• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of biochemjBJ Latest papers and much more!
Biochem J. Jun 15, 1997; 324(Pt 3): 697–712.
PMCID: PMC1218484

The vacuolar H+-ATPase: a universal proton pump of eukaryotes.


The vacuolar H+-ATPase (V-ATPase) is a universal component of eukaryotic organisms. It is present in the membranes of many organelles, where its proton-pumping action creates the low intra-vacuolar pH found, for example, in lysosomes. In addition, there are a number of differentiated cell types that have V-ATPases on their surface that contribute to the physiological functions of these cells. The V-ATPase is a multi-subunit enzyme composed of a membrane sector and a cytosolic catalytic sector. It is related to the familiar FoF1 ATP synthase (F-ATPase), having the same basic architectural construction, and many of the subunits from the two display identity with one another. All the core subunits of the V-ATPase have now been identified and much is known about the assembly, regulation and pharmacology of the enzyme. Recent genetic analysis has shown the V-ATPase to be a vital component of higher eukaryotes. At least one of the subunits, i.e. subunit c (ductin), may have multifunctional roles in membrane transport, providing a possible pathway of communication between cells. The structure of the membrane sector is known in some detail, and it is possible to begin to suggest how proton pumping is coupled to ATP hydrolysis.

Full Text

The Full Text of this article is available as a PDF (530K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Gupta BL, Berridge MJ. A coat of repeating subunits on the cytoplasmic surface of the plasma membrane in the rectal papillae of the blowfly, Calliphora erythrocephala (Meig.), studied in situ by electron microscopy. J Cell Biol. 1966 May;29(2):376–382. [PMC free article] [PubMed]
  • Gogarten JP, Kibak H, Dittrich P, Taiz L, Bowman EJ, Bowman BJ, Manolson MF, Poole RJ, Date T, Oshima T, et al. Evolution of the vacuolar H+-ATPase: implications for the origin of eukaryotes. Proc Natl Acad Sci U S A. 1989 Sep;86(17):6661–6665. [PMC free article] [PubMed]
  • Nelson N, Taiz L. The evolution of H+-ATPases. Trends Biochem Sci. 1989 Mar;14(3):113–116. [PubMed]
  • Ihara K, Abe T, Sugimura KI, Mukohata Y. HALOBACTERIAL A-ATP SYNTHASE IN RELATION TO V-ATPase. J Exp Biol. 1992 Nov 1;172(Pt 1):475–485. [PubMed]
  • Abrahams JP, Leslie AG, Lutter R, Walker JE. Structure at 2.8 A resolution of F1-ATPase from bovine heart mitochondria. Nature. 1994 Aug 25;370(6491):621–628. [PubMed]
  • Finbow ME, Eliopoulos EE, Jackson PJ, Keen JN, Meagher L, Thompson P, Jones P, Findlay JB. Structure of a 16 kDa integral membrane protein that has identity to the putative proton channel of the vacuolar H(+)-ATPase. Protein Eng. 1992 Jan;5(1):7–15. [PubMed]
  • Caspar DL, Goodenough DA, Makowski L, Phillips WC. Gap junction structures. I. Correlated electron microscopy and x-ray diffraction. J Cell Biol. 1977 Aug;74(2):605–628. [PMC free article] [PubMed]
  • Nanda A, Gukovskaya A, Tseng J, Grinstein S. Activation of vacuolar-type proton pumps by protein kinase C. Role in neutrophil pH regulation. J Biol Chem. 1992 Nov 15;267(32):22740–22746. [PubMed]
  • Wadsworth SJ, van Rossum GD. Role of vacuolar adenosine triphosphatase in the regulation of cytosolic pH in hepatocytes. J Membr Biol. 1994 Oct;142(1):21–34. [PubMed]
  • Heming TA, Traber DL, Hinder F, Bidani A. Effects of bafilomycin A1 on cytosolic pH of sheep alveolar and peritoneal macrophages: evaluation of the pH-regulatory role of plasma membrane V-ATPases. J Exp Biol. 1995 Aug;198(Pt 8):1711–1715. [PubMed]
  • Nelson N. Energizing porters by proton-motive force. J Exp Biol. 1994 Nov;196:7–13. [PubMed]
  • Mellman I. The importance of being acid: the role of acidification in intracellular membrane traffic. J Exp Biol. 1992 Nov;172:39–45. [PubMed]
  • Brown MS, Anderson RG, Goldstein JL. Recycling receptors: the round-trip itinerary of migrant membrane proteins. Cell. 1983 Mar;32(3):663–667. [PubMed]
  • Wilson DW, Lewis MJ, Pelham HR. pH-dependent binding of KDEL to its receptor in vitro. J Biol Chem. 1993 Apr 5;268(10):7465–7468. [PubMed]
  • Johnson LS, Dunn KW, Pytowski B, McGraw TE. Endosome acidification and receptor trafficking: bafilomycin A1 slows receptor externalization by a mechanism involving the receptor's internalization motif. Mol Biol Cell. 1993 Dec;4(12):1251–1266. [PMC free article] [PubMed]
  • Clague MJ, Urbé S, Aniento F, Gruenberg J. Vacuolar ATPase activity is required for endosomal carrier vesicle formation. J Biol Chem. 1994 Jan 7;269(1):21–24. [PubMed]
  • Aniento F, Gu F, Parton RG, Gruenberg J. An endosomal beta COP is involved in the pH-dependent formation of transport vesicles destined for late endosomes. J Cell Biol. 1996 Apr;133(1):29–41. [PMC free article] [PubMed]
  • Müller M, Irkens-Kiesecker U, Rubinstein B, Taiz L. On the mechanism of hyperacidification in lemon. Comparison of the vacuolar H(+)-ATPase activities of fruits and epicotyls. J Biol Chem. 1996 Jan 26;271(4):1916–1924. [PubMed]
  • Dow JA. pH GRADIENTS IN LEPIDOPTERAN MIDGUT. J Exp Biol. 1992 Nov 1;172(Pt 1):355–375. [PubMed]
  • Lepier A, Azuma M, Harvey WR, Wieczorek H. K+/H+ antiport in the tobacco hornworm midgut: the K(+)-transporting component of the K+ pump. J Exp Biol. 1994 Nov;196:361–373. [PubMed]
  • Brown D, Breton S. Mitochondria-rich, proton-secreting epithelial cells. J Exp Biol. 1996 Nov;199(Pt 11):2345–2358. [PubMed]
  • Blair HC, Teitelbaum SL, Ghiselli R, Gluck S. Osteoclastic bone resorption by a polarized vacuolar proton pump. Science. 1989 Aug 25;245(4920):855–857. [PubMed]
  • Bowman BJ, Dschida WJ, Harris T, Bowman EJ. The vacuolar ATPase of Neurospora crassa contains an F1-like structure. J Biol Chem. 1989 Sep 15;264(26):15606–15612. [PubMed]
  • Bowman BJ, Vázquez-Laslop N, Bowman EJ. The vacuolar ATPase of Neurospora crassa. J Bioenerg Biomembr. 1992 Aug;24(4):361–370. [PubMed]
