-insertion step of chlorophyll biosynthesis. Plant Physiol. 1994 Feb;104(2):639–648. [PMC free article] [PubMed]
  • Runge S, van Cleve B, Lebedev N, Armstrong G, Apel K. Isolation and classification of chlorophyll-deficient xantha mutants of Arabidopsis thaliana. Planta. 1995;197(3):490–500. [PubMed]
  • Wang WY, Wang WL, Boynton JE, Gillham NW. Genetic control of chlorophyll biosynthesis in Chlamydomonas. Analysis of mutants at two loci mediating the conversion of protoporphyrin-IX to magnesium protoporphyrin. J Cell Biol. 1974 Dec;63(3):806–823. [PMC free article] [PubMed]
  • Nicholson-Guthrie CS, Guthrie GD. Accumulation of protoporphyrin-IX by the chlorophyll-less y-y mutant of Chlamydomonas reinhardtii. Arch Biochem Biophys. 1987 Feb 1;252(2):570–573. [PubMed]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

  • Conserved Domains
    Conserved Domains
    Link to related CDD entry
  • MedGen
    MedGen
    Related information in MedGen
  • PubMed
    PubMed
    PubMed citations for these articles