• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of biochemjBJ Latest papers and much more!
Biochem J. Dec 1, 1996; 320(Pt 2): 345–357.
PMCID: PMC1217938

Mammalian mitochondrial beta-oxidation.

Abstract

The enzymic stages of mammalian mitochondrial beta-oxidation were elucidated some 30-40 years ago. However, the discovery of a membrane-associated multifunctional enzyme of beta-oxidation, a membrane-associated acyl-CoA dehydrogenase and characterization of the carnitine palmitoyl transferase system at the protein and at the genetic level has demonstrated that the enzymes of the system itself are incompletely understood. Deficiencies of many of the enzymes have been recognized as important causes of disease. In addition, the study of these disorders has led to a greater understanding of the molecular mechanism of beta-oxidation and the import, processing and assembly of the beta-oxidation enzymes within the mitochondrion. The tissue-specific regulation, intramitochondrial control and supramolecular organization of the pathway is becoming better understood as sensitive analytical and molecular techniques are applied. This review aims to cover enzymological and organizational aspects of mitochondrial beta-oxidation together with the biochemical aspects of inherited disorders of beta-oxidation and the intrinsic control of beta-oxidation.

Full Text

The Full Text of this article is available as a PDF (426K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Felig P, Wahren J. Fuel homeostasis in exercise. N Engl J Med. 1975 Nov 20;293(21):1078–1084. [PubMed]
  • RANDLE PJ, GARLAND PB, HALES CN, NEWSHOLME EA. The glucose fatty-acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet. 1963 Apr 13;1(7285):785–789. [PubMed]
  • LIPMANN F. On chemistry and function of coenzyme A. Bacteriol Rev. 1953 Mar;17(1):1–16. [PMC free article] [PubMed]
  • DRYSDALE GR, LARDY HA. Fatty acid oxidation by a soluble enzyme system from mitochondria. J Biol Chem. 1953 May;202(1):119–136. [PubMed]
  • WAKIL SJ, GREEN DE, MII S, MAHLER HR. Studies on the fatty acid oxidizing system of animal tissues. VI. beta-Hydroxyacyl coenzyme A dehydrogenase. J Biol Chem. 1954 Apr;207(2):631–638. [PubMed]
  • LYNEN F, OCHOA S. Enzymes of fatty acid metabolism. Biochim Biophys Acta. 1953 Sep-Oct;12(1-2):299–314. [PubMed]
  • Bremer J. Carnitine--metabolism and functions. Physiol Rev. 1983 Oct;63(4):1420–1480. [PubMed]
  • Bergman EN, Reid RS, Murray MG, Brockway JM, Whitelaw FG. Interconversions and production of volatile fatty acids in the sheep rumen. Biochem J. 1965 Oct;97(1):53–58. [PMC free article] [PubMed]
  • MAHLER HR, WAKIL SJ, BOCK RM. Studies on fatty acid oxidation. I. Enzymatic activation of fatty acids. J Biol Chem. 1953 Sep;204(1):453–468. [PubMed]
  • Killenberg PG, Davidson ED, Webster LT., Jr Evidence for a medium-chain fatty acid: coenzyme A ligase (adenosine monophosphate) that activates salicylate. Mol Pharmacol. 1971 May;7(3):260–268. [PubMed]
  • Norum KR, Farstad M, Bremer J. The submitochondrial distribution of acid:CoA ligase (AMP) and palmityl-CoA:carnitine palmityltransferase in rat liver mitochondria. Biochem Biophys Res Commun. 1966 Sep 8;24(5):797–804. [PubMed]
  • Hesler CB, Olymbios C, Haldar D. Transverse-plane topography of long-chain acyl-CoA synthetase in the mitochondrial outer membrane. J Biol Chem. 1990 Apr 25;265(12):6600–6605. [PubMed]
  • Kolodziej MP, Crilly PJ, Corstorphine CG, Zammit VA. Development and characterization of a polyclonal antibody against rat liver mitochondrial overt carnitine palmitoyltransferase (CPT I). Distinction of CPT I from CPT II and of isoforms of CPT I in different tissues. Biochem J. 1992 Mar 1;282(Pt 2):415–421. [PMC free article] [PubMed]
  • Brown NF, Esser V, Foster DW, McGarry JD. Expression of a cDNA for rat liver carnitine palmitoyltransferase I in yeast establishes that catalytic activity and malonyl-CoA sensitivity reside in a single polypeptide. J Biol Chem. 1994 Oct 21;269(42):26438–26442. [PubMed]
  • Esser V, Brown NF, Cowan AT, Foster DW, McGarry JD. Expression of a cDNA isolated from rat brown adipose tissue and heart identifies the product as the muscle isoform of carnitine palmitoyltransferase I (M-CPT I). M-CPT I is the predominant CPT I isoform expressed in both white (epididymal) and brown adipocytes. J Biol Chem. 1996 Mar 22;271(12):6972–6977. [PubMed]
  • Weis BC, Esser V, Foster DW, McGarry JD. Rat heart expresses two forms of mitochondrial carnitine palmitoyltransferase I. The minor component is identical to the liver enzyme. J Biol Chem. 1994 Jul 22;269(29):18712–18715. [PubMed]
  • Weis BC, Cowan AT, Brown N, Foster DW, McGarry JD. Use of a selective inhibitor of liver carnitine palmitoyltransferase I (CPT I) allows quantification of its contribution to total CPT I activity in rat heart. Evidence that the dominant cardiac CPT I isoform is identical to the skeletal muscle enzyme. J Biol Chem. 1994 Oct 21;269(42):26443–26448. [PubMed]
  • Brown NF, Weis BC, Husti JE, Foster DW, McGarry JD. Mitochondrial carnitine palmitoyltransferase I isoform switching in the developing rat heart. J Biol Chem. 1995 Apr 14;270(15):8952–8957. [PubMed]
  • Indiveri C, Tonazzi A, Palmieri F. Identification and purification of the carnitine carrier from rat liver mitochondria. Biochim Biophys Acta. 1990 Oct 24;1020(1):81–86. [PubMed]
  • Indiveri C, Tonazzi A, Palmieri F. Characterization of the unidirectional transport of carnitine catalyzed by the reconstituted carnitine carrier from rat liver mitochondria. Biochim Biophys Acta. 1991 Oct 14;1069(1):110–116. [PubMed]
  • Izai K, Uchida Y, Orii T, Yamamoto S, Hashimoto T. Novel fatty acid beta-oxidation enzymes in rat liver mitochondria. I. Purification and properties of very-long-chain acyl-coenzyme A dehydrogenase. J Biol Chem. 1992 Jan 15;267(2):1027–1033. [PubMed]
  • Yamaguchi S, Indo Y, Coates PM, Hashimoto T, Tanaka K. Identification of very-long-chain acyl-CoA dehydrogenase deficiency in three patients previously diagnosed with long-chain acyl-CoA dehydrogenase deficiency. Pediatr Res. 1993 Jul;34(1):111–113. [PubMed]
  • Rozen R, Vockley J, Zhou L, Milos R, Willard J, Fu K, Vicanek C, Low-Nang L, Torban E, Fournier B. Isolation and expression of a cDNA encoding the precursor for a novel member (ACADSB) of the acyl-CoA dehydrogenase gene family. Genomics. 1994 Nov 15;24(2):280–287. [PubMed]