  • Brown D, Gluck S, Hartwig J. Structure of the novel membrane-coating material in proton-secreting epithelial cells and identification as an H+ATPase. J Cell Biol. 1987 Oct;105(4):1637–1648. [PMC free article] [PubMed]
  • Xie XS, Stone DK. Partial resolution and reconstitution of the subunits of the clathrin-coated vesicle proton ATPase responsible for Ca2+-activated ATP hydrolysis. J Biol Chem. 1988 Jul 15;263(20):9859–9867. [PubMed]
  • Lai SP, Randall SK, Sze H. Peripheral and integral subunits of the tonoplast H+-ATPase from oat roots. J Biol Chem. 1988 Nov 15;263(32):16731–16737. [PubMed]
  • Forgac M. Structure and function of vacuolar class of ATP-driven proton pumps. Physiol Rev. 1989 Jul;69(3):765–796. [PubMed]
  • Kane PM, Yamashiro CT, Stevens TH. Biochemical characterization of the yeast vacuolar H(+)-ATPase. J Biol Chem. 1989 Nov 15;264(32):19236–19244. [PubMed]
  • Adachi I, Puopolo K, Marquez-Sterling N, Arai H, Forgac M. Dissociation, cross-linking, and glycosylation of the coated vesicle proton pump. J Biol Chem. 1990 Jan 15;265(2):967–973. [PubMed]
  • Puopolo K, Forgac M. Functional reassembly of the coated vesicle proton pump. J Biol Chem. 1990 Sep 5;265(25):14836–14841. [PubMed]
  • Apps DK, Percy JM, Perez-Castineira JR. Topography of a vacuolar-type H+-translocating ATPase: chromaffin-granule membrane ATPase I. Biochem J. 1989 Oct 1;263(1):81–88. [PMC free article] [PubMed]
  • Sze H, Ward JM, Lai S. Vacuolar H(+)-translocating ATPases from plants: structure, function, and isoforms. J Bioenerg Biomembr. 1992 Aug;24(4):371–381. [PubMed]
  • Moriyama Y, Nelson N. Cold inactivation of vacuolar proton-ATPases. J Biol Chem. 1989 Feb 25;264(6):3577–3582. [PubMed]
  • Parry RV, Turner JC, Rea PA. High purity preparations of higher plant vacuolar H+-ATPase reveal additional subunits. Revised subunit composition. J Biol Chem. 1989 Nov 25;264(33):20025–20032. [PubMed]
  • Gluck S, Caldwell J. Immunoaffinity purification and characterization of vacuolar H+ATPase from bovine kidney. J Biol Chem. 1987 Nov 15;262(32):15780–15789. [PubMed]
  • Randall SK, Sze H. Probing the catalytic subunit of the tonoplast H+-ATPase from oat roots. Binding of 7-chloro-4-nitrobenzo-2-oxa-1,3,-diazole to the 72-kilodalton polypeptide. J Biol Chem. 1987 May 25;262(15):7135–7141. [PubMed]
  • Arai H, Terres G, Pink S, Forgac M. Topography and subunit stoichiometry of the coated vesicle proton pump. J Biol Chem. 1988 Jun 25;263(18):8796–8802. [PubMed]
  • Hirata R, Ohsumi Y, Anraku Y. Functional molecular masses of vacuolar membrane H+-ATPase from Saccharomyces cerevisiae as studied by radiation inactivation analysis. FEBS Lett. 1989 Feb 27;244(2):397–401. [PubMed]
  • Xie XS, Stone DK. Isolation and reconstitution of the clathrin-coated vesicle proton translocating complex. J Biol Chem. 1986 Feb 25;261(6):2492–2495. [PubMed]
  • Arai H, Berne M, Terres G, Terres H, Puopolo K, Forgac M. Subunit composition and ATP site labeling of the coated vesicle proton-translocating adenosinetriphosphatase. Biochemistry. 1987 Oct 20;26(21):6632–6638. [PubMed]
  • Cidon S, Nelson N. Purification of N-ethylmaleimide-sensitive ATPase from chromaffin granule membranes. J Biol Chem. 1986 Jul 15;261(20):9222–9227. [PubMed]
  • Uchida E, Ohsumi Y, Anraku Y. Purification and properties of H+-translocating, Mg2+-adenosine triphosphatase from vacuolar membranes of Saccharomyces cerevisiae. J Biol Chem. 1985 Jan 25;260(2):1090–1095. [PubMed]
  • Mandala S, Taiz L. Characterization of the subunit structure of the maize tonoplast ATPase. Immunological and inhibitor binding studies. J Biol Chem. 1986 Sep 25;261(27):12850–12855. [PubMed]
  • Puopolo K, Sczekan M, Magner R, Forgac M. The 40-kDa subunit enhances but is not required for activity of the coated vesicle proton pump. J Biol Chem. 1992 Mar 15;267(8):5171–5176. [PubMed]
  • Moriyama Y, Nelson N. Nucleotide binding sites and chemical modification of the chromaffin granule proton ATPase. J Biol Chem. 1987 Oct 25;262(30):14723–14729. [PubMed]
  • Myers M, Forgac M. Assembly of the peripheral domain of the bovine vacuolar H(+)-adenosine triphosphatase. J Cell Physiol. 1993 Jul;156(1):35–42. [PubMed]
  • Supeková L, Supek F, Nelson N. The Saccharomyces cerevisiae VMA10 is an intron-containing gene encoding a novel 13-kDa subunit of vacuolar H(+)-ATPase. J Biol Chem. 1995 Jun 9;270(23):13726–13732. [PubMed]
  • Holzenburg A, Jones PC, Franklin T, Pali T, Heimburg T, Marsh D, Findlay JB, Finbow ME. Evidence for a common structure for a class of membrane channels. Eur J Biochem. 1993 Apr 1;213(1):21–30. [PubMed]
  • Nelson N. Organellar proton-ATPases. Curr Opin Cell Biol. 1992 Aug;4(4):654–660. [PubMed]
  • Takase K, Kakinuma S, Yamato I, Konishi K, Igarashi K, Kakinuma Y. Sequencing and characterization of the ntp gene cluster for vacuolar-type Na(+)-translocating ATPase of Enterococcus hirae. J Biol Chem. 1994 Apr 15;269(15):11037–11044. [PubMed]
  • Preston RA, Murphy RF, Jones EW. Assay of vacuolar pH in yeast and identification of acidification-defective mutants. Proc Natl Acad Sci U S A. 1989 Sep;86(18):7027–7031. [PMC free article] [PubMed]
  • Nelson H, Nelson N. Disruption of genes encoding subunits of yeast vacuolar H(+)-ATPase causes conditional lethality. Proc Natl Acad Sci U S A. 1990 May;87(9):3503–3507. [PMC free article] [PubMed]
  • Ho MN, Hill KJ, Lindorfer MA, Stevens TH. Isolation of vacuolar membrane H(+)-ATPase-deficient yeast mutants; the VMA5 and VMA4 genes are essential for assembly and activity of the vacuolar H(+)-ATPase. J Biol Chem. 1993 Jan 5;268(1):221–227. [PubMed]
  • Ho MN, Hirata R, Umemoto N, Ohya Y, Takatsuki A, Stevens TH, Anraku Y. VMA13 encodes a 54-kDa vacuolar H(+)-ATPase subunit required for activity but not assembly of the enzyme complex in Saccharomyces cerevisiae. J Biol Chem. 1993 Aug 25;268(24):18286–18292. [PubMed]
