• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of biochemjBJ Latest papers and much more!
Biochem J. Jan 1, 1997; 321(Pt 1): 247–252.
PMCID: PMC1218061

The MAL proteolipid is a component of the detergent-insoluble membrane subdomains of human T-lymphocytes.

Abstract

The human mal gene, identified during a search for cDNAs selectively expressed during T-cell development, encodes a highly hydrophobic protein belonging to a group of proteins, termed proteolipids, characterized by their unusual property of being soluble in organic solvents used to extract cell lipids. To study the localization of the MAL protein we have prepared stable transfectants expressing the MAL protein tagged with a c-myc epitope (MAL/c-myc) using human epithelial A-498 cells. Immunofluorescence analysis suggested that MAL/c-myc is localized mainly to cholesterol-enriched structures with a post-Golgi location and, at low levels, in early endosomes. Moreover, extraction of A-498 cell membranes with Triton X-100 (TX100) and fractionation by centrifugation to equilibrium in sucrose gradients demonstrated the presence of MAL/c-myc in the detergent-insoluble buoyant fraction, known to be enriched in glycolipids and cholesterol. To compare the behaviour of MAL in T-cells with that in epithelial A-498 cells, we prepared stably transfected cells expressing MAL/c-myc using human Jurkat T-cells. When TX100 extracts from Jurkat cells were subjected to centrifugation to equilibrium in sucrose gradients we found MAL exclusively in the floating fractions, together with molecules characteristic of the T-cell insoluble complexes, such as the tyrosine kinase p56lck, the glycosylphosphatidylinositol-anchored protein CD59 and the ganglioside GM1. These results, taken together, indicate that the MAL proteolipid is a component of the detergent-resistant membrane microdomains present in T-lymphocytes, and suggest that MAL might play a role in modulating the function of these microdomains during T-cell differentiation.

