Logo of geneticsGeneticsCurrent IssueInformation for AuthorsEditorial BoardSubscribeSubmit a Manuscript
Genetics. 1981 Sep; 99(1): 1–23.
PMCID: PMC1214481

Periodic Selection, Infectious Gene Exchange and the Genetic Structure of E. COLI Populations


As a consequence of sequential replacements by clones of higher fitness (periodic selection), bacterial populations would be continually purged of genetic variability, and the fate of selectively neutral alleles in very large populations of bacteria would be similar to that in demes of sexually reproducing organisms with small genetically effective population sizes. The significance of periodic selection in reducing genetic variability in these clonally reproducing species is dependent on the amount of genetic exchange between clones (recombination). In an effort to determine the relationship between the rates of periodic selection, recombination and the genetically effective sizes of bacterial populations, a model for periodic selection and infectious gene exchange has been developed and its properties analyzed. It shows that, for a given periodic selection regime, genetically effective population size increases exponentially with the rate of recombination.—With the parameters of this model in the range anticipated for natural populations of E. coli, the purging effects of periodic selection on genetic variability are significant; individual populations or lineages of this bacterial species would have very small genetically effective population sizes.—Based on this result, some other a priori considerations and a review of the results of epidemiological and genetic variability studies, it is postulated that E. coli is composed of a relatively limited number of geographically widespread and genetically nearly isolated and monomorphic lineages. The implications of these considerations of the genetic structure of E. coli populations of the interpretation of protein variation and the neutral gene hypothesis are discussed.

Full Text

The Full Text of this article is available as a PDF (1.4M).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Caugant DA, Levin BR, Selander RK. Genetic diversity and temporal variation in the E. coli population of a human host. Genetics. 1981 Jul;98(3):467–490. [PMC free article] [PubMed]
  • Cooke EM, Kumar PJ, Shooter RA, Rousseau SA, Foulkes AL. Hospital food as a possible source of Escherichia coli in patients. Lancet. 1970 Feb 28;1(7644):436–437. [PubMed]
  • Koch AL. The pertinence of the periodic selection phenomenon to prokaryote evolution. Genetics. 1974 May;77(1):127–142. [PMC free article] [PubMed]
  • Low KB. Escherichia coli K-12 F-prime factors, old and new. Bacteriol Rev. 1972 Dec;36(4):587–607. [PMC free article] [PubMed]
  • Mandel M, Higa A. Calcium-dependent bacteriophage DNA infection. J Mol Biol. 1970 Oct 14;53(1):159–162. [PubMed]
  • Milkman R. How much room is left for non-Darwinian evolution? Brookhaven Symp Biol. 1972;23:217–229. [PubMed]
  • Savage DC. Microbial ecology of the gastrointestinal tract. Annu Rev Microbiol. 1977;31:107–133. [PubMed]
  • SEARS HJ, BROWNLEE I, UCHIYAMA JK. Persistence of individual strains of Escherichia coli in the intestinal tract of man. J Bacteriol. 1950 Feb;59(2):293–301. [PMC free article] [PubMed]
  • Selander RK, Levin BR. Genetic diversity and structure in Escherichia coli populations. Science. 1980 Oct 31;210(4469):545–547. [PubMed]

Articles from Genetics are provided here courtesy of Genetics Society of America


Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...


  • Cited in Books
    Cited in Books
    PubMed Central articles cited in books
  • MedGen
    Related information in MedGen
  • PubMed
    PubMed citations for these articles

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...