  • Nelson H, Mandiyan S, Nelson N. The Saccharomyces cerevisiae VMA7 gene encodes a 14-kDa subunit of the vacuolar H(+)-ATPase catalytic sector. J Biol Chem. 1994 Sep 30;269(39):24150–24155. [PubMed]
  • Graham LA, Hill KJ, Stevens TH. VMA7 encodes a novel 14-kDa subunit of the Saccharomyces cerevisiae vacuolar H(+)-ATPase complex. J Biol Chem. 1994 Oct 21;269(42):25974–25977. [PubMed]
  • Graham LA, Hill KJ, Stevens TH. VMA8 encodes a 32-kDa V1 subunit of the Saccharomyces cerevisiae vacuolar H(+)-ATPase required for function and assembly of the enzyme complex. J Biol Chem. 1995 Jun 23;270(25):15037–15044. [PubMed]
  • Kane PM, Kuehn MC, Howald-Stevenson I, Stevens TH. Assembly and targeting of peripheral and integral membrane subunits of the yeast vacuolar H(+)-ATPase. J Biol Chem. 1992 Jan 5;267(1):447–454. [PubMed]
  • Ohya Y, Umemoto N, Tanida I, Ohta A, Iida H, Anraku Y. Calcium-sensitive cls mutants of Saccharomyces cerevisiae showing a Pet- phenotype are ascribable to defects of vacuolar membrane H(+)-ATPase activity. J Biol Chem. 1991 Jul 25;266(21):13971–13977. [PubMed]
  • Davies SA, Goodwin SF, Kelly DC, Wang Z, Sözen MA, Kaiser K, Dow JA. Analysis and inactivation of vha55, the gene encoding the vacuolar ATPase B-subunit in Drosophila melanogaster reveals a larval lethal phenotype. J Biol Chem. 1996 Nov 29;271(48):30677–30684. [PubMed]
  • Dow JA, Davies SA, Guo Y, Graham S, Finbow ME, Kaiser K. Molecular genetic analysis of V-ATPase function in Drosophila melanogaster. J Exp Biol. 1997 Jan;200(Pt 2):237–245. [PubMed]
  • Puopolo K, Kumamoto C, Adachi I, Forgac M. A single gene encodes the catalytic "A" subunit of the bovine vacuolar H(+)-ATPase. J Biol Chem. 1991 Dec 25;266(36):24564–24572. [PubMed]
  • Hirata R, Ohsumk Y, Nakano A, Kawasaki H, Suzuki K, Anraku Y. Molecular structure of a gene, VMA1, encoding the catalytic subunit of H(+)-translocating adenosine triphosphatase from vacuolar membranes of Saccharomyces cerevisiae. J Biol Chem. 1990 Apr 25;265(12):6726–6733. [PubMed]
  • Zimniak L, Dittrich P, Gogarten JP, Kibak H, Taiz L. The cDNA sequence of the 69-kDa subunit of the carrot vacuolar H+-ATPase. Homology to the beta-chain of F0F1-ATPases. J Biol Chem. 1988 Jul 5;263(19):9102–9112. [PubMed]
  • Bowman EJ, Tenney K, Bowman BJ. Isolation of genes encoding the Neurospora vacuolar ATPase. Analysis of vma-1 encoding the 67-kDa subunit reveals homology to other ATPases. J Biol Chem. 1988 Oct 5;263(28):13994–14001. [PubMed]
  • Shih CK, Wagner R, Feinstein S, Kanik-Ennulat C, Neff N. A dominant trifluoperazine resistance gene from Saccharomyces cerevisiae has homology with F0F1 ATP synthase and confers calcium-sensitive growth. Mol Cell Biol. 1988 Aug;8(8):3094–3103. [PMC free article] [PubMed]
  • Kane PM, Yamashiro CT, Wolczyk DF, Neff N, Goebl M, Stevens TH. Protein splicing converts the yeast TFP1 gene product to the 69-kD subunit of the vacuolar H(+)-adenosine triphosphatase. Science. 1990 Nov 2;250(4981):651–657. [PubMed]
  • Bowman EJ, Mandala S, Taiz L, Bowman BJ. Structural studies of the vacuolar membrane ATPase from Neurospora crassa and comparison with the tonoplast membrane ATPase from Zea mays. Proc Natl Acad Sci U S A. 1986 Jan;83(1):48–52. [PMC free article] [PubMed]
  • Uchida E, Ohsumi Y, Anraku Y. Characterization and function of catalytic subunit alpha of H+-translocating adenosine triphosphatase from vacuolar membranes of Saccharomyces cerevisiae. A study with 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole. J Biol Chem. 1988 Jan 5;263(1):45–51. [PubMed]
  • Hunt IE, Sanders D. The Kinetics of N-Ethylmaleimide Inhibition of a Vacuolar H+-ATPase and Determination of Nucleotide Dissociation Constants. Plant Physiol. 1996 Jan;110(1):97–103. [PMC free article] [PubMed]
  • Zhang J, Vasilyeva E, Feng Y, Forgac M. Inhibition and labeling of the coated vesicle V-ATPase by 2-azido-[32P]ATP. J Biol Chem. 1995 Jun 30;270(26):15494–15500. [PubMed]
  • Arai H, Berne M, Forgac M. Inhibition of the coated vesicle proton pump and labeling of a 17,000-dalton polypeptide by N,N'-dicyclohexylcarbodiimide. J Biol Chem. 1987 Aug 15;262(23):11006–11011. [PubMed]
  • Saraste M, Sibbald PR, Wittinghofer A. The P-loop--a common motif in ATP- and GTP-binding proteins. Trends Biochem Sci. 1990 Nov;15(11):430–434. [PubMed]
  • Taiz L, Nelson H, Maggert K, Morgan L, Yatabe B, Taiz SL, Rubinstein B, Nelson N. Functional analysis of conserved cysteine residues in the catalytic subunit of the yeast vacuolar H(+)-ATPase. Biochim Biophys Acta. 1994 Sep 14;1194(2):329–334. [PubMed]
  • Feng Y, Forgac M. Cysteine 254 of the 73-kDa A subunit is responsible for inhibition of the coated vesicle (H+)-ATPase upon modification by sulfhydryl reagents. J Biol Chem. 1992 Mar 25;267(9):5817–5822. [PubMed]
  • Feng Y, Forgac M. A novel mechanism for regulation of vacuolar acidification. J Biol Chem. 1992 Oct 5;267(28):19769–19772. [PubMed]
  • Feng Y, Forgac M. Inhibition of vacuolar H(+)-ATPase by disulfide bond formation between cysteine 254 and cysteine 532 in subunit A. J Biol Chem. 1994 May 6;269(18):13224–13230. [PubMed]
  • Bowman BJ, Allen R, Wechser MA, Bowman EJ. Isolation of genes encoding the Neurospora vacuolar ATPase. Analysis of vma-2 encoding the 57-kDa polypeptide and comparison to vma-1. J Biol Chem. 1988 Oct 5;263(28):14002–14007. [PubMed]
  • Manolson MF, Ouellette BF, Filion M, Poole RJ. cDNA sequence and homologies of the "57-kDa" nucleotide-binding subunit of the vacuolar ATPase from Arabidopsis. J Biol Chem. 1988 Dec 5;263(34):17987–17994. [PubMed]
  • Nelson H, Mandiyan S, Nelson N. A conserved gene encoding the 57-kDa subunit of the yeast vacuolar H+-ATPase. J Biol Chem. 1989 Jan 25;264(3):1775–1778. [PubMed]
  • Yamashiro CT, Kane PM, Wolczyk DF, Preston RA, Stevens TH. Role of vacuolar acidification in protein sorting and zymogen activation: a genetic analysis of the yeast vacuolar proton-translocating ATPase. Mol Cell Biol. 1990 Jul;10(7):3737–3749. [PMC free article] [PubMed]