  • Kim JJ, Wu J. Structure of the medium-chain acyl-CoA dehydrogenase from pig liver mitochondria at 3-A resolution. Proc Natl Acad Sci U S A. 1988 Sep;85(18):6677–6681. [PMC free article] [PubMed]
  • Thorpe C, Kim JJ. Structure and mechanism of action of the acyl-CoA dehydrogenases. FASEB J. 1995 Jun;9(9):718–725. [PubMed]
  • CRANE FL, BEINERT H. On the mechanism of dehydrogenation of fatty acyl derivatives of coenzyme A. II. The electron-transferring flavoprotein. J Biol Chem. 1956 Feb;218(2):717–731. [PubMed]
  • Ruzicka FJ, Beinert H. A new iron-sulfur flavoprotein of the respiratory chain. A component of the fatty acid beta oxidation pathway. J Biol Chem. 1977 Dec 10;252(23):8440–8445. [PubMed]
  • Furuta S, Miyazawa S, Hashimoto T. Purification and properties of rat liver acyl-CoA dehydrogenases and electron transfer flavoprotein. J Biochem. 1981 Dec;90(6):1739–1750. [PubMed]
  • Beckmann JD, Frerman FE. Electron-transfer flavoprotein-ubiquinone oxidoreductase from pig liver: purification and molecular, redox, and catalytic properties. Biochemistry. 1985 Jul 16;24(15):3913–3921. [PubMed]
  • STERN JR, DEL CAMPILLO A. Enzymes of fatty acid metabolism. II. Properties of crystalline crotonase. J Biol Chem. 1956 Feb;218(2):985–1002. [PubMed]
  • Hass GM, Hill RL. The subunit structure of crotonase. J Biol Chem. 1969 Nov 25;244(22):6080–6086. [PubMed]
  • Waterson RM, Hill RL. Enoyl coenzyme A hydratase (crotonase). Catalytic properties of crotonase and its possible regulatory role in fatty acid oxidation. J Biol Chem. 1972 Aug 25;247(16):5258–5265. [PubMed]
  • STERN JR, DEL CAMPILLO A, RAW I. Enzymes of fatty acid metabolism. I. General introduction; crystalline crotonase. J Biol Chem. 1956 Feb;218(2):971–983. [PubMed]
  • Wit-Peeters EM, Scholte HR, van den Akker F, de Nie I. Intramitochondrial localization of palmityl-CoA dehydrogenase, beta-hydroxyacyl-CoA dehydrogenase and enoyl-CoA hydratase in guinea-pig heart. Biochim Biophys Acta. 1971 Feb 2;231(1):23–31. [PubMed]
  • Fong JC, Schulz H. Purification and properties of pig heart crotonase and the presence of short chain and long chain enoyl coenzyme A hydratases in pig and guinea pig tissues. J Biol Chem. 1977 Jan 25;252(2):542–547. [PubMed]
  • Jackson S, Kler RS, Bartlett K, Briggs H, Bindoff LA, Pourfarzam M, Gardner-Medwin D, Turnbull DM. Combined enzyme defect of mitochondrial fatty acid oxidation. J Clin Invest. 1992 Oct;90(4):1219–1225. [PMC free article] [PubMed]
  • Jackson S, Schaefer J, Middleton B, Turnbull DM. Characterisation of a novel enzyme of human fatty acid beta-oxidation: a matrix-associated, mitochondrial 2-enoyl-CoA hydratase. Biochem Biophys Res Commun. 1995 Sep 5;214(1):247–253. [PubMed]
  • Bradshaw RA, Noyes BE. L-3-hydroxyacyl coenzyme A dehydrogenase from pig heart muscle. EC 1.1.1.35 L-3-hydroxyacyl-CoA: NAD oxidoreductase. Methods Enzymol. 1975;35:122–128. [PubMed]
  • Osumi T, Hashimoto T. Purification and properties of mitochondrial and peroxisomal 3-hydroxyacyl-CoA dehydrogenase from rat liver. Arch Biochem Biophys. 1980 Aug;203(1):372–383. [PubMed]
  • He XY, Yang SY, Schulz H. Assay of L-3-hydroxyacyl-coenzyme A dehydrogenase with substrates of different chain lengths. Anal Biochem. 1989 Jul;180(1):105–109. [PubMed]
  • El-Fakhri M, Middleton B. The existence of an inner-membrane-bound, long acyl-chain-specific 3-hydroxyacyl-CoA dehydrogenase in mammalian mitochondria. Biochim Biophys Acta. 1982 Nov 12;713(2):270–279. [PubMed]
  • Middleton B. The existence of ketoacyl-CoA thiolases of differing properties and intracellular localization in ox liver. Biochem Biophys Res Commun. 1972 Jan 31;46(2):508–515. [PubMed]
  • Middleton B. The oxoacyl-coenzyme A thiolases of animal tissues. Biochem J. 1973 Apr;132(4):717–730. [PMC free article] [PubMed]
  • Middleton B, Bartlett K. The synthesis and characterisation of 2-methylacetoacetyl coenzyme A and its use in the identification of the site of the defect in 2-methylacetoacetic and 2-methyl-3-hydroxybutyric aciduria. Clin Chim Acta. 1983 Mar 14;128(2-3):291–305. [PubMed]
  • Seubert W, Lamberts I, Kramer R, Ohly B. On the mechanism of malonyl-CoA-independent fatty acid synthesis. I. The mechanism of elongation of long-chain fatty acids by acetyl-CoA. Biochim Biophys Acta. 1968 Dec 18;164(3):498–517. [PubMed]
  • Staack H, Binstock JF, Schulz H. Purification and properties of a pig heart thiolase with broad chain length specificity and comparison of thiolases from pig heart and Escherichia coli. J Biol Chem. 1978 Mar 25;253(6):1827–1831. [PubMed]
  • Uchida Y, Izai K, Orii T, Hashimoto T. Novel fatty acid beta-oxidation enzymes in rat liver mitochondria. II. Purification and properties of enoyl-coenzyme A (CoA) hydratase/3-hydroxyacyl-CoA dehydrogenase/3-ketoacyl-CoA thiolase trifunctional protein. J Biol Chem. 1992 Jan 15;267(2):1034–1041. [PubMed]
  • Carpenter K, Pollitt RJ, Middleton B. Human liver long-chain 3-hydroxyacyl-coenzyme A dehydrogenase is a multifunctional membrane-bound beta-oxidation enzyme of mitochondria. Biochem Biophys Res Commun. 1992 Mar 16;183(2):443–448. [PubMed]
  • Luo MJ, He XY, Sprecher H, Schulz H. Purification and characterization of the trifunctional beta-oxidation complex from pig heart mitochondria. Arch Biochem Biophys. 1993 Jul;304(1):266–271. [PubMed]
  • Weinberger MJ, Rinaldo P, Strauss AW, Bennett MJ. Intact alpha-subunit is required for membrane-binding of human mitochondrial trifunctional beta-oxidation protein, but is not necessary for conferring 3-ketoacyl-CoA thiolase activity to the beta-subunit. Biochem Biophys Res Commun. 1995 Apr 6;209(1):47–52. [PubMed]
  • Kerner J, Bieber L. Isolation of a malonyl-CoA-sensitive CPT/beta-oxidation enzyme complex from heart mitochondria. Biochemistry. 1990 May 8;29(18):4326–4334. [PubMed]
  • Gavino GR, Gavino VC. Rat liver outer mitochondrial carnitine palmitoyltransferase activity towards long-chain polyunsaturated fatty acids and their CoA esters. Lipids. 1991 Apr;26(4):266–270. [PubMed]
  • Osmundsen H, Bjørnstad K. Inhibitory effects of some long-chain unsaturated fatty acids on mitochondrial beta-oxidation. Effects of streptozotocin-induced diabetes on mitochondrial beta-oxidation of polyunsaturated fatty acids. Biochem J. 1985 Sep 1;230(2):329–337. [PMC free article] [PubMed]
