• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of biochemjBJ Latest papers and much more!
Biochem J. May 1, 1997; 323(Pt 3): 649–659.
PMCID: PMC1218367

Kinetics of low-density lipoprotein receptor activity in Hep-G2 cells: derivation and validation of a Briggs-Haldane-based kinetic model for evaluating receptor-mediated endocytotic processes in which receptors recycle.

Abstract

The process of receptor-mediated endocytosis for receptors that recycle to the cell surface in an active form can be considered as being kinetically analogous to that of a uni-substrate, uni-product enzyme-catalysed reaction. In this study we have derived steady-state initial-velocity rate equations for this process, based on classical Briggs-Haldane and King-Altman kinetic approaches to multi-step reactions, and have evaluated this kinetic paradigm, using as a model system the low-density lipoprotein (LDL)-receptor-mediated endocytosis of the trapped label [14C]sucrose-LDL in uninduced, steady-state Hep-G2 cells. Using the derived rate equations, together with experimentally determined values for Bmax (123 fmol/mg of cell protein), Kd (14.3 nM), the endocytotic rate constant ke (analogous to kcat; 0.163 min-1), Km (80 nM) and maximal internalization velocity (26.4 fmol/min per mg), we have calculated the ratio ke/Km (0.00204 nM-1.min-1), the bimolecular rate constant for LDL and LDL-receptor association (0. 00248 nM-1.min-1), the first-order rate constant for LDL-LDL-receptor complex dissociation (0.0354 min-1), the total cellular content of LDL receptors (154 fmol/mg of cell protein), the intracellular LDL receptor concentration (30.7 fmol/mg of cell protein) and the pseudo-first-order rate constant for LDL receptor recycling (0.0653 min-1). Based on this mathematical model, the kinetic mechanism for the receptor-mediated endocytosis of [14C]sucrose-LDL by steady-state Hep-G2 cells is one of constitutive endocytosis via independent internalization sites that follows steady-state Briggs-Haldane kinetics, such that LDL-LDL-receptor interactions are characterized by a rapid-high-affinity ligand-receptor association, followed by ligand-receptor complex internalization that is rapid relative to complex dissociation, and by receptor recycling that is more rapid than complex internalization and that serves to maintain 80% of cellular LDL receptors on the cell surface in the steady-state. The consistency with which these quantitative observations parallel previous qualitative observations regarding LDL-receptor-mediated endocytosis, together with the high correlation between theoretical internalization velocities (calculated from determined rate constants) and experimental internalization velocities, underscore the validity of considering receptor-mediated endocytotic processes for recycling receptors in catalytic terms.

Full Text

The Full Text of this article is available as a PDF (522K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Brown MS, Goldstein JL. A receptor-mediated pathway for cholesterol homeostasis. Science. 1986 Apr 4;232(4746):34–47. [PubMed]
  • Brown MS, Anderson RG, Goldstein JL. Recycling receptors: the round-trip itinerary of migrant membrane proteins. Cell. 1983 Mar;32(3):663–667. [PubMed]
  • Pastan IH, Willingham MC. Journey to the center of the cell: role of the receptosome. Science. 1981 Oct 30;214(4520):504–509. [PubMed]