  • Manolson MF, Rea PA, Poole RJ. Identification of 3-O-(4-benzoyl)benzoyladenosine 5'-triphosphate- and N,N'-dicyclohexylcarbodiimide-binding subunits of a higher plant H+-translocating tonoplast ATPase. J Biol Chem. 1985 Oct 5;260(22):12273–12279. [PubMed]
  • Peng SB. Nucleotide labeling and reconstitution of the recombinant 58-kDa subunit of the vacuolar proton-translocating ATPase. J Biol Chem. 1995 Jul 14;270(28):16926–16931. [PubMed]
  • Puopolo K, Kumamoto C, Adachi I, Magner R, Forgac M. Differential expression of the "B" subunit of the vacuolar H(+)-ATPase in bovine tissues. J Biol Chem. 1992 Feb 25;267(6):3696–3706. [PubMed]
  • Chatterjee D, Chakraborty M, Leit M, Neff L, Jamsa-Kellokumpu S, Fuchs R, Baron R. Sensitivity to vanadate and isoforms of subunits A and B distinguish the osteoclast proton pump from other vacuolar H+ ATPases. Proc Natl Acad Sci U S A. 1992 Jul 15;89(14):6257–6261. [PMC free article] [PubMed]
  • Liu Q, Kane PM, Newman PR, Forgac M. Site-directed mutagenesis of the yeast V-ATPase B subunit (Vma2p). J Biol Chem. 1996 Jan 26;271(4):2018–2022. [PubMed]
  • Nelson H, Mandiyan S, Noumi T, Moriyama Y, Miedel MC, Nelson N. Molecular cloning of cDNA encoding the C subunit of H(+)-ATPase from bovine chromaffin granules. J Biol Chem. 1990 Nov 25;265(33):20390–20393. [PubMed]
  • Beltrán C, Kopecky J, Pan YC, Nelson H, Nelson N. Cloning and mutational analysis of the gene encoding subunit C of yeast vacuolar H(+)-ATPase. J Biol Chem. 1992 Jan 15;267(2):774–779. [PubMed]
  • Nelson H, Mandiyan S, Nelson N. A bovine cDNA and a yeast gene (VMA8) encoding the subunit D of the vacuolar H(+)-ATPase. Proc Natl Acad Sci U S A. 1995 Jan 17;92(2):497–501. [PMC free article] [PubMed]
  • Tomashek JJ, Sonnenburg JL, Artimovich JM, Klionsky DJ. Resolution of subunit interactions and cytoplasmic subcomplexes of the yeast vacuolar proton-translocating ATPase. J Biol Chem. 1996 Apr 26;271(17):10397–10404. [PubMed]
  • Hirsch S, Strauss A, Masood K, Lee S, Sukhatme V, Gluck S. Isolation and sequence of a cDNA clone encoding the 31-kDa subunit of bovine kidney vacuolar H+-ATPase. Proc Natl Acad Sci U S A. 1988 May;85(9):3004–3008. [PMC free article] [PubMed]
  • Foury F. The 31-kDa polypeptide is an essential subunit of the vacuolar ATPase in Saccharomyces cerevisiae. J Biol Chem. 1990 Oct 25;265(30):18554–18560. [PubMed]
  • Bowman EJ, Steinhardt A, Bowman BJ. Isolation of the vma-4 gene encoding the 26 kDa subunit of the Neurospora crassa vacuolar ATPase. Biochim Biophys Acta. 1995 Jul 6;1237(1):95–98. [PubMed]
  • Guo Y, Wang Z, Carter A, Kaiser K, Dow JA. Characterisation of vha26, the Drosophila gene for a 26 kDa E-subunit of the vacuolar ATPase. Biochim Biophys Acta. 1996 Aug 14;1283(1):4–9. [PubMed]
  • Gräf R, Lepier A, Harvey WR, Wieczorek H. A novel 14-kDa V-ATPase subunit in the tobacco hornworm midgut. J Biol Chem. 1994 Feb 4;269(5):3767–3774. [PubMed]
  • Guo Y, Kaiser K, Wieczorek H, Dow JA. The Drosophila melanogaster gene vha14 encoding a 14-kDa F-subunit of the vacuolar ATPase. Gene. 1996 Jun 26;172(2):239–243. [PubMed]
  • Lepier A, Gräf R, Azuma M, Merzendorfer H, Harvey WR, Wieczorek H. The peripheral complex of the tobacco hornworm V-ATPase contains a novel 13-kDa subunit G. J Biol Chem. 1996 Apr 5;271(14):8502–8508. [PubMed]
  • Supekova L, Sbia M, Supek F, Ma Y, Nelson N. A novel subunit of vacuolar H(+)-ATPase related to the b subunit of F-ATPases. J Exp Biol. 1996 May;199(Pt 5):1147–1156. [PubMed]
  • Nelson H, Nelson N. The progenitor of ATP synthases was closely related to the current vacuolar H+-ATPase. FEBS Lett. 1989 Apr 10;247(1):147–153. [PubMed]
  • Bowman BJ, Vázquez-Laslop N, Bowman EJ. The vacuolar ATPase of Neurospora crassa. J Bioenerg Biomembr. 1992 Aug;24(4):361–370. [PubMed]
  • Kaestner KH, Randall SK, Sze H. N,N'-dicyclohexylcarbodiimide-binding proteolipid of the vacuolar H+-ATPase from oat roots. J Biol Chem. 1988 Jan 25;263(3):1282–1287. [PubMed]
  • Lai SP, Watson JC, Hansen JN, Sze H. Molecular cloning and sequencing of cDNAs encoding the proteolipid subunit of the vacuolar H(+)-ATPase from a higher plant. J Biol Chem. 1991 Aug 25;266(24):16078–16084. [PubMed]
  • Perera IY, Li X, Sze H. Several distinct genes encode nearly identical to 16 kDa proteolipids of the vacuolar H(+)-ATPase from Arabidopsis thaliana. Plant Mol Biol. 1995 Oct;29(2):227–244. [PubMed]
  • Hasenfratz MP, Tsou CL, Wilkins TA. Expression of two related vacuolar H(+)-ATPase 16-kilodalton proteolipid genes is differentially regulated in a tissue-specific manner. Plant Physiol. 1995 Aug;108(4):1395–1404. [PMC free article] [PubMed]
  • Tsiantis MS, Bartholomew DM, Smith JA. Salt regulation of transcript levels for the c subunit of a leaf vacuolar H(+)-ATPase in the halophyte Mesembryanthemum crystallinum. Plant J. 1996 May;9(5):729–736. [PubMed]
  • Dow JA, Goodwin SF, Kaiser K. Analysis of the gene encoding a 16-kDa proteolipid subunit of the vacuolar H(+)-ATPase from Manduca sexta midgut and tubules. Gene. 1992 Dec 15;122(2):355–360. [PubMed]
  • Finbow ME, Goodwin SF, Meagher L, Lane NJ, Keen J, Findlay JB, Kaiser K. Evidence that the 16 kDa proteolipid (subunit c) of the vacuolar H(+)-ATPase and ductin from gap junctions are the same polypeptide in Drosophila and Manduca: molecular cloning of the Vha16k gene from Drosophila. J Cell Sci. 1994 Jul;107(Pt 7):1817–1824. [PubMed]
  • Pietrantonio PV, Gill SS. Sequence of a 17 kDa vacuolar H(+)-ATPase proteolipid subunit from insect midgut and Malpighian tubules. Insect Biochem Mol Biol. 1993 Sep;23(6):675–680. [PubMed]
  • Mandel M, Moriyama Y, Hulmes JD, Pan YC, Nelson H, Nelson N. cDNA sequence encoding the 16-kDa proteolipid of chromaffin granules implies gene duplication in the evolution of H+-ATPases. Proc Natl Acad Sci U S A. 1988 Aug;85(15):5521–5524. [PMC free article] [PubMed]