  • Smeland TE, Nada M, Cuebas D, Schulz H. NADPH-dependent beta-oxidation of unsaturated fatty acids with double bonds extending from odd-numbered carbon atoms. Proc Natl Acad Sci U S A. 1992 Aug 1;89(15):6673–6677. [PMC free article] [PubMed]
  • Chen LS, Jin SJ, Tserng KY. Purification and mechanism of delta 3,delta 5-t-2,t-4-dienoyl-CoA isomerase from rat liver. Biochemistry. 1994 Aug 30;33(34):10527–10534. [PubMed]
  • Tserng KY, Jin SJ, Chen LS. Reduction pathway of cis-5 unsaturated fatty acids in intact rat-liver and rat-heart mitochondria: assessment with stable-isotype-labelled substrates. Biochem J. 1996 Jan 15;313(Pt 2):581–588. [PMC free article] [PubMed]
  • Vianey-Liaud C, Divry P, Gregersen N, Mathieu M. The inborn errors of mitochondrial fatty acid oxidation. J Inherit Metab Dis. 1987;10 (Suppl 1):159–200. [PubMed]
  • Bartlett K. Methods for the investigation of hypoglycaemia with particular reference to inherited disorders of mitochondrial beta-oxidation. Baillieres Clin Endocrinol Metab. 1993 Jul;7(3):643–667. [PubMed]
  • Hale DE, Bennett MJ. Fatty acid oxidation disorders: a new class of metabolic diseases. J Pediatr. 1992 Jul;121(1):1–11. [PubMed]
  • Vockley J. The changing face of disorders of fatty acid oxidation. Mayo Clin Proc. 1994 Mar;69(3):249–257. [PubMed]
  • Angelini C, Freddo L, Battistella P, Bresolin N, Pierobon-Bormioli S, Armani M, Vergani L. Carnitine palmityl transferase deficiency: clinical variability, carrier detection, and autosomal-recessive inheritance. Neurology. 1981 Jul;31(7):883–886. [PubMed]
  • Singh R, Shepherd IM, Derrick JP, Ramsay RR, Sherratt HS, Turnbull DM. A case of carnitine palmitoyltransferase II deficiency in human skeletal muscle. FEBS Lett. 1988 Dec 5;241(1-2):126–130. [PubMed]
  • Demaugre F, Bonnefont JP, Cepanec C, Scholte J, Saudubray JM, Leroux JP. Immunoquantitative analysis of human carnitine palmitoyltransferase I and II defects. Pediatr Res. 1990 May;27(5):497–500. [PubMed]
  • Demaugre F, Bonnefont JP, Colonna M, Cepanec C, Leroux JP, Saudubray JM. Infantile form of carnitine palmitoyltransferase II deficiency with hepatomuscular symptoms and sudden death. Physiopathological approach to carnitine palmitoyltransferase II deficiencies. J Clin Invest. 1991 Mar;87(3):859–864. [PMC free article] [PubMed]
  • Zierz S, Engel AG. Regulatory properties of a mutant carnitine palmitoyltransferase in human skeletal muscle. Eur J Biochem. 1985 May 15;149(1):207–214. [PubMed]
  • Taroni F, Verderio E, Dworzak F, Willems PJ, Cavadini P, DiDonato S. Identification of a common mutation in the carnitine palmitoyltransferase II gene in familial recurrent myoglobinuria patients. Nat Genet. 1993 Jul;4(3):314–320. [PubMed]
  • Taroni F, Verderio E, Fiorucci S, Cavadini P, Finocchiaro G, Uziel G, Lamantea E, Gellera C, DiDonato S. Molecular characterization of inherited carnitine palmitoyltransferase II deficiency. Proc Natl Acad Sci U S A. 1992 Sep 15;89(18):8429–8433. [PMC free article] [PubMed]
  • Bougnères PF, Saudubray JM, Marsac C, Bernard O, Odièvre M, Girard J. Fasting hypoglycemia resulting from hepatic carnitine palmitoyl transferase deficiency. J Pediatr. 1981 May;98(5):742–746. [PubMed]
  • Tein I, Demaugre F, Bonnefont JP, Saudubray JM. Normal muscle CPT1 and CPT2 activities in hepatic presentation patients with CPT1 deficiency in fibroblasts. Tissue specific isoforms of CPT1? J Neurol Sci. 1989 Sep;92(2-3):229–245. [PubMed]
  • Stanley CA, Hale DE, Berry GT, Deleeuw S, Boxer J, Bonnefont JP. Brief report: a deficiency of carnitine-acylcarnitine translocase in the inner mitochondrial membrane. N Engl J Med. 1992 Jul 2;327(1):19–23. [PubMed]
  • Pande SV, Brivet M, Slama A, Demaugre F, Aufrant C, Saudubray JM. Carnitine-acylcarnitine translocase deficiency with severe hypoglycemia and auriculo ventricular block. Translocase assay in permeabilized fibroblasts. J Clin Invest. 1993 Mar;91(3):1247–1252. [PMC free article] [PubMed]
  • Niezen-Koning KE, van Spronsen FJ, Ijlst L, Wanders RJ, Brivet M, Duran M, Reijngoud DJ, Heymans HS, Smit GP. A patient with lethal cardiomyopathy and a carnitine-acylcarnitine translocase deficiency. J Inherit Metab Dis. 1995;18(2):230–232. [PubMed]
  • Brivet M, Slama A, Ogier H, Boutron A, Demaugre F, Saudubray JM, Lemonnier A. Diagnosis of carnitine acylcarnitine translocase deficiency by complementation analysis. J Inherit Metab Dis. 1994;17(3):271–274. [PubMed]
  • Stanley CA. New genetic defects in mitochondrial fatty acid oxidation and carnitine deficiency. Adv Pediatr. 1987;34:59–88. [PubMed]
  • Treem WR, Stanley CA, Finegold DN, Hale DE, Coates PM. Primary carnitine deficiency due to a failure of carnitine transport in kidney, muscle, and fibroblasts. N Engl J Med. 1988 Nov 17;319(20):1331–1336. [PubMed]
  • Stanley CA, Treem WR, Hale DE, Coates PM. A genetic defect in carnitine transport causing primary carnitine deficiency. Prog Clin Biol Res. 1990;321:457–464. [PubMed]
  • Hale DE, Batshaw ML, Coates PM, Frerman FE, Goodman SI, Singh I, Stanley CA. Long-chain acyl coenzyme A dehydrogenase deficiency: an inherited cause of nonketotic hypoglycemia. Pediatr Res. 1985 Jul;19(7):666–671. [PubMed]
  • Hale DE, Stanley CA, Coates PM. The long-chain acyl-CoA dehydrogenase deficiency. Prog Clin Biol Res. 1990;321:303–311. [PubMed]
  • Amendt BA, Moon A, Teel L, Rhead WJ. Long-chain acyl-coenzyme A dehydrogenase deficiency: biochemical studies in fibroblasts from three patients. Pediatr Res. 1988 Jun;23(6):603–605. [PubMed]
  • Indo Y, Coates PM, Hale DE, Tanaka K. Immunochemical characterization of variant long-chain acyl-CoA dehydrogenase in cultured fibroblasts from nine patients with long-chain acyl-CoA dehydrogenase deficiency. Pediatr Res. 1991 Sep;30(3):211–215. [PubMed]
  • Strauss AW, Powell CK, Hale DE, Anderson MM, Ahuja A, Brackett JC, Sims HF. Molecular basis of human mitochondrial very-long-chain acyl-CoA dehydrogenase deficiency causing cardiomyopathy and sudden death in childhood. Proc Natl Acad Sci U S A. 1995 Nov 7;92(23):10496–10500. [PMC free article] [PubMed]