  • Goldstein JL, Anderson RG, Brown MS. Coated pits, coated vesicles, and receptor-mediated endocytosis. Nature. 1979 Jun 21;279(5715):679–685. [PubMed]
  • Goldstein JL, Brown MS, Anderson RG, Russell DW, Schneider WJ. Receptor-mediated endocytosis: concepts emerging from the LDL receptor system. Annu Rev Cell Biol. 1985;1:1–39. [PubMed]
  • Goldstein JL, Brown MS. The low-density lipoprotein pathway and its relation to atherosclerosis. Annu Rev Biochem. 1977;46:897–930. [PubMed]
  • Kaplan J. Polypeptide-binding membrane receptors: analysis and classification. Science. 1981 Apr 3;212(4490):14–20. [PubMed]
  • Wiley HS, Cunningham DD. The endocytotic rate constant. A cellular parameter for quantitating receptor-mediated endocytosis. J Biol Chem. 1982 Apr 25;257(8):4222–4229. [PubMed]
  • Wiley HS, Cunningham DD. A steady state model for analyzing the cellular binding, internalization and degradation of polypeptide ligands. Cell. 1981 Aug;25(2):433–440. [PubMed]
  • Lund KA, Opresko LK, Starbuck C, Walsh BJ, Wiley HS. Quantitative analysis of the endocytic system involved in hormone-induced receptor internalization. J Biol Chem. 1990 Sep 15;265(26):15713–15723. [PubMed]
  • Knauer DJ, Wiley HS, Cunningham DD. Relationship between epidermal growth factor receptor occupancy and mitogenic response. Quantitative analysis using a steady state model system. J Biol Chem. 1984 May 10;259(9):5623–5631. [PubMed]
  • Wiley HS. Anomalous binding of epidermal growth factor to A431 cells is due to the effect of high receptor densities and a saturable endocytic system. J Cell Biol. 1988 Aug;107(2):801–810. [PMC free article] [PubMed]
  • Pitas RE, Innerarity TL, Arnold KS, Mahley RW. Rate and equilibrium constants for binding of apo-E HDLc (a cholesterol-induced lipoprotein) and low density lipoproteins to human fibroblasts: evidence for multiple receptor binding of apo-E HDLc. Proc Natl Acad Sci U S A. 1979 May;76(5):2311–2315. [PMC free article] [PubMed]
  • Pedreño J, de Castellarnau C, Cullaré C, Sánchez J, Gómez-Gerique J, Ordóez-Llanos J, González-Sastre F. LDL binding sites on platelets differ from the "classical" receptor of nucleated cells. Arterioscler Thromb. 1992 Nov;12(11):1353–1362. [PubMed]
  • Javitt NB. Hep G2 cells as a resource for metabolic studies: lipoprotein, cholesterol, and bile acids. FASEB J. 1990 Feb 1;4(2):161–168. [PubMed]
  • Opresko LK, Wiley HS. Receptor-mediated endocytosis in Xenopus oocytes. I. Characterization of the vitellogenin receptor system. J Biol Chem. 1987 Mar 25;262(9):4109–4115. [PubMed]
  • Opresko LK, Wiley HS. Receptor-mediated endocytosis in Xenopus oocytes. II. Evidence for two novel mechanisms of hormonal regulation. J Biol Chem. 1987 Mar 25;262(9):4116–4123. [PubMed]
  • Johnson CL, Johnson CG. Characterization of receptors for substance P in human astrocytoma cells: radioligand binding and inositol phosphate formation. J Neurochem. 1992 Feb;58(2):471–477. [PubMed]
  • Servant G, Boulay G, Bossé R, Escher E, Guillemette G. Photoaffinity labeling of subtype 2 angiotensin receptor of human myometrium. Mol Pharmacol. 1993 May;43(5):677–683. [PubMed]
  • Havekes L, van Hinsbergh V, Kempen HJ, Emeis J. The metabolism in vitro of human low-density lipoprotein by the human hepatoma cell line Hep G2. Biochem J. 1983 Sep 15;214(3):951–958. [PMC free article] [PubMed]
  • Goldstein JL, Basu SK, Brown MS. Receptor-mediated endocytosis of low-density lipoprotein in cultured cells. Methods Enzymol. 1983;98:241–260. [PubMed]