  • Gillespie GA, Somlo S, Germino GG, Weinstat-Saslow D, Reeders ST. CpG island in the region of an autosomal dominant polycystic kidney disease locus defines the 5' end of a gene encoding a putative proton channel. Proc Natl Acad Sci U S A. 1991 May 15;88(10):4289–4293. [PMC free article] [PubMed]
  • Hanada H, Hasebe M, Moriyama Y, Maeda M, Futai M. Molecular cloning of cDNA encoding the 16 KDa subunit of vacuolar H(+)-ATPase from mouse cerebellum. Biochem Biophys Res Commun. 1991 May 15;176(3):1062–1067. [PubMed]
  • Birman S, Meunier FM, Lesbats B, Le Caer JP, Rossier J, Israël M. A 15 kDa proteolipid found in mediatophore preparations from Torpedo electric organ presents high sequence homology with the bovine chromaffin granule protonophore. FEBS Lett. 1990 Feb 26;261(2):303–306. [PubMed]
  • Noumi T, Beltrán C, Nelson H, Nelson N. Mutational analysis of yeast vacuolar H(+)-ATPase. Proc Natl Acad Sci U S A. 1991 Mar 1;88(5):1938–1942. [PMC free article] [PubMed]
  • Umemoto N, Yoshihisa T, Hirata R, Anraku Y. Roles of the VMA3 gene product, subunit c of the vacuolar membrane H(+)-ATPase on vacuolar acidification and protein transport. A study with VMA3-disrupted mutants of Saccharomyces cerevisiae. J Biol Chem. 1990 Oct 25;265(30):18447–18453. [PubMed]
  • Bauerle C, Ho MN, Lindorfer MA, Stevens TH. The Saccharomyces cerevisiae VMA6 gene encodes the 36-kDa subunit of the vacuolar H(+)-ATPase membrane sector. J Biol Chem. 1993 Jun 15;268(17):12749–12757. [PubMed]
  • Sun SZ, Xie XS, Stone DK. Isolation and reconstitution of the dicyclohexylcarbodiimide-sensitive proton pore of the clathrin-coated vesicle proton translocating complex. J Biol Chem. 1987 Oct 25;262(30):14790–14794. [PubMed]
  • Zhang J, Myers M, Forgac M. Characterization of the V0 domain of the coated vesicle (H+)-ATPase. J Biol Chem. 1992 May 15;267(14):9773–9778. [PubMed]
  • Zhang J, Feng Y, Forgac M. Proton conduction and bafilomycin binding by the V0 domain of the coated vesicle V-ATPase. J Biol Chem. 1994 Sep 23;269(38):23518–23523. [PubMed]
  • Finbow ME, Harrison M, Jones P. Ductin--a proton pump component, a gap junction channel and a neurotransmitter release channel. Bioessays. 1995 Mar;17(3):247–255. [PubMed]
  • Supek F, Supekova L, Nelson N. Features of vacuolar H(+)-ATPase revealed by yeast suppressor mutants. J Biol Chem. 1994 Oct 21;269(42):26479–26485. [PubMed]
  • Hasebe M, Hanada H, Moriyama Y, Maeda M, Futai M. Vacuolar type H(+)-ATPase genes: presence of four genes including pseudogenes for the 16-kDa proteolipid subunit in the human genome. Biochem Biophys Res Commun. 1992 Mar 16;183(2):856–863. [PubMed]
  • Girvin ME, Fillingame RH. Helical structure and folding of subunit c of F1F0 ATP synthase: 1H NMR resonance assignments and NOE analysis. Biochemistry. 1993 Nov 16;32(45):12167–12177. [PubMed]
  • Girvin ME, Fillingame RH. Hairpin folding of subunit c of F1Fo ATP synthase: 1H distance measurements to nitroxide-derivatized aspartyl-61. Biochemistry. 1994 Jan 25;33(3):665–674. [PubMed]
  • Bruzzone R, Goodenough DA. Gap junctions: ductin or connexins--which component is the critical one? Bioessays. 1995 Aug;17(8):744–745. [PubMed]
  • Harrison MA, Jones PC, Kim YI, Finbow ME, Findlay JB. Functional properties of a hybrid vacuolar H(+)-ATPase in Saccharomyces cells expressing the Nephrops 16-kDa proteolipid. Eur J Biochem. 1994 Apr 1;221(1):111–120. [PubMed]
  • Páli T, Finbow ME, Holzenburg A, Findlay JB, Marsh D. Lipid-protein interactions and assembly of the 16-kDa channel polypeptide from Nephrops norvegicus. Studies with spin-label electron spin resonance spectroscopy and electron microscopy. Biochemistry. 1995 Jul 18;34(28):9211–9218. [PubMed]
  • Jones PC, Harrison MA, Kim YI, Finbow ME, Findlay JB. The first putative transmembrane helix of the 16 kDa proteolipid lines a pore in the Vo sector of the vacuolar H(+)-ATPase. Biochem J. 1995 Dec 15;312(Pt 3):739–747. [PMC free article] [PubMed]
  • Fillingame RH. Membrane sectors of F- and V-type H+-transporting ATPases. Curr Opin Struct Biol. 1996 Aug;6(4):491–498. [PubMed]
  • Rea PA, Griffith CJ, Sanders D. Purification of the N,N'-dicyclohexylcarbodiimide-binding proteolipid of a higher plant tonoplast H+-ATPase. J Biol Chem. 1987 Oct 25;262(30):14745–14752. [PubMed]
  • Hughes G, Harrison MA, Kim YI, Griffiths DE, Finbow ME, Findlay JB. Interaction of dibutyltin-3-hydroxyflavone bromide with the 16 kDa proteolipid indicates the disposition of proton translocation sites of the vacuolar ATPase. Biochem J. 1996 Jul 15;317(Pt 2):425–431. [PMC free article] [PubMed]
  • Galli T, McPherson PS, De Camilli P. The V0 sector of the V-ATPase, synaptobrevin, and synaptophysin are associated on synaptic vesicles in a Triton X-100-resistant, freeze-thawing sensitive, complex. J Biol Chem. 1996 Jan 26;271(4):2193–2198. [PubMed]
  • Falk-Vairant J, Corrèges P, Eder-Colli L, Salem N, Roulet E, Bloc A, Meunier F, Lesbats B, Loctin F, Synguelakis M, et al. Quantal acetylcholine release induced by mediatophore transfection. Proc Natl Acad Sci U S A. 1996 May 28;93(11):5203–5207. [PMC free article] [PubMed]
  • Finbow ME, John S, Kam E, Apps DK, Pitts JD. Disposition and orientation of ductin (DCCD-reactive vacuolar H(+)-ATPase subunit) in mammalian membrane complexes. Exp Cell Res. 1993 Aug;207(2):261–270. [PubMed]
  • Dunlop J, Jones PC, Finbow ME. Membrane insertion and assembly of ductin: a polytopic channel with dual orientations. EMBO J. 1995 Aug 1;14(15):3609–3616. [PMC free article] [PubMed]
  • Apperson M, Jensen RE, Suda K, Witte C, Yaffe MP. A yeast protein, homologous to the proteolipid of the chromaffin granule proton-ATPase, is important for cell growth. Biochem Biophys Res Commun. 1990 Apr 30;168(2):574–579. [PubMed]