  • Kølvraa S, Gregersen N, Christensen E, Hobolth N. In vitro fibroblast studies in a patient with C6-C10-dicarboxylic aciduria: evidence for a defect in general acyl-CoA dehydrogenase. Clin Chim Acta. 1982 Nov 24;126(1):53–67. [PubMed]
  • Millington DS, Norwood DL, Kodo N, Roe CR, Inoue F. Application of fast atom bombardment with tandem mass spectrometry and liquid chromatography/mass spectrometry to the analysis of acylcarnitines in human urine, blood, and tissue. Anal Biochem. 1989 Aug 1;180(2):331–339. [PubMed]
  • Bhuiyan AK, Watmough NJ, Turnbull DM, Aynsley-Green A, Leonard JV, Bartlett K. A new simple screening method for the diagnosis of medium chain acyl-CoA dehydrogenase deficiency. Clin Chim Acta. 1987 May 29;165(1):39–44. [PubMed]
  • Duran M, Bruinvis L, Ketting D, de Klerk JB, Wadman SK. Cis-4-decenoic acid in plasma: a characteristic metabolite in medium-chain acyl-CoA dehydrogenase deficiency. Clin Chem. 1988 Mar;34(3):548–551. [PubMed]
  • Rinaldo P, O'Shea JJ, Coates PM, Hale DE, Stanley CA, Tanaka K. Medium-chain acyl-CoA dehydrogenase deficiency. Diagnosis by stable-isotope dilution measurement of urinary n-hexanoylglycine and 3-phenylpropionylglycine. N Engl J Med. 1988 Nov 17;319(20):1308–1313. [PubMed]
  • Matsubara Y, Narisawa K, Miyabayashi S, Tada K, Coates PM. Molecular lesion in patients with medium-chain acyl-CoA dehydrogenase deficiency. Lancet. 1990 Jun 30;335(8705):1589–1589. [PubMed]
  • Matsubara Y, Narisawa K, Tada K, Ikeda H, Yao YQ, Danks DM, Green A, McCabe ER. Prevalence of K329E mutation in medium-chain acyl-CoA dehydrogenase gene determined from Guthrie cards. Lancet. 1991 Aug 31;338(8766):552–553. [PubMed]
  • Kølvraa S, Gregersen N, Blakemore AI, Schneidermann AK, Winter V, Andresen BS, Curtis D, Engel PC, Pricille D, Rhead W, et al. The most common mutation causing medium-chain acyl-CoA dehydrogenase deficiency is strongly associated with a particular haplotype in the region of the gene. Hum Genet. 1991 Aug;87(4):425–428. [PubMed]
  • Ding JH, Yang BZ, Bao Y, Roe CR, Chen YT. Identification of a new mutation in medium-chain acyl-CoA dehydrogenase (MCAD) deficiency. Am J Hum Genet. 1992 Jan;50(1):229–233. [PMC free article] [PubMed]
  • Kelly DP, Whelan AJ, Ogden ML, Alpers R, Zhang ZF, Bellus G, Gregersen N, Dorland L, Strauss AW. Molecular characterization of inherited medium-chain acyl-CoA dehydrogenase deficiency. Proc Natl Acad Sci U S A. 1990 Dec;87(23):9236–9240. [PMC free article] [PubMed]
  • Yokota I, Indo Y, Coates PM, Tanaka K. Molecular basis of medium chain acyl-coenzyme A dehydrogenase deficiency. An A to G transition at position 985 that causes a lysine-304 to glutamate substitution in the mature protein is the single prevalent mutation. J Clin Invest. 1990 Sep;86(3):1000–1003. [PMC free article] [PubMed]
  • Gregersen N, Andresen BS, Bross P, Winter V, Rüdiger N, Engst S, Christensen E, Kelly D, Strauss AW, Kølvraa S, et al. Molecular characterization of medium-chain acyl-CoA dehydrogenase (MCAD) deficiency: identification of a lys329 to glu mutation in the MCAD gene, and expression of inactive mutant enzyme protein in E. coli. Hum Genet. 1991 Apr;86(6):545–551. [PubMed]
  • Saijo T, Welch WJ, Tanaka K. Intramitochondrial folding and assembly of medium-chain acyl-CoA dehydrogenase (MCAD). Demonstration of impaired transfer of K304E-variant MCAD from its complex with hsp60 to the native tetramer. J Biol Chem. 1994 Feb 11;269(6):4401–4408. [PubMed]
  • Bross P, Jespersen C, Jensen TG, Andresen BS, Kristensen MJ, Winter V, Nandy A, Kräutle F, Ghisla S, Bolundi L, et al. Effects of two mutations detected in medium chain acyl-CoA dehydrogenase (MCAD)-deficient patients on folding, oligomer assembly, and stability of MCAD enzyme. J Biol Chem. 1995 Apr 28;270(17):10284–10290. [PubMed]
  • Blakemore AI, Singleton H, Pollitt RJ, Engel PC, Kolvraa S, Gregersen N, Curtis D. Frequency of the G985 MCAD mutation in the general population. Lancet. 1991 Feb 2;337(8736):298–299. [PubMed]
  • Turnbull DM, Bartlett K, Stevens DL, Alberti KG, Gibson GJ, Johnson MA, McCulloch AJ, Sherratt HS. Short-chain acyl-CoA dehydrogenase deficiency associated with a lipid-storage myopathy and secondary carnitine deficiency. N Engl J Med. 1984 Nov 8;311(19):1232–1236. [PubMed]
  • Amendt BA, Greene C, Sweetman L, Cloherty J, Shih V, Moon A, Teel L, Rhead WJ. Short-chain acyl-coenzyme A dehydrogenase deficiency. Clinical and biochemical studies in two patients. J Clin Invest. 1987 May;79(5):1303–1309. [PMC free article] [PubMed]
  • Coates PM, Hale DE, Finocchiaro G, Tanaka K, Winter SC. Genetic deficiency of short-chain acyl-coenzyme A dehydrogenase in cultured fibroblasts from a patient with muscle carnitine deficiency and severe skeletal muscle weakness. J Clin Invest. 1988 Jan;81(1):171–175. [PMC free article] [PubMed]
  • DiDonato S, Gellera C, Peluchetti D, Uziel G, Antonelli A, Lus G, Rimoldi M. Normalization of short-chain acylcoenzyme A dehydrogenase after riboflavin treatment in a girl with multiple acylcoenzyme A dehydrogenase-deficient myopathy. Ann Neurol. 1989 May;25(5):479–484. [PubMed]
  • Farnsworth L, Shepherd IM, Johnson MA, Bindoff LA, Turnbull DM. Absence of immunoreactive enzyme protein in short-chain acylcoenzyme A dehydrogenase deficiency. Ann Neurol. 1990 Nov;28(5):717–720. [PubMed]
  • Naito E, Indo Y, Tanaka K. Short chain acyl-coenzyme A dehydrogenase (SCAD) deficiency. Immunochemical demonstration of molecular heterogeneity due to variant SCAD with differing stability. J Clin Invest. 1989 Nov;84(5):1671–1674. [PMC free article] [PubMed]
  • Naito E, Indo Y, Tanaka K. Identification of two variant short chain acyl-coenzyme A dehydrogenase alleles, each containing a different point mutation in a patient with short chain acyl-coenzyme A dehydrogenase deficiency. J Clin Invest. 1990 May;85(5):1575–1582. [PMC free article] [PubMed]
  • Bhala A, Willi SM, Rinaldo P, Bennett MJ, Schmidt-Sommerfeld E, Hale DE. Clinical and biochemical characterization of short-chain acyl-coenzyme A dehydrogenase deficiency. J Pediatr. 1995 Jun;126(6):910–915. [PubMed]
  • Hinsdale ME, Hamm DA, Wood PA. Effects of short-chain acyl-CoA dehydrogenase deficiency on development expression of metabolic enzyme genes in the mouse. Biochem Mol Med. 1996 Apr;57(2):106–115. [PubMed]
