• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of geneticsGeneticsCurrent IssueInformation for AuthorsEditorial BoardSubscribeSubmit a Manuscript
Genetics. May 1997; 146(1): 207–226.
PMCID: PMC1207936

A Screen for Genetic Loci Required for Hypodermal Cell and Glial-like Cell Development during Caenorhabditis Elegans Embryogenesis


The Caenorhabditis elegans lin-26 gene is expressed in all nonneuronal ectodermal cells. To identify genes required to specify the fates of ectodermal cells, we have conducted screens designed to identify loci whose zygotic function would be required for normal lin-26 expression. First, we examined 90 deficiencies covering 75% of the genome; second, we examined the progeny of 3600 genomes after EMS mutagenesis. We identified six loci that appear to be required for normal lin-26 expression. We argue that the deficiency eDf19 deletes a gene involved in specifying hypodermal cell fates. The genes emb-29 (previously known) and ale-1 (newly found) could be involved in a cell cycle function and/or in specifying the fates of some precursors within different lineages that generate hypodermal cells and nonectodermal cells. We argue that the overlapping deficiencies qDf7, qDf8 and qDf9 delete a gene required to limit the number of nonneuronal ectodermal cells. We suggest that the deficiencies ozDf2, itDf2 and nDf42 delete genes required, directly or indirectly, to repress lin-26 expression in cells that normally do not express lin-26. We discuss the implications of these findings concerning the generation of the ectoderm.

Full Text

The Full Text of this article is available as a PDF (7.3M).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Ahnn J, Fire A. A screen for genetic loci required for body-wall muscle development during embryogenesis in Caenorhabditis elegans. Genetics. 1994 Jun;137(2):483–498. [PMC free article] [PubMed]
  • Ahringer J. Posterior patterning by the Caenorhabditis elegans even-skipped homolog vab-7. Genes Dev. 1996 May 1;10(9):1120–1130. [PubMed]
  • Ambros V, Horvitz HR. Heterochronic mutants of the nematode Caenorhabditis elegans. Science. 1984 Oct 26;226(4673):409–416. [PubMed]
  • Anderson P, Brenner S. A selection for myosin heavy chain mutants in the nematode Caenorhabditis elegans. Proc Natl Acad Sci U S A. 1984 Jul;81(14):4470–4474. [PMC free article] [PubMed]
  • Artavanis-Tsakonas S, Matsuno K, Fortini ME. Notch signaling. Science. 1995 Apr 14;268(5208):225–232. [PubMed]
  • Barnes TM, Kohara Y, Coulson A, Hekimi S. Meiotic recombination, noncoding DNA and genomic organization in Caenorhabditis elegans. Genetics. 1995 Sep;141(1):159–179. [PMC free article] [PubMed]
  • Barton MK, Kimble J. fog-1, a regulatory gene required for specification of spermatogenesis in the germ line of Caenorhabditis elegans. Genetics. 1990 May;125(1):29–39. [PMC free article] [PubMed]
  • Blackwell TK, Bowerman B, Priess JR, Weintraub H. Formation of a monomeric DNA binding domain by Skn-1 bZIP and homeodomain elements. Science. 1994 Oct 28;266(5185):621–628. [PubMed]
  • Bowerman B, Draper BW, Mello CC, Priess JR. The maternal gene skn-1 encodes a protein that is distributed unequally in early C. elegans embryos. Cell. 1993 Aug 13;74(3):443–452. [PubMed]
  • Brenner S. The genetics of Caenorhabditis elegans. Genetics. 1974 May;77(1):71–94. [PMC free article] [PubMed]