  • Umemoto N, Ohya Y, Anraku Y. VMA11, a novel gene that encodes a putative proteolipid, is indispensable for expression of yeast vacuolar membrane H(+)-ATPase activity. J Biol Chem. 1991 Dec 25;266(36):24526–24532. [PubMed]
  • Watts SD, Zhang Y, Fillingame RH, Capaldi RA. The gamma subunit in the Escherichia coli ATP synthase complex (ECF1F0) extends through the stalk and contacts the c subunits of the F0 part. FEBS Lett. 1995 Jul 17;368(2):235–238. [PubMed]
  • Shih CK, Kwong J, Montalvo E, Neff N. Expression of a proteolipid gene from a high-copy-number plasmid confers trifluoperazine resistance to Saccharomyces cerevisiae. Mol Cell Biol. 1990 Jul;10(7):3397–3404. [PMC free article] [PubMed]
  • Perin MS, Fried VA, Stone DK, Xie XS, Südhof TC. Structure of the 116-kDa polypeptide of the clathrin-coated vesicle/synaptic vesicle proton pump. J Biol Chem. 1991 Feb 25;266(6):3877–3881. [PubMed]
  • Li YP, Chen W, Stashenko P. Molecular cloning and characterization of a putative novel human osteoclast-specific 116-kDa vacuolar proton pump subunit. Biochem Biophys Res Commun. 1996 Jan 26;218(3):813–821. [PubMed]
  • Manolson MF, Proteau D, Preston RA, Stenbit A, Roberts BT, Hoyt MA, Preuss D, Mulholland J, Botstein D, Jones EW. The VPH1 gene encodes a 95-kDa integral membrane polypeptide required for in vivo assembly and activity of the yeast vacuolar H(+)-ATPase. J Biol Chem. 1992 Jul 15;267(20):14294–14303. [PubMed]
  • Liu T, Clarke M. The vacuolar proton pump of Dictyostelium discoideum: molecular cloning and analysis of the 100 kDa subunit. J Cell Sci. 1996 May;109(Pt 5):1041–1051. [PubMed]
  • Kane PM, Stevens TH. Subunit composition, biosynthesis, and assembly of the yeast vacuolar proton-translocating ATPase. J Bioenerg Biomembr. 1992 Aug;24(4):383–393. [PubMed]
  • Manolson MF, Wu B, Proteau D, Taillon BE, Roberts BT, Hoyt MA, Jones EW. STV1 gene encodes functional homologue of 95-kDa yeast vacuolar H(+)-ATPase subunit Vph1p. J Biol Chem. 1994 May 13;269(19):14064–14074. [PubMed]
  • Leng XH, Manolson MF, Liu Q, Forgac M. Site-directed mutagenesis of the 100-kDa subunit (Vph1p) of the yeast vacuolar (H+)-ATPase. J Biol Chem. 1996 Sep 13;271(37):22487–22493. [PubMed]
  • Wang SY, Moriyama Y, Mandel M, Hulmes JD, Pan YC, Danho W, Nelson H, Nelson N. Cloning of cDNA encoding a 32-kDa protein. An accessory polypeptide of the H+-ATPase from chromaffin granules. J Biol Chem. 1988 Nov 25;263(33):17638–17642. [PubMed]
  • Parra KJ, Kane PM. Wild-type and mutant vacuolar membranes support pH-dependent reassembly of the yeast vacuolar H+-ATPase in vitro. J Biol Chem. 1996 Aug 9;271(32):19592–19598. [PubMed]
  • Hill KJ, Stevens TH. Vma21p is a yeast membrane protein retained in the endoplasmic reticulum by a di-lysine motif and is required for the assembly of the vacuolar H(+)-ATPase complex. Mol Biol Cell. 1994 Sep;5(9):1039–1050. [PMC free article] [PubMed]
  • Hirata R, Umemoto N, Ho MN, Ohya Y, Stevens TH, Anraku Y. VMA12 is essential for assembly of the vacuolar H(+)-ATPase subunits onto the vacuolar membrane in Saccharomyces cerevisiae. J Biol Chem. 1993 Jan 15;268(2):961–967. [PubMed]
  • Doherty RD, Kane PM. Partial assembly of the yeast vacuolar H(+)-ATPase in mutants lacking one subunit of the enzyme. J Biol Chem. 1993 Aug 5;268(22):16845–16851. [PubMed]
  • Fillingame RH, Mosher ME, Negrin RS, Peters LK. H+-ATPase of Escherichia coli uncB402 mutation leads to loss of chi subunit of subunit of F0 sector. J Biol Chem. 1983 Jan 10;258(1):604–609. [PubMed]
  • Beltrán C, Nelson N. The membrane sector of vacuolar H(+)-ATPase by itself is impermeable to protons. Acta Physiol Scand Suppl. 1992;607:41–47. [PubMed]
  • Sumner JP, Dow JA, Earley FG, Klein U, Jäger D, Wieczorek H. Regulation of plasma membrane V-ATPase activity by dissociation of peripheral subunits. J Biol Chem. 1995 Mar 10;270(10):5649–5653. [PubMed]
  • Gräf R, Harvey WR, Wieczorek H. Purification and properties of a cytosolic V1-ATPase. J Biol Chem. 1996 Aug 23;271(34):20908–20913. [PubMed]
  • Kane PM. Disassembly and reassembly of the yeast vacuolar H(+)-ATPase in vivo. J Biol Chem. 1995 Jul 14;270(28):17025–17032. [PubMed]
  • Löw R, Rockel B, Kirsch M, Ratajczak R, Hörtensteiner S, Martinoia E, Lüttge U, Rausch T. Early salt stress effects on the differential expression of vacuolar H(+)-ATPase genes in roots and leaves of Mesembryanthemum crystallinum. Plant Physiol. 1996 Jan;110(1):259–265. [PMC free article] [PubMed]
  • David P, Baron R. The catalytic cycle of the vacuolar H(+)-ATPase. Comparison of proton transport in kidney- and osteoclast-derived vesicles. J Biol Chem. 1994 Dec 2;269(48):30158–30163. [PubMed]
  • Bowman BJ, Bowman EJ. H+-ATPases from mitochondria, plasma membranes, and vacuoles of fungal cells. J Membr Biol. 1986;94(2):83–97. [PubMed]
  • Kibak H, Van Eeckhout D, Cutler T, Taiz SL, Taiz L. Sulfite both stimulates and inhibits the yeast vacuolar H(+)-ATPase. J Biol Chem. 1993 Nov 5;268(31):23325–23333. [PubMed]
  • Kakinuma Y, Igarashi K. Some features of the Streptococcus faecalis Na(+)-ATPase resemble those of the vacuolar-type ATPases. FEBS Lett. 1990 Oct 1;271(1-2):97–101. [PubMed]
  • Wang ZQ, Gluck S. Isolation and properties of bovine kidney brush border vacuolar H(+)-ATPase. A proton pump with enzymatic and structural differences from kidney microsomal H(+)-ATPase. J Biol Chem. 1990 Dec 15;265(35):21957–21965. [PubMed]
  • Chatterjee D, Neff L, Chakraborty M, Fabricant C, Baron R. Sensitivity to nitrate and other oxyanions further distinguishes the vanadate-sensitive osteoclast proton pump from other vacuolar H(+)-ATPases. Biochemistry. 1993 Mar 23;32(11):2808–2812. [PubMed]
  • Dschida WJ, Bowman BJ. The vacuolar ATPase: sulfite stabilization and the mechanism of nitrate inactivation. J Biol Chem. 1995 Jan 27;270(4):1557–1563. [PubMed]
  • Percy JM, Pryde JG, Apps DK. Isolation of ATPase I, the proton pump of chromaffin-granule membranes. Biochem J. 1985 Nov 1;231(3):557–564. [PMC free article] [PubMed]