  • Przyrembel H, Wendel U, Becker K, Bremer HJ, Bruinvis L, Ketting D, Wadman SK. Glutaric aciduria type II: report on a previously undescribed metabolic disorder. Clin Chim Acta. 1976 Jan 16;66(2):227–239. [PubMed]
  • Christensen E, Kølvraa S, Gregersen N. Glutaric aciduria type II: evidence for a defect related to the electron transfer flavoprotein or its dehydrogenase. Pediatr Res. 1984 Jul;18(7):663–667. [PubMed]
  • Frerman FE, Goodman SI. Deficiency of electron transfer flavoprotein or electron transfer flavoprotein:ubiquinone oxidoreductase in glutaric acidemia type II fibroblasts. Proc Natl Acad Sci U S A. 1985 Jul;82(13):4517–4520. [PMC free article] [PubMed]
  • Rinaldo P, Welch RD, Previs SF, Schmidt-Sommerfeld E, Gargus JJ, O'Shea JJ, Zinn AB. Ethylmalonic/adipic aciduria: effects of oral medium-chain triglycerides, carnitine, and glycine on urinary excretion of organic acids, acylcarnitines, and acylglycines. Pediatr Res. 1991 Sep;30(3):216–221. [PubMed]
  • Lehnert W, Wendel U, Lindenmaier S, Böhm N. Multiple acyl-CoA dehydrogenation deficiency (glutaric aciduria type II), congenital polycystic kidneys, and symmetric warty dysplasia of the cerebral cortex in two brothers. I. Clinical, metabolical, and biochemical findings. Eur J Pediatr. 1982 Sep;139(1):56–59. [PubMed]
  • Loehr JP, Goodman SI, Frerman FE. Glutaric acidemia type II: heterogeneity of clinical and biochemical phenotypes. Pediatr Res. 1990 Mar;27(3):311–315. [PubMed]
  • Dusheiko G, Kew MC, Joffe BI, Lewin JR, Mantagos S, Tanaka K. Recurrent hypoglycemia associated with glutaric aciduria type II in an adult. N Engl J Med. 1979 Dec 27;301(26):1405–1409. [PubMed]
  • Ikeda Y, Keese SM, Tanaka K. Biosynthesis of electron transfer flavoprotein in a cell-free system and in cultured human fibroblasts. Defect in the alpha subunit synthesis is a primary lesion in glutaric aciduria type II. J Clin Invest. 1986 Oct;78(4):997–1002. [PMC free article] [PubMed]
  • Yamaguchi S, Orii T, Suzuki Y, Maeda K, Oshima M, Hashimoto T. Newly identified forms of electron transfer flavoprotein deficiency in two patients with glutaric aciduria type II. Pediatr Res. 1991 Jan;29(1):60–63. [PubMed]
  • Jackson S, Bartlett K, Land J, Moxon ER, Pollitt RJ, Leonard JV, Turnbull DM. Long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency. Pediatr Res. 1991 Apr;29(4 Pt 1):406–411. [PubMed]
  • Duran M, Wanders RJ, de Jager JP, Dorland L, Bruinvis L, Ketting D, Ijlst L, van Sprang FJ. 3-Hydroxydicarboxylic aciduria due to long-chain 3-hydroxyacyl-coenzyme A dehydrogenase deficiency associated with sudden neonatal death: protective effect of medium-chain triglyceride treatment. Eur J Pediatr. 1991 Jan;150(3):190–195. [PubMed]
  • Rocchiccioli F, Wanders RJ, Aubourg P, Vianey-Liaud C, Ijlst L, Fabre M, Cartier N, Bougneres PF. Deficiency of long-chain 3-hydroxyacyl-CoA dehydrogenase: a cause of lethal myopathy and cardiomyopathy in early childhood. Pediatr Res. 1990 Dec;28(6):657–662. [PubMed]
  • Sims HF, Brackett JC, Powell CK, Treem WR, Hale DE, Bennett MJ, Gibson B, Shapiro S, Strauss AW. The molecular basis of pediatric long chain 3-hydroxyacyl-CoA dehydrogenase deficiency associated with maternal acute fatty liver of pregnancy. Proc Natl Acad Sci U S A. 1995 Jan 31;92(3):841–845. [PMC free article] [PubMed]
  • IJlst L, Wanders RJ, Ushikubo S, Kamijo T, Hashimoto T. Molecular basis of long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency: identification of the major disease-causing mutation in the alpha-subunit of the mitochondrial trifunctional protein. Biochim Biophys Acta. 1994 Dec 8;1215(3):347–350. [PubMed]
  • IJlst L, Ruiter JP, Hoovers JM, Jakobs ME, Wanders RJ. Common missense mutation G1528C in long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency. Characterization and expression of the mutant protein, mutation analysis on genomic DNA and chromosomal localization of the mitochondrial trifunctional protein alpha subunit gene. J Clin Invest. 1996 Aug 15;98(4):1028–1033. [PMC free article] [PubMed]
  • Tein I, De Vivo DC, Hale DE, Clarke JT, Zinman H, Laxer R, Shore A, DiMauro S. Short-chain L-3-hydroxyacyl-CoA dehydrogenase deficiency in muscle: a new cause for recurrent myoglobinuria and encephalopathy. Ann Neurol. 1991 Sep;30(3):415–419. [PubMed]
  • Hardie DG. Regulation of fatty acid and cholesterol metabolism by the AMP-activated protein kinase. Biochim Biophys Acta. 1992 Feb 12;1123(3):231–238. [PubMed]
  • Zammit VA. Role of insulin in hepatic fatty acid partitioning: emerging concepts. Biochem J. 1996 Feb 15;314(Pt 1):1–14. [PMC free article] [PubMed]
  • Guzmán M, Geelen MJ. Regulation of fatty acid oxidation in mammalian liver. Biochim Biophys Acta. 1993 Apr 23;1167(3):227–241. [PubMed]
  • Neely JR, Bowman RH, Morgan HE. Effects of ventricular pressure development and palmitate on glucose transport. Am J Physiol. 1969 Apr;216(4):804–811. [PubMed]
  • Oram JF, Bennetch SL, Neely JR. Regulation of fatty acid utilization in isolated perfused rat hearts. J Biol Chem. 1973 Aug 10;248(15):5299–5309. [PubMed]
  • van der Vusse GJ, Glatz JF, Stam HC, Reneman RS. Fatty acid homeostasis in the normoxic and ischemic heart. Physiol Rev. 1992 Oct;72(4):881–940. [PubMed]
  • Lopaschuk GD, Belke DD, Gamble J, Itoi T, Schönekess BO. Regulation of fatty acid oxidation in the mammalian heart in health and disease. Biochim Biophys Acta. 1994 Aug 4;1213(3):263–276. [PubMed]
  • McGarry JD, Foster DW. Regulation of hepatic fatty acid oxidation and ketone body production. Annu Rev Biochem. 1980;49:395–420. [PubMed]
  • Quant PA, Makins RA. Metabolic control analysis of hepatic beta-oxidation: the top-down approach. Biochem Soc Trans. 1994 May;22(2):441–446. [PubMed]
  • Drynan L, Quant PA, Zammit VA. Flux control exerted by mitochondrial outer membrane carnitine palmitoyltransferase over beta-oxidation, ketogenesis and tricarboxylic acid cycle activity in hepatocytes isolated from rats in different metabolic states. Biochem J. 1996 Aug 1;317(Pt 3):791–795. [PMC free article] [PubMed]
  • Cook GA, Otto DA, Cornell NW. Differential inhibition of ketogenesis by malonyl-CoA in mitochondria from fed and starved rats. Biochem J. 1980 Dec 15;192(3):955–958. [PMC free article] [PubMed]