  • Rajan VP, Menon KM. Involvement of microtubules in lipoprotein degradation and utilization for steroidogenesis in cultured rat luteal cells. Endocrinology. 1985 Dec;117(6):2408–2416. [PubMed]
  • Pittman RC, Taylor CA., Jr Methods for assessment of tissue sites of lipoprotein degradation. Methods Enzymol. 1986;129:612–628. [PubMed]
  • Goldstein JL, Brown MS. Binding and degradation of low density lipoproteins by cultured human fibroblasts. Comparison of cells from a normal subject and from a patient with homozygous familial hypercholesterolemia. J Biol Chem. 1974 Aug 25;249(16):5153–5162. [PubMed]
  • Dashti N, Wolfbauer G, Koren E, Knowles B, Alaupovic P. Catabolism of human low density lipoproteins by human hepatoma cell line HepG2. Biochim Biophys Acta. 1984 Jul 26;794(3):373–384. [PubMed]
  • Pittman RC, Carew TE, Attie AD, Witztum JL, Watanabe Y, Steinberg D. Receptor-dependent and receptor-independent degradation of low density lipoprotein in normal rabbits and in receptor-deficient mutant rabbits. J Biol Chem. 1982 Jul 25;257(14):7994–8000. [PubMed]
  • Pittman RC, Steinberg D. A new approach for assessing cumulative lysosomal degradation of proteins or other macromolecules. Biochem Biophys Res Commun. 1978 Apr 28;81(4):1254–1259. [PubMed]
  • Pittman RC, Green SR, Attie AD, Steinberg D. Radiolabeled sucrose covalently linked to protein. A device for quantifying degradation of plasma proteins catabolized by lysosomal mechanisms. J Biol Chem. 1979 Aug 10;254(15):6876–6879. [PubMed]
  • Larkin JM, Donzell WC, Anderson RG. Modulation of intracellular potassium and ATP: effects on coated pit function in fibroblasts and hepatocytes. J Cell Physiol. 1985 Sep;124(3):372–378. [PubMed]
  • Anderson RG, Brown MS, Goldstein JL. Inefficient internalization of receptor-bound low density lipoprotein in human carcinoma A-431 cells. J Cell Biol. 1981 Feb;88(2):441–452. [PMC free article] [PubMed]
  • Green SA, Kelly RB. Low density lipoprotein receptor and cation-independent mannose 6-phosphate receptor are transported from the cell surface to the Golgi apparatus at equal rates in PC12 cells. J Cell Biol. 1992 Apr;117(1):47–55. [PMC free article] [PubMed]
  • Bos CR, Shank SL, Snider MD. Role of clathrin-coated vesicles in glycoprotein transport from the cell surface to the Golgi complex. J Biol Chem. 1995 Jan 13;270(2):665–671. [PubMed]
  • Spurlock ME, Cusumano JC, Mills SE. (-)-[3H]-dihydroalprenolol binding to beta-adrenergic receptors in porcine adipose tissue and skeletal muscle membrane preparations. J Anim Sci. 1993 Jul;71(7):1778–1785. [PubMed]
  • Baron BM, Siegel BW. p-[125I]iodoclonidine, a novel radiolabeled agonist for studying central alpha 2-adrenergic receptors. Mol Pharmacol. 1990 Sep;38(3):348–356. [PubMed]
  • Feifel R, Rodrigues de Miranda JF, Strohmann C, Tacke R, Aasen AJ, Mutschler E, Lambrecht G. Selective labelling of muscarinic M1 receptors in calf superior cervical ganglia by [3H](+/-)-telenzepine. Eur J Pharmacol. 1991 Mar 19;195(1):115–123. [PubMed]
  • Garlind A, Cowburn RF, Fowler CJ. Characterization of [3H]inositol 1,4,5-trisphosphate binding sites in human temporal cortical and cerebellar membranes. Neurochem Int. 1994 Jan;24(1):73–80. [PubMed]
  • Casadó V, Mallol J, Lluis C, Canela EI, Franco R. Effect of phospholipases and proteases on the [3H]N6-(R)-phenylisopropyladenosine ([3H]R-PIA) binding to A1 adenosine receptors from pig cerebral cortex. J Cell Biochem. 1991 Nov;47(3):278–288. [PubMed]