  • Cassada R, Isnenghi E, Culotti M, von Ehrenstein G. Genetic analysis of temperature-sensitive embryogenesis mutants in Caenorhabditis elegans. Dev Biol. 1981 May;84(1):193–205. [PubMed]
  • Charest DL, Clark DV, Green ME, Baillie DL. Genetic and fine structure analysis of unc-26(IV) and adjacent regions in Caenorhabditis elegans. Mol Gen Genet. 1990 May;221(3):459–465. [PubMed]
  • Chen L, Krause M, Draper B, Weintraub H, Fire A. Body-wall muscle formation in Caenorhabditis elegans embryos that lack the MyoD homolog hlh-1. Science. 1992 Apr 10;256(5054):240–243. [PubMed]
  • Clark DV, Johnsen RC, McKim KS, Baillie DL. Analysis of lethal mutations induced in a mutator strain that activates transposable elements in Caenorhabditis elegans. Genome. 1990 Feb;33(1):109–114. [PubMed]
  • Clark DV, Suleman DS, Beckenbach KA, Gilchrist EJ, Baillie DL. Molecular cloning and characterization of the dpy-20 gene of Caenorhabditis elegans. Mol Gen Genet. 1995 May 10;247(3):367–378. [PubMed]
  • DeLong L, Plenefisch JD, Klein RD, Meyer BJ. Feedback control of sex determination by dosage compensation revealed through Caenorhabditis elegans sdc-3 mutations. Genetics. 1993 Apr;133(4):875–896. [PMC free article] [PubMed]
  • Edgley ML, Baillie DL, Riddle DL, Rose AM. Genetic balancers. Methods Cell Biol. 1995;48:147–184. [PubMed]
  • Eeckman FH, Durbin R. ACeDB and macace. Methods Cell Biol. 1995;48:583–605. [PubMed]
  • Ellis HM, Horvitz HR. Genetic control of programmed cell death in the nematode C. elegans. Cell. 1986 Mar 28;44(6):817–829. [PubMed]
  • Ellis RE, Horvitz HR. Two C. elegans genes control the programmed deaths of specific cells in the pharynx. Development. 1991 Jun;112(2):591–603. [PubMed]
  • Ferguson EL, Sternberg PW, Horvitz HR. A genetic pathway for the specification of the vulval cell lineages of Caenorhabditis elegans. Nature. 1987 Mar 19;326(6110):259–267. [PubMed]
  • Ferguson EL, Horvitz HR. The multivulva phenotype of certain Caenorhabditis elegans mutants results from defects in two functionally redundant pathways. Genetics. 1989 Sep;123(1):109–121. [PMC free article] [PubMed]
  • Finney M, Ruvkun G. The unc-86 gene product couples cell lineage and cell identity in C. elegans. Cell. 1990 Nov 30;63(5):895–905. [PubMed]
  • Foe VE. Mitotic domains reveal early commitment of cells in Drosophila embryos. Development. 1989 Sep;107(1):1–22. [PubMed]
  • Francis R, Waterston RH. Muscle cell attachment in Caenorhabditis elegans. J Cell Biol. 1991 Aug;114(3):465–479. [PMC free article] [PubMed]
  • Goetinck S, Waterston RH. The Caenorhabditis elegans UNC-87 protein is essential for maintenance, but not assembly, of bodywall muscle. J Cell Biol. 1994 Oct;127(1):71–78. [PMC free article] [PubMed]
  • Greenwald IS, Horvitz HR. unc-93(e1500): A behavioral mutant of Caenorhabditis elegans that defines a gene with a wild-type null phenotype. Genetics. 1980 Sep;96(1):147–164. [PMC free article] [PubMed]
  • Guo S, Kemphues KJ. Molecular genetics of asymmetric cleavage in the early Caenorhabditis elegans embryo. Curr Opin Genet Dev. 1996 Aug;6(4):408–415. [PubMed]
  • Hecht RM, Berg-Zabelshansky M, Rao PN, Davis FM. Conditional absence of mitosis-specific antigens in a temperature-sensitive embryonic-arrest mutant of Caenorhabditis elegans. J Cell Sci. 1987 Mar;87(Pt 2):305–314. [PubMed]
  • Hengartner MO, Ellis RE, Horvitz HR. Caenorhabditis elegans gene ced-9 protects cells from programmed cell death. Nature. 1992 Apr 9;356(6369):494–499. [PubMed]