  • Cook GA, Stephens TW, Harris RA. Altered sensitivity of carnitine palmitoyltransferase to inhibition by malonyl-CoA in ketotic diabetic rats. Biochem J. 1984 Apr 1;219(1):337–339. [PMC free article] [PubMed]
  • Grantham BD, Zammit VA. Role of carnitine palmitoyltransferase I in the regulation of hepatic ketogenesis during the onset and reversal of chronic diabetes. Biochem J. 1988 Jan 15;249(2):409–414. [PMC free article] [PubMed]
  • Kolodziej MP, Zammit VA. Sensitivity of inhibition of rat liver mitochondrial outer-membrane carnitine palmitoyltransferase by malonyl-CoA to chemical- and temperature-induced changes in membrane fluidity. Biochem J. 1990 Dec 1;272(2):421–425. [PMC free article] [PubMed]
  • Mynatt RL, Greenhaw JJ, Cook GA. Cholate extracts of mitochondrial outer membranes increase inhibition by malonyl-CoA of carnitine palmitoyltransferase-I by a mechanism involving phospholipids. Biochem J. 1994 May 1;299(Pt 3):761–767. [PMC free article] [PubMed]
  • Ghadiminejad I, Saggerson ED. The relationship of rat liver overt carnitine palmitoyltransferase to the mitochondrial malonyl-CoA binding entity and to the latent palmitoyltransferase. Biochem J. 1990 Sep 15;270(3):787–794. [PMC free article] [PubMed]
  • Brady LJ, Silverstein LJ, Hoppel CL, Brady PS. Hepatic mitochondrial inner membrane properties and carnitine palmitoyltransferase A and B. Effect of diabetes and starvation. Biochem J. 1985 Dec 1;232(2):445–450. [PMC free article] [PubMed]
  • Grantham BD, Zammit VA. Restoration of the properties of carnitine palmitoyltransferase I in liver mitochondria during re-feeding of starved rats. Biochem J. 1986 Oct 15;239(2):485–488. [PMC free article] [PubMed]
  • Harano Y, Kashiwagi A, Kojima H, Suzuki M, Hashimoto T, Shigeta Y. Phosphorylation of carnitine palmitoyltransferase and activation by glucagon in isolated rat hepatocytes. FEBS Lett. 1985 Sep 2;188(2):267–272. [PubMed]
  • Guzmán M, Castro J. Okadaic acid stimulates carnitine palmitoyltransferase I activity and palmitate oxidation in isolated rat hepatocytes. FEBS Lett. 1991 Oct 7;291(1):105–108. [PubMed]
  • Guzmán M, Geelen MJ. Activity of carnitine palmitoyltransferase in mitochondrial outer membranes and peroxisomes in digitonin-permeabilized hepatocytes. Selective modulation of mitochondrial enzyme activity by okadaic acid. Biochem J. 1992 Oct 15;287(Pt 2):487–492. [PMC free article] [PubMed]
  • Guzman M, Kolodziej MP, Caldwell A, Corstorphine CG, Zammit VA. Evidence against direct involvement of phosphorylation in the activation of carnitine palmitoyltransferase by okadaic acid in rat hepatocytes. Biochem J. 1994 Jun 15;300(Pt 3):693–699. [PMC free article] [PubMed]
  • Guzmán M, Velasco G, Castro J, Zammit VA. Inhibition of carnitine palmitoyltransferase I by hepatocyte swelling. FEBS Lett. 1994 May 16;344(2-3):239–241. [PubMed]
  • Moir AM, Zammit VA. Insulin-independent and extremely rapid switch in the partitioning of hepatic fatty acids from oxidation to esterification in starved-refed diabetic rats. Possible roles for changes in cell pH and volume. Biochem J. 1995 Feb 1;305(Pt 3):953–958. [PMC free article] [PubMed]
  • Mills SE, Foster DW, McGarry JD. Effects of pH on the interaction of substrates and malonyl-CoA with mitochondrial carnitine palmitoyltransferase I. Biochem J. 1984 Apr 15;219(2):601–608. [PMC free article] [PubMed]
  • Velasco G, Sánchez C, Geelen MJ, Guzmán M. Are cytoskeletal components involved in the control of hepatic carnitine palmitoyltransferase I activity? Biochem Biophys Res Commun. 1996 Jul 25;224(3):754–759. [PubMed]
  • Park EA, Mynatt RL, Cook GA, Kashfi K. Insulin regulates enzyme activity, malonyl-CoA sensitivity and mRNA abundance of hepatic carnitine palmitoyltransferase-I. Biochem J. 1995 Sep 15;310(Pt 3):853–858. [PMC free article] [PubMed]
  • Saggerson ED, Carpenter CA. Carnitine palmitoyltransferase and carnitine octanoyltransferase activities in liver, kidney cortex, adipocyte, lactating mammary gland, skeletal muscle and heart. FEBS Lett. 1981 Jul 6;129(2):229–232. [PubMed]
  • McGarry JD, Mills SE, Long CS, Foster DW. Observations on the affinity for carnitine, and malonyl-CoA sensitivity, of carnitine palmitoyltransferase I in animal and human tissues. Demonstration of the presence of malonyl-CoA in non-hepatic tissues of the rat. Biochem J. 1983 Jul 15;214(1):21–28. [PMC free article] [PubMed]
  • Singh B, Stakkestad JA, Bremer J, Borrebaek B. Determination of malonyl-coenzyme A in rat heart, kidney, and liver: a comparison between acetyl-coenzyme A and butyryl-coenzyme A as fatty acid synthase primers in the assay procedure. Anal Biochem. 1984 Apr;138(1):107–111. [PubMed]
  • Hülsmann WC. Enzymen en homeostase. Folia Med Neerl. 1966 Sep;9(4):137–144. [PubMed]
  • Scholte HR, Luyt-Houwen IE, Dubelaar ML, Hulsmann WC. The source of malonyl-CoA in rat heart. The calcium paradox releases acetyl-CoA carboxylase and not propionyl-CoA carboxylase. FEBS Lett. 1986 Mar 17;198(1):47–50. [PubMed]
  • Bird MI, Saggerson ED. Binding of malonyl-CoA to isolated mitochondria. Evidence for high- and low-affinity sites in liver and heart and relationship to inhibition of carnitine palmitoyltransferase activity. Biochem J. 1984 Sep 15;222(3):639–647. [PMC free article] [PubMed]
  • Dugan RE, Osterlund BR, Drong RF, Swenson TL. A malonyl-CoA-binding protein from liver. Biochem Biophys Res Commun. 1987 Aug 31;147(1):234–241. [PubMed]
  • Taegtmeyer H, Hems R, Krebs HA. Utilization of energy-providing substrates in the isolated working rat heart. Biochem J. 1980 Mar 15;186(3):701–711. [PMC free article] [PubMed]
  • Bielefeld DR, Vary TC, Neely JR. Inhibition of carnitine palmitoyl-CoA transferase activity and fatty acid oxidation by lactate and oxfenicine in cardiac muscle. J Mol Cell Cardiol. 1985 Jun;17(6):619–625. [PubMed]
  • Winder WW, Hardie DG. Inactivation of acetyl-CoA carboxylase and activation of AMP-activated protein kinase in muscle during exercise. Am J Physiol. 1996 Feb;270(2 Pt 1):E299–E304. [PubMed]
  • Kudo N, Barr AJ, Barr RL, Desai S, Lopaschuk GD. High rates of fatty acid oxidation during reperfusion of ischemic hearts are associated with a decrease in malonyl-CoA levels due to an increase in 5'-AMP-activated protein kinase inhibition of acetyl-CoA carboxylase. J Biol Chem. 1995 Jul 21;270(29):17513–17520. [PubMed]