Full Text

The Full Text of this article is available as a PDF (372K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Brown DA. Interactions between GPI-anchored proteins and membrane lipids. Trends Cell Biol. 1992 Nov;2(11):338–343. [PubMed]
  • Hanada K, Nishijima M, Akamatsu Y, Pagano RE. Both sphingolipids and cholesterol participate in the detergent insolubility of alkaline phosphatase, a glycosylphosphatidylinositol-anchored protein, in mammalian membranes. J Biol Chem. 1995 Mar 17;270(11):6254–6260. [PubMed]
  • Brown DA, Rose JK. Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface. Cell. 1992 Feb 7;68(3):533–544. [PubMed]
  • Simons K, Wandinger-Ness A. Polarized sorting in epithelia. Cell. 1990 Jul 27;62(2):207–210. [PubMed]
  • Brown D. The tyrosine kinase connection: how GPI-anchored proteins activate T cells. Curr Opin Immunol. 1993 Jun;5(3):349–354. [PubMed]
  • Doyle JP, Colman DR. Glial-neuron interactions and the regulation of myelin formation. Curr Opin Cell Biol. 1993 Oct;5(5):779–785. [PubMed]
  • Trapp BD, Kidd GJ, Hauer P, Mulrenin E, Haney CA, Andrews SB. Polarization of myelinating Schwann cell surface membranes: role of microtubules and the trans-Golgi network. J Neurosci. 1995 Mar;15(3 Pt 1):1797–1807. [PubMed]
  • Alonso MA, Weissman SM. cDNA cloning and sequence of MAL, a hydrophobic protein associated with human T-cell differentiation. Proc Natl Acad Sci U S A. 1987 Apr;84(7):1997–2001. [PMC free article] [PubMed]
  • Alonso MA, Barton DE, Francke U. Assignment of the T-cell differentiation gene MAL to human chromosome 2, region cen----q13. Immunogenetics. 1988;27(2):91–95. [PubMed]
  • Rancaño C, Rubio T, Alonso MA. Alternative splicing of human T-cell-specific MAL mRNA and its correlation with the exon/intron organization of the gene. Genomics. 1994 May 15;21(2):447–450. [PubMed]
  • Schlesinger MJ. Proteolipids. Annu Rev Biochem. 1981;50:193–206. [PubMed]
  • Rancaño C, Rubio T, Correas I, Alonso MA. Genomic structure and subcellular localization of MAL, a human T-cell-specific proteolipid protein. J Biol Chem. 1994 Mar 18;269(11):8159–8164. [PubMed]
  • Kim T, Fiedler K, Madison DL, Krueger WH, Pfeiffer SE. Cloning and characterization of MVP17: a developmentally regulated myelin protein in oligodendrocytes. J Neurosci Res. 1995 Oct 15;42(3):413–422. [PubMed]
  • Schaeren-Wiemers N, Valenzuela DM, Frank M, Schwab ME. Characterization of a rat gene, rMAL, encoding a protein with four hydrophobic domains in central and peripheral myelin. J Neurosci. 1995 Aug;15(8):5753–5764. [PubMed]
  • Zacchetti D, Peränen J, Murata M, Fiedler K, Simons K. VIP17/MAL, a proteolipid in apical transport vesicles. FEBS Lett. 1995 Dec 27;377(3):465–469. [PubMed]
  • Alcalde J, Bonay P, Roa A, Vilaro S, Sandoval IV. Assembly and disassembly of the Golgi complex: two processes arranged in a cis-trans direction. J Cell Biol. 1992 Jan;116(1):69–83. [PMC free article] [PubMed]
  • Veillette A, Bookman MA, Horak EM, Bolen JB. The CD4 and CD8 T cell surface antigens are associated with the internal membrane tyrosine-protein kinase p56lck. Cell. 1988 Oct 21;55(2):301–308. [PubMed]
  • Evan GI, Lewis GK, Ramsay G, Bishop JM. Isolation of monoclonal antibodies specific for human c-myc proto-oncogene product. Mol Cell Biol. 1985 Dec;5(12):3610–3616. [PMC free article] [PubMed]
  • Takebe Y, Seiki M, Fujisawa J, Hoy P, Yokota K, Arai K, Yoshida M, Arai N. SR alpha promoter: an efficient and versatile mammalian cDNA expression system composed of the simian virus 40 early promoter and the R-U5 segment of human T-cell leukemia virus type 1 long terminal repeat. Mol Cell Biol. 1988 Jan;8(1):466–472. [PMC free article] [PubMed]
  • Hopkins CR. Intracellular routing of transferrin and transferrin receptors in epidermoid carcinoma A431 cells. Cell. 1983 Nov;35(1):321–330. [PubMed]
  • Robinson MS. The role of clathrin, adaptors and dynamin in endocytosis. Curr Opin Cell Biol. 1994 Aug;6(4):538–544. [PubMed]
  • Fujiwara T, Oda K, Yokota S, Takatsuki A, Ikehara Y. Brefeldin A causes disassembly of the Golgi complex and accumulation of secretory proteins in the endoplasmic reticulum. J Biol Chem. 1988 Dec 5;263(34):18545–18552. [PubMed]
  • Wood SA, Park JE, Brown WJ. Brefeldin A causes a microtubule-mediated fusion of the trans-Golgi network and early endosomes. Cell. 1991 Nov 1;67(3):591–600. [PubMed]
  • Lippincott-Schwartz J, Yuan L, Tipper C, Amherdt M, Orci L, Klausner RD. Brefeldin A's effects on endosomes, lysosomes, and the TGN suggest a general mechanism for regulating organelle structure and membrane traffic. Cell. 1991 Nov 1;67(3):601–616. [PubMed]
  • Elias PM, Goerke J, Friend DS, Brown BE. Freeze-fracture identification of sterol-digitonin complexes in cell and liposome membranes. J Cell Biol. 1978 Aug;78(2):577–596. [PMC free article] [PubMed]
  • Bolard J. How do the polyene macrolide antibiotics affect the cellular membrane properties? Biochim Biophys Acta. 1986 Dec 22;864(3-4):257–304. [PubMed]
  • Stefanová I, Horejsí V, Ansotegui IJ, Knapp W, Stockinger H. GPI-anchored cell-surface molecules complexed to protein tyrosine kinases. Science. 1991 Nov 15;254(5034):1016–1019. [PubMed]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

  • Compound
    Compound
    PubChem Compound links
  • Gene
    Gene
    Gene links
  • Gene (nucleotide)
    Gene (nucleotide)
    Records in Gene identified from shared sequence links
  • GEO Profiles
    GEO Profiles
    Related GEO records
  • HomoloGene
    HomoloGene
    HomoloGene links
  • Nucleotide
    Nucleotide
    Published Nucleotide sequences
  • OMIM
    OMIM
    OMIM record citing PubMed
  • Pathways + GO
    Pathways + GO
    Pathways, annotations and biological systems (BioSystems) that cite the current article.
  • Protein
    Protein
    Published protein sequences
  • PubMed
    PubMed
    PubMed citations for these articles
  • Substance
    Substance
    PubChem Substance links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...