  • Herman RK. Crossover suppressors and balanced recessive lethals in Caenorhabditis elegans. Genetics. 1978 Jan;88(1):49–65. [PMC free article] [PubMed]
  • Hodgkin J, Horvitz HR, Brenner S. Nondisjunction Mutants of the Nematode CAENORHABDITIS ELEGANS. Genetics. 1979 Jan;91(1):67–94. [PMC free article] [PubMed]
  • Hodgkin J. Sex determination in the nematode C. elegans: analysis of tra-3 suppressors and characterization of fem genes. Genetics. 1986 Sep;114(1):15–52. [PMC free article] [PubMed]
  • Hodgkin J, Plasterk RH, Waterston RH. The nematode Caenorhabditis elegans and its genome. Science. 1995 Oct 20;270(5235):410–414. [PubMed]
  • Horvitz HR, Brenner S, Hodgkin J, Herman RK. A uniform genetic nomenclature for the nematode Caenorhabditis elegans. Mol Gen Genet. 1979 Sep;175(2):129–133. [PubMed]
  • Hosoya T, Takizawa K, Nitta K, Hotta Y. glial cells missing: a binary switch between neuronal and glial determination in Drosophila. Cell. 1995 Sep 22;82(6):1025–1036. [PubMed]
  • Hsu DR, Meyer BJ. The dpy-30 gene encodes an essential component of the Caenorhabditis elegans dosage compensation machinery. Genetics. 1994 Aug;137(4):999–1018. [PMC free article] [PubMed]
  • Hutter H, Schnabel R. Specification of anterior-posterior differences within the AB lineage in the C. elegans embryo: a polarising induction. Development. 1995 May;121(5):1559–1568. [PubMed]
  • Johnsen RC, Baillie DL. Formaldehyde mutagenesis of the eT1 balanced region in Caenorhabditis elegans: dose-response curve and the analysis of mutational events. Mutat Res. 1988 Sep;201(1):137–147. [PubMed]
  • Jones AR, Schedl T. Mutations in gld-1, a female germ cell-specific tumor suppressor gene in Caenorhabditis elegans, affect a conserved domain also found in Src-associated protein Sam68. Genes Dev. 1995 Jun 15;9(12):1491–1504. [PubMed]
  • Jones BW, Fetter RD, Tear G, Goodman CS. glial cells missing: a genetic switch that controls glial versus neuronal fate. Cell. 1995 Sep 22;82(6):1013–1023. [PubMed]
  • Labouesse M, Sookhareea S, Horvitz HR. The Caenorhabditis elegans gene lin-26 is required to specify the fates of hypodermal cells and encodes a presumptive zinc-finger transcription factor. Development. 1994 Sep;120(9):2359–2368. [PubMed]
  • Labouesse M, Hartwieg E, Horvitz HR. The Caenorhabditis elegans LIN-26 protein is required to specify and/or maintain all non-neuronal ectodermal cell fates. Development. 1996 Sep;122(9):2579–2588. [PubMed]
  • Lundquist EA, Herman RK. The mec-8 gene of Caenorhabditis elegans affects muscle and sensory neuron function and interacts with three other genes: unc-52, smu-1 and smu-2. Genetics. 1994 Sep;138(1):83–101. [PMC free article] [PubMed]
  • Mango SE, Lambie EJ, Kimble J. The pha-4 gene is required to generate the pharyngeal primordium of Caenorhabditis elegans. Development. 1994 Oct;120(10):3019–3031. [PubMed]
  • Manser J, Wood WB. Mutations affecting embryonic cell migrations in Caenorhabditis elegans. Dev Genet. 1990;11(1):49–64. [PubMed]
  • McKim KS, Heschl MF, Rosenbluth RE, Baillie DL. Genetic organization of the unc-60 region in Caenorhabditis elegans. Genetics. 1988 Jan;118(1):49–59. [PMC free article] [PubMed]
  • McKim KS, Starr T, Rose AM. Genetic and molecular analysis of the dpy-14 region in Caenorhabditis elegans. Mol Gen Genet. 1992 May;233(1-2):241–251. [PubMed]
  • McKim KS, Peters K, Rose AM. Two types of sites