  • Furfine ES, Leban JJ, Landavazo A, Moomaw JF, Casey PJ. Protein farnesyltransferase: kinetics of farnesyl pyrophosphate binding and product release. Biochemistry. 1995 May 23;34(20):6857–6862. [PubMed]
  • Adams JA, Taylor SS. Energetic limits of phosphotransfer in the catalytic subunit of cAMP-dependent protein kinase as measured by viscosity experiments. Biochemistry. 1992 Sep 15;31(36):8516–8522. [PubMed]
  • Otlewski J, Zbyryt T. Single peptide bond hydrolysis/resynthesis in squash inhibitors of serine proteinases. 1. Kinetics and thermodynamics of the interaction between squash inhibitors and bovine beta-trypsin. Biochemistry. 1994 Jan 11;33(1):200–207. [PubMed]
  • Stivers JT, Shuman S, Mildvan AS. Vaccinia DNA topoisomerase I: single-turnover and steady-state kinetic analysis of the DNA strand cleavage and ligation reactions. Biochemistry. 1994 Jan 11;33(1):327–339. [PubMed]
  • Beebe JA, Fierke CA. A kinetic mechanism for cleavage of precursor tRNA(Asp) catalyzed by the RNA component of Bacillus subtilis ribonuclease P. Biochemistry. 1994 Aug 30;33(34):10294–10304. [PubMed]
  • Ikebe M, Hartshorne DJ. Reverse reaction of smooth muscle myosin light chain kinase. Formation of ATP from phosphorylated light chain plus ADP. J Biol Chem. 1986 Jun 25;261(18):8249–8253. [PubMed]
  • Shacter E, Chock PB, Stadtman ER. Regulation through phosphorylation/dephosphorylation cascade systems. J Biol Chem. 1984 Oct 10;259(19):12252–12259. [PubMed]
  • Simon DI, Ezratty AM, Loscalzo J. The fibrin(ogen)olytic properties of cathepsin D. Biochemistry. 1994 May 31;33(21):6555–6563. [PubMed]
  • Stack MS, Pizzo SV. The effect of substituted laminin A chain-derived peptides on the conformation and activation kinetics of plasminogen. Arch Biochem Biophys. 1994 Feb 15;309(1):117–122. [PubMed]
  • Maslak M, Martin CT. Effects of solution conditions on the steady-state kinetics of initiation of transcription by T7 RNA polymerase. Biochemistry. 1994 Jun 7;33(22):6918–6924. [PubMed]
  • Warwicker J, Mueller-Harvey I, Sumner I, Bhat KM. The activity of porcine pancreatic phospholipase A2 in 20% alcohol/aqueous solvent, by experiment and electrostatics calculations. J Mol Biol. 1994 Feb 25;236(3):904–917. [PubMed]
  • Zhang D, Jennings SM, Robinson GW, Poulter CD. Yeast squalene synthase: expression, purification, and characterization of soluble recombinant enzyme. Arch Biochem Biophys. 1993 Jul;304(1):133–143. [PubMed]
  • Song L, Poulter CD. Yeast farnesyl-diphosphate synthase: site-directed mutagenesis of residues in highly conserved prenyltransferase domains I and II. Proc Natl Acad Sci U S A. 1994 Apr 12;91(8):3044–3048. [PMC free article] [PubMed]
  • Yokoyama K, McGeady P, Gelb MH. Mammalian protein geranylgeranyltransferase-I: substrate specificity, kinetic mechanism, metal requirements, and affinity labeling. Biochemistry. 1995 Jan 31;34(4):1344–1354. [PubMed]
  • Pompliano DL, Rands E, Schaber MD, Mosser SD, Anthony NJ, Gibbs JB. Steady-state kinetic mechanism of Ras farnesyl:protein transferase. Biochemistry. 1992 Apr 21;31(15):3800–3807. [PubMed]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

  • MedGen
    MedGen
    Related information in MedGen
  • PubMed
    PubMed
    PubMed citations for these articles
  • Substance
    Substance
    PubChem Substance links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...