  • England PJ, Robinson BH. The permeability of rat heart mitochondria to citrate. Biochem J. 1969 Mar;112(1):8P–8P. [PMC free article] [PubMed]
  • Awan MM, Saggerson ED. Malonyl-CoA metabolism in cardiac myocytes and its relevance to the control of fatty acid oxidation. Biochem J. 1993 Oct 1;295(Pt 1):61–66. [PMC free article] [PubMed]
  • Thampy KG. Formation of malonyl coenzyme A in rat heart. Identification and purification of an isozyme of A carboxylase from rat heart. J Biol Chem. 1989 Oct 25;264(30):17631–17634. [PubMed]
  • Bianchi A, Evans JL, Iverson AJ, Nordlund AC, Watts TD, Witters LA. Identification of an isozymic form of acetyl-CoA carboxylase. J Biol Chem. 1990 Jan 25;265(3):1502–1509. [PubMed]
  • Kudo N, Barr AJ, Barr RL, Desai S, Lopaschuk GD. High rates of fatty acid oxidation during reperfusion of ischemic hearts are associated with a decrease in malonyl-CoA levels due to an increase in 5'-AMP-activated protein kinase inhibition of acetyl-CoA carboxylase. J Biol Chem. 1995 Jul 21;270(29):17513–17520. [PubMed]
  • Lopaschuk GD, Belke DD, Gamble J, Itoi T, Schönekess BO. Regulation of fatty acid oxidation in the mammalian heart in health and disease. Biochim Biophys Acta. 1994 Aug 4;1213(3):263–276. [PubMed]
  • Edwards YH, Chase JF, Edwards MR, Tubbs PK. Carnitine acetyltransferase: the question of multiple forms. Eur J Biochem. 1974 Jul 1;46(1):209–215. [PubMed]
  • Bakker A, Biermans W, Van Belle H, De Bie M, Bernaert I, Jacob W. Ultrastructural localisation of carnitine acetyltransferase activity in mitochondria of rat myocardium. Biochim Biophys Acta. 1994 Mar 29;1185(1):97–102. [PubMed]
  • Saddik M, Gamble J, Witters LA, Lopaschuk GD. Acetyl-CoA carboxylase regulation of fatty acid oxidation in the heart. J Biol Chem. 1993 Dec 5;268(34):25836–25845. [PubMed]
  • Reichmann H, De Vivo DC. Coordinate enzymatic activity of beta-oxidation and purine nucleotide cycle in a diversity of muscle and other organs of rat. Comp Biochem Physiol B. 1991;98(2-3):327–331. [PubMed]
  • Melde K, Jackson S, Bartlett K, Sherratt HS, Ghisla S. Metabolic consequences of methylenecyclopropylglycine poisoning in rats. Biochem J. 1991 Mar 1;274(Pt 2):395–400. [PMC free article] [PubMed]
  • Kunz WS. Application of the theory of steady-state flux control to mitochondrial beta-oxidation. Biomed Biochim Acta. 1991;50(12):1143–1157. [PubMed]
  • Aoyama T, Ueno I, Kamijo T, Hashimoto T. Rat very-long-chain acyl-CoA dehydrogenase, a novel mitochondrial acyl-CoA dehydrogenase gene product, is a rate-limiting enzyme in long-chain fatty acid beta-oxidation system. cDNA and deduced amino acid sequence and distinct specificities of the cDNA-expressed protein. J Biol Chem. 1994 Jul 22;269(29):19088–19094. [PubMed]
  • Davidson B, Schulz H. Separation, properties, and regulation of acyl coenzyme A dehydrogenases from bovine heat and liver. Arch Biochem Biophys. 1982 Jan;213(1):155–162. [PubMed]
  • Powell PJ, Lau SM, Killian D, Thorpe C. Interaction of acyl coenzyme A substrates and analogues with pig kidney medium-chain acyl-coA dehydrogenase. Biochemistry. 1987 Jun 16;26(12):3704–3710. [PubMed]
  • Schifferdecker J, Schulz H. The inhibition of L-3-hydroxyacyl-CoA dehydrogenase by acetoacetyl-CoA and the possible effect of this inhibitor on fatty acid oxidation. Life Sci. 1974 Apr 16;14(8):1487–1492. [PubMed]
  • He XY, Yang SY, Schulz H. Inhibition of enoyl-CoA hydratase by long-chain L-3-hydroxyacyl-CoA and its possible effect on fatty acid oxidation. Arch Biochem Biophys. 1992 Nov 1;298(2):527–531. [PubMed]
  • Olowe Y, Schulz H. Regulation of thiolases from pig heart. Control of fatty acid oxidation in heart. Eur J Biochem. 1980 Aug;109(2):425–429. [PubMed]
  • Wang HY, Baxter CF, Jr, Schulz H. Regulation of fatty acid beta-oxidation in rat heart mitochondria. Arch Biochem Biophys. 1991 Sep;289(2):274–280. [PubMed]
  • Sleboda J, Pourfarzam M, Bartlett K, Osmundsen H. Effects of added l-carnitine, acetyl-CoA and CoA on peroxisomal beta-oxidation of [U-14C]hexadecanoate by isolated peroxisomal fractions. Biochim Biophys Acta. 1995 Oct 5;1258(3):309–318. [PubMed]
  • Eaton S, Bhuiyan AK, Kler RS, Turnbull DM, Bartlett K. Intramitochondrial control of the oxidation of hexadecanoate in skeletal muscle. A study of the acyl-CoA esters which accumulate during rat skeletal-muscle mitochondrial beta-oxidation of [U-14C]hexadecanoate and [U-14C]hexadecanoyl-carnitine. Biochem J. 1993 Jan 1;289(Pt 1):161–168. [PMC free article] [PubMed]
  • Eaton S, Turnbull DM, Bartlett K. Redox control of beta-oxidation in rat liver mitochondria. Eur J Biochem. 1994 Mar 15;220(3):671–681. [PubMed]
  • Quant PA, Robin D, Robin P, Girard J, Brand MD. A top-down control analysis in isolated rat liver mitochondria: can the 3-hydroxy-3-methylglutaryl-CoA pathway be rate-controlling for ketogenesis? Biochim Biophys Acta. 1993 Feb 13;1156(2):135–143. [PubMed]
  • Quant PA, Robin D, Robin P, Ferre P, Brand MD, Girard J. Control of hepatic mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase during the foetal/neonatal transition, suckling and weaning in the rat. Eur J Biochem. 1991 Jan 30;195(2):449–454. [PubMed]
  • Garland PB, Shepherd D, Yates DW. Steady-state concentrations of coenzyme A, acetyl-coenzyme A and long-chain fatty acyl-coenzyme A in rat-liver mitochondria oxidizing palmitate. Biochem J. 1965 Nov;97(2):587–594. [PMC free article] [PubMed]
  • Turnbull DM, Bone AJ, Bartlett K, Koundakjian PP, Sherratt HS. The effects of valproate on intermediary metabolism in isolated rat hepatocytes and intact rats. Biochem Pharmacol. 1983 Jun 15;32(12):1887–1892. [PubMed]
  • Bremer J, Wojtczak AB. Factors controlling the rate of fatty acid -oxidation in rat liver mitochondria. Biochim Biophys Acta. 1972 Dec 8;280(4):515–530. [PubMed]
  • Kler RS, Jackson S, Bartlett K, Bindoff LA, Eaton S, Pourfarzam M, Frerman FE, Goodman SI, Watmough NJ, Turnbull DM. Quantitation of acyl-CoA and acylcarnitine esters accumulated during abnormal mitochondrial fatty acid oxidation. J Biol Chem. 1991 Dec 5;266(34):22932–22938. [PubMed]
  • Frerman FE. Reaction of electron-transfer flavoprotein ubiquinone oxidoreductase with the mitochondrial respiratory chain. Biochim Biophys Acta. 1987 Sep 10;893(2):161–169. [PubMed]