  • Young GP, Qiao JZ, Al-Awqati Q. Purification and reconstitution of the proton-translocating ATPase of Golgi-enriched membranes. Proc Natl Acad Sci U S A. 1988 Dec;85(24):9590–9594. [PMC free article] [PubMed]
  • Feng Z, Aggeler R, Haughton MA, Capaldi RA. Conformational changes in the Escherichia coli ATP synthase (ECF1F0) monitored by nucleotide-dependent differences in the reactivity of Cys-87 of the gamma subunit in the mutant betaGlu-381 --> Ala. J Biol Chem. 1996 Jul 26;271(30):17986–17989. [PubMed]
  • Webster LC, Apps DK. Analysis of nucleotide binding by a vacuolar proton-translocating adenosine triphosphatase. Eur J Biochem. 1996 Aug 15;240(1):156–164. [PubMed]
  • Iwamoto A, Orita-Saita Y, Maeda M, Futai M. N-ethylmaleimide-sensitive mutant (beta Val-153-->Cys) Escherichia coli F1-ATPase: cross-linking of the mutant beta subunit with the alpha subunit. FEBS Lett. 1994 Sep 26;352(2):243–246. [PubMed]
  • Bowman EJ. Comparison of the vacuolar membrane ATPase of Neurospora crassa with the mitochondrial and plasma membrane ATPases. J Biol Chem. 1983 Dec 25;258(24):15238–15244. [PubMed]
  • Kakinuma Y, Ohsumi Y, Anraku Y. Properties of H+-translocating adenosine triphosphatase in vacuolar membranes of SAccharomyces cerevisiae. J Biol Chem. 1981 Nov 10;256(21):10859–10863. [PubMed]
  • Nałecz MJ, Casey RP, Azzi A. Use of N,N'-dicyclohexylcarbodiimide to study membrane-bound enzymes. Methods Enzymol. 1986;125:86–108. [PubMed]
  • Hassinen IE, Vuokila PT. Reaction of dicyclohexylcarbodiimide with mitochondrial proteins. Biochim Biophys Acta. 1993 Sep 13;1144(2):107–124. [PubMed]
  • Usta J, Griffiths DE. Organotin-flavone complexes: a new class of fluorescent probes for F1F0ATPase. Biochem Biophys Res Commun. 1992 Oct 15;188(1):365–371. [PubMed]
  • Webster LC, Griffiths DE, Apps DK. Interaction of vacuolar-type H(+)-ATPases with fluorescent organotin-flavone complexes. Biochem Soc Trans. 1993 Aug;21(3):253S–253S. [PubMed]
  • Collinson IR, Runswick MJ, Buchanan SK, Fearnley IM, Skehel JM, van Raaij MJ, Griffiths DE, Walker JE. Fo membrane domain of ATP synthase from bovine heart mitochondria: purification, subunit composition, and reconstitution with F1-ATPase. Biochemistry. 1994 Jun 28;33(25):7971–7978. [PubMed]
  • Bowman EJ, Siebers A, Altendorf K. Bafilomycins: a class of inhibitors of membrane ATPases from microorganisms, animal cells, and plant cells. Proc Natl Acad Sci U S A. 1988 Nov;85(21):7972–7976. [PMC free article] [PubMed]
  • Dröse S, Bindseil KU, Bowman EJ, Siebers A, Zeeck A, Altendorf K. Inhibitory effect of modified bafilomycins and concanamycins on P- and V-type adenosinetriphosphatases. Biochemistry. 1993 Apr 20;32(15):3902–3906. [PubMed]
  • Hanada H, Moriyama Y, Maeda M, Futai M. Kinetic studies of chromaffin granule H+-ATPase and effects of bafilomycin A1. Biochem Biophys Res Commun. 1990 Jul 31;170(2):873–878. [PubMed]
  • Crider BP, Xie XS, Stone DK. Bafilomycin inhibits proton flow through the H+ channel of vacuolar proton pumps. J Biol Chem. 1994 Jul 1;269(26):17379–17381. [PubMed]
  • Rautiala TJ, Koskinen AM, Vänänen HK. Purification of vacuolar ATPase with bafilomycin C1 affinity chromatography. Biochem Biophys Res Commun. 1993 Jul 15;194(1):50–56. [PubMed]
  • Furuchi T, Aikawa K, Arai H, Inoue K. Bafilomycin A1, a specific inhibitor of vacuolar-type H(+)-ATPase, blocks lysosomal cholesterol trafficking in macrophages. J Biol Chem. 1993 Dec 25;268(36):27345–27348. [PubMed]
  • Manabe T, Yoshimori T, Henomatsu N, Tashiro Y. Inhibitors of vacuolar-type H(+)-ATPase suppresses proliferation of cultured cells. J Cell Physiol. 1993 Dec;157(3):445–452. [PubMed]
  • Papini E, de Bernard M, Bugnoli M, Milia E, Rappuoli R, Montecucco C. Cell vacuolization induced by Helicobacter pylori: inhibition by bafilomycins A1, B1, C1 and D. FEMS Microbiol Lett. 1993 Oct 15;113(2):155–159. [PubMed]
  • Kinoshita K, Hidaka H, Ohkuma S. Induction of phagocytic activity of M1 cells by an inhibitor of vacuolar H+-ATPase, bafilomycin A1. FEBS Lett. 1994 Jan 17;337(3):221–225. [PubMed]
  • Haass C, Capell A, Citron M, Teplow DB, Selkoe DJ. The vacuolar H(+)-ATPase inhibitor bafilomycin A1 differentially affects proteolytic processing of mutant and wild-type beta-amyloid precursor protein. J Biol Chem. 1995 Mar 17;270(11):6186–6192. [PubMed]
  • Nishihara T, Akifusa S, Koseki T, Kato S, Muro M, Hanada N. Specific inhibitors of vacuolar type H(+)-ATPases induce apoptotic cell death. Biochem Biophys Res Commun. 1995 Jul 6;212(1):255–262. [PubMed]
  • Muroi M, Shiragami N, Takatsuki A. Destruxin B, a specific and readily reversible inhibitor of vacuolar-type H(+)-translocating ATPase. Biochem Biophys Res Commun. 1994 Dec 15;205(2):1358–1365. [PubMed]
  • Grønberg M, Flatmark T. Inhibition of the H+-ATPase in bovine adrenal chromaffin granule ghosts by diethylstilbestrol. Evidence for a tight coupling between ATP hydrolysis and proton translocation. FEBS Lett. 1988 Feb 29;229(1):40–44. [PubMed]
  • Goldstein DJ, Finbow ME, Andresson T, McLean P, Smith K, Bubb V, Schlegel R. Bovine papillomavirus E5 oncoprotein binds to the 16K component of vacuolar H(+)-ATPases. Nature. 1991 Jul 25;352(6333):347–349. [PubMed]
  • Finbow ME, Pitts JD, Goldstein DJ, Schlegel R, Findlay JB. The E5 oncoprotein target: a 16-kDa channel-forming protein with diverse functions. Mol Carcinog. 1991;4(6):441–444. [PubMed]
  • Goldstein DJ, Toyama R, Dhar R, Schlegel R. The BPV-1 E5 oncoprotein expressed in Schizosaccharomyces pombe exhibits normal biochemical properties and binds to the endogenous 16-kDa component of the vacuolar proton-ATPase. Virology. 1992 Oct;190(2):889–893. [PubMed]
  • Andresson T, Sparkowski J, Goldstein DJ, Schlegel R. Vacuolar H(+)-ATPase mutants transform cells and define a binding site for the papillomavirus E5 oncoprotein. J Biol Chem. 1995 Mar 24;270(12):6830–6837. [PubMed]