  • Beckmann JD, Frerman FE, McKean MC. Inhibition of general acyl CoA dehydrogenase by electron transfer flavoprotein semiquinone. Biochem Biophys Res Commun. 1981 Oct 30;102(4):1290–1294. [PubMed]
  • Kunz WS. Evaluation of electron-transfer flavoprotein and alpha-lipoamide dehydrogenase redox states by two-channel fluorimetry and its application to the investigation of beta-oxidation. Biochim Biophys Acta. 1988 Jan 20;932(1):8–16. [PubMed]
  • Halestrap AP, Dunlop JL. Intramitochondrial regulation of fatty acid beta-oxidation occurs between flavoprotein and ubiquinone. A role for changes in the matrix volume. Biochem J. 1986 Nov 1;239(3):559–565. [PMC free article] [PubMed]
  • Halestrap AP. The regulation of the oxidation of fatty acids and other substrates in rat heart mitochondria by changes in the matrix volume induced by osmotic strength, valinomycin and Ca2+. Biochem J. 1987 May 15;244(1):159–164. [PMC free article] [PubMed]
  • Sumegi B, Srere PA. Binding of the enzymes of fatty acid beta-oxidation and some related enzymes to pig heart inner mitochondrial membrane. J Biol Chem. 1984 Jul 25;259(14):8748–8752. [PubMed]
  • Kispal G, Sumegi B, Alkonyi I. Isolation and characterization of 3-hydroxyacyl coenzyme A dehydrogenase-binding protein from pig heart inner mitochondrial membrane. J Biol Chem. 1986 Oct 25;261(30):14209–14213. [PubMed]
  • Furuta S, Hashimoto T. Purification and properties of 3-hydroxyacyl coenzyme A dehydrogenase-binding protein from rat liver mitochondria. J Biochem. 1995 Oct;118(4):810–818. [PubMed]
  • Stanley KK, Tubbs PK. The occurrence of intermediates in mitochondrial fatty acid oxidation. FEBS Lett. 1974 Mar 1;39(3):325–328. [PubMed]
  • Stanley KK, Tubbs PK. The role of intermediates in mitochondrial fatty acid oxidation. Biochem J. 1975 Jul;150(1):77–88. [PMC free article] [PubMed]
  • Lopes-Cardozo M, Klazinga W, van den Bergh SG. Accumulation of carnitine esters of beta-oxidation intermediates during palmitate oxidation by rat-liver mitochondria. Eur J Biochem. 1978 Feb;83(2):629–634. [PubMed]
  • Watmough NJ, Turnbull DM, Sherratt HS, Bartlett K. Measurement of the acyl-CoA intermediates of beta-oxidation by h.p.l.c. with on-line radiochemical and photodiode-array detection. Application to the study of [U-14C]hexadecanoate oxidation by intact rat liver mitochondria. Biochem J. 1989 Aug 15;262(1):261–269. [PMC free article] [PubMed]
  • Bhuiyan AK, Jackson S, Turnbull DM, Aynsley-Green A, Leonard JV, Bartlett K. The measurement of carnitine and acyl-carnitines: application to the investigation of patients with suspected inherited disorders of mitochondrial fatty acid oxidation. Clin Chim Acta. 1992 May 15;207(3):185–204. [PubMed]
  • Fukushima T, Decker RV, Anderson WM, Spivey HO. Substrate channeling of NADH and binding of dehydrogenases to complex I. J Biol Chem. 1989 Oct 5;264(28):16483–16488. [PubMed]
  • Middleton B. The mitochondrial long-chain trifunctional enzyme: 2-enoyl-CoA hydratase, 3-hydroxyacyl-CoA dehydrogenase and 3-oxoacyl-CoA thiolase. Biochem Soc Trans. 1994 May;22(2):427–431. [PubMed]
  • Cornish-Bowden A, Cárdenas ML. Channelling can affect concentrations of metabolic intermediates at constant net flux: artefact or reality? Eur J Biochem. 1993 Apr 1;213(1):87–92. [PubMed]
  • Mendes P, Kell DB, Westerhoff HV. Why and when channelling can decrease pool size at constant net flux in a simple dynamic channel. Biochim Biophys Acta. 1996 Mar 15;1289(2):175–186. [PubMed]
  • Nada MA, Rhead WJ, Sprecher H, Schulz H, Roe CR. Evidence for intermediate channeling in mitochondrial beta-oxidation. J Biol Chem. 1995 Jan 13;270(2):530–535. [PubMed]
  • Pourfarzam M, Schaefer J, Turnbull DM, Bartlett K. Analysis of fatty acid oxidation intermediates in cultured fibroblasts to detect mitochondrial oxidation disorders. Clin Chem. 1994 Dec;40(12):2267–2275. [PubMed]
  • Suzuki H, Kawarabayasi Y, Kondo J, Abe T, Nishikawa K, Kimura S, Hashimoto T, Yamamoto T. Structure and regulation of rat long-chain acyl-CoA synthetase. J Biol Chem. 1990 May 25;265(15):8681–8685. [PubMed]
  • Clarke PR, Bieber LL. Isolation and purification of mitochondrial carnitine octanoyltransferase activities from beef heart. J Biol Chem. 1981 Oct 10;256(19):9861–9868. [PubMed]
  • Ikeda Y, Dabrowski C, Tanaka K. Separation and properties of five distinct acyl-CoA dehydrogenases from rat liver mitochondria. Identification of a new 2-methyl branched chain acyl-CoA dehydrogenase. J Biol Chem. 1983 Jan 25;258(2):1066–1076. [PubMed]
  • Finocchiaro G, Ito M, Tanaka K. Purification and properties of short chain acyl-CoA, medium chain acyl-CoA, and isovaleryl-CoA dehydrogenases from human liver. J Biol Chem. 1987 Jun 15;262(17):7982–7989. [PubMed]
  • Furuta S, Miyazawa S, Hashimoto T. Purification and properties of rat liver acyl-CoA dehydrogenases and electron transfer flavoprotein. J Biochem. 1981 Dec;90(6):1739–1750. [PubMed]
  • Gehring U, Riepertinger C. Dissoziation und Rekonstitution der Thiolase. Eur J Biochem. 1968 Nov;6(2):281–292. [PubMed]
  • Dommes V, Kunau WH. Purification and properties of acyl coenzyme A dehydrogenases from bovine liver. Formation of 2-trans,4-cis-decadienoyl coenzyme A. J Biol Chem. 1984 Feb 10;259(3):1789–1797. [PubMed]
  • Palosaari PM, Kilponen JM, Sormunen RT, Hassinen IE, Hiltunen JK. Delta 3,delta 2-enoyl-CoA isomerases. Characterization of the mitochondrial isoenzyme in the rat. J Biol Chem. 1990 Feb 25;265(6):3347–3353. [PubMed]
  • Kilponen JM, Palosaari PM, Hiltunen JK. Occurrence of a long-chain delta 3,delta 2-enoyl-CoA isomerase in rat liver. Biochem J. 1990 Jul 1;269(1):223–226. [PMC free article] [PubMed]
  • Luo MJ, Smeland TE, Shoukry K, Schulz H. Delta 3,5, delta 2,4-dienoyl-CoA isomerase from rat liver mitochondria. Purification and characterization of a new enzyme involved in the beta-oxidation of unsaturated fatty acids. J Biol Chem. 1994 Jan 28;269(4):2384–2388. [PubMed]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

  • Cited in Books
    Cited in Books
    PubMed Central articles cited in books
  • MedGen
    MedGen
    Related information in MedGen
  • PubMed
    PubMed
    PubMed citations for these articles
  • Substance
    Substance
    PubChem Substance links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...