  • Sparkowski J, Mense M, Anders J, Schlegel R. E5 oncoprotein transmembrane mutants dissociate fibroblast transforming activity from 16-kilodalton protein binding and platelet-derived growth factor receptor binding and phosphorylation. J Virol. 1996 Apr;70(4):2420–2430. [PMC free article] [PubMed]
  • Straight SW, Herman B, McCance DJ. The E5 oncoprotein of human papillomavirus type 16 inhibits the acidification of endosomes in human keratinocytes. J Virol. 1995 May;69(5):3185–3192. [PMC free article] [PubMed]
  • Oelze I, Kartenbeck J, Crusius K, Alonso A. Human papillomavirus type 16 E5 protein affects cell-cell communication in an epithelial cell line. J Virol. 1995 Jul;69(7):4489–4494. [PMC free article] [PubMed]
  • Faccini AM, Cairney M, Ashrafi GH, Finbow ME, Campo MS, Pitts JD. The bovine papillomavirus type 4 E8 protein binds to ductin and causes loss of gap junctional intercellular communication in primary fibroblasts. J Virol. 1996 Dec;70(12):9041–9045. [PMC free article] [PubMed]
  • Laubinger W, Deckers-Hebestreit G, Altendorf K, Dimroth P. A hybrid adenosinetriphosphatase composed of F1 of Escherichia coli and F0 of Propionigenium modestum is a functional sodium ion pump. Biochemistry. 1990 Jun 12;29(23):5458–5463. [PubMed]
  • Zhang Y, Fillingame RH. Changing the ion binding specificity of the Escherichia coli H(+)-transporting ATP synthase by directed mutagenesis of subunit c. J Biol Chem. 1995 Jan 6;270(1):87–93. [PubMed]
  • Li CY, Watkins JA, Glass J. The H(+)-ATPase from reticulocyte endosomes reconstituted into liposomes acts as an iron transporter. J Biol Chem. 1994 Apr 8;269(14):10242–10246. [PubMed]
  • Capaldi RA, Aggeler R, Turina P, Wilkens S. Coupling between catalytic sites and the proton channel in F1F0-type ATPases. Trends Biochem Sci. 1994 Jul;19(7):284–289. [PubMed]
  • Finbow ME, Buultjens TE, Lane NJ, Shuttleworth J, Pitts JD. Isolation and characterisation of arthropod gap junctions. EMBO J. 1984 Oct;3(10):2271–2278. [PMC free article] [PubMed]
  • Reviakine I, Stoylova S, Holzenburg A. Surfactosomes: a novel approach to the reconstitution and 2-D crystallisation of membrane proteins. FEBS Lett. 1996 Feb 19;380(3):296–300. [PubMed]
  • Davies JM, Hunt I, Sanders D. Vacuolar H(+)-pumping ATPase variable transport coupling ratio controlled by pH. Proc Natl Acad Sci U S A. 1994 Aug 30;91(18):8547–8551. [PMC free article] [PubMed]
  • Duncan TM, Bulygin VV, Zhou Y, Hutcheon ML, Cross RL. Rotation of subunits during catalysis by Escherichia coli F1-ATPase. Proc Natl Acad Sci U S A. 1995 Nov 21;92(24):10964–10968. [PMC free article] [PubMed]
  • Sabbert D, Engelbrecht S, Junge W. Intersubunit rotation in active F-ATPase. Nature. 1996 Jun 13;381(6583):623–625. [PubMed]
  • Zhou Y, Duncan TM, Bulygin VV, Hutcheon ML, Cross RL. ATP hydrolysis by membrane-bound Escherichia coli F0F1 causes rotation of the gamma subunit relative to the beta subunits. Biochim Biophys Acta. 1996 Jul 18;1275(1-2):96–100. [PubMed]
  • Tang C, Capaldi RA. Characterization of the interface between gamma and epsilon subunits of Escherichia coli F1-ATPase. J Biol Chem. 1996 Feb 9;271(6):3018–3024. [PubMed]
  • Aggeler R, Haughton MA, Capaldi RA. Disulfide bond formation between the COOH-terminal domain of the beta subunits and the gamma and epsilon subunits of the Escherichia coli F1-ATPase. Structural implications and functional consequences. J Biol Chem. 1995 Apr 21;270(16):9185–9191. [PubMed]
  • Zhang Y, Oldenburg M, Fillingame RH. Suppressor mutations in F1 subunit epsilon recouple ATP-driven H+ translocation in uncoupled Q42E subunit c mutant of Escherichia coli F1F0 ATP synthase. J Biol Chem. 1994 Apr 8;269(14):10221–10224. [PubMed]
  • Zhang Y, Fillingame RH. Subunits coupling H+ transport and ATP synthesis in the Escherichia coli ATP synthase. Cys-Cys cross-linking of F1 subunit epsilon to the polar loop of F0 subunit c. J Biol Chem. 1995 Oct 13;270(41):24609–24614. [PubMed]
  • Haughton MA, Capaldi RA. Asymmetry of Escherichia coli F1-ATPase as a function of the interaction of alpha-beta subunit pairs with the gamma and epsilon subunits. J Biol Chem. 1995 Sep 1;270(35):20568–20574. [PubMed]
  • Aggeler R, Capaldi RA. Nucleotide-dependent movement of the epsilon subunit between alpha and beta subunits in the Escherichia coli F1F0-type ATPase. J Biol Chem. 1996 Jun 7;271(23):13888–13891. [PubMed]
  • Vik SB, Antonio BJ. A mechanism of proton translocation by F1F0 ATP synthases suggested by double mutants of the a subunit. J Biol Chem. 1994 Dec 2;269(48):30364–30369. [PubMed]
  • Nakamoto RK. Mechanisms of active transport in the FOF1 ATP synthase. J Membr Biol. 1996 May;151(2):101–111. [PubMed]
  • Dmitriev OY, Altendorf K, Fillingame RH. Reconstitution of the Fo complex of Escherichia coli ATP synthase from isolated subunits. Varying the number of essential carboxylates by co-incorporation of wild-type and mutant subunit c after purification in organic solvent. Eur J Biochem. 1995 Oct 15;233(2):478–483. [PubMed]
  • Hirata R, Graham LA, Takatsuki A, Stevens TH, Anraku Y. VMA11 and VMA16 encode second and third proteolipid subunits of the Saccharomyces cerevisiae vacuolar membrane H+-ATPase. J Biol Chem. 1997 Feb 21;272(8):4795–4803. [PubMed]
  • Noji H, Yasuda R, Yoshida M, Kinosita K., Jr Direct observation of the rotation of F1-ATPase. Nature. 1997 Mar 20;386(6622):299–302. [PubMed]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society


Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...


  • Gene
    Gene links
  • Gene (nucleotide)
    Gene (nucleotide)
    Records in Gene identified from shared sequence links
  • GEO Profiles
    GEO Profiles
    Related GEO records
  • HomoloGene
    HomoloGene links
  • MedGen
    Related information in MedGen
  • Nucleotide
    Published Nucleotide sequences
  • Protein
    Published protein sequences
  • PubMed
    PubMed citations for these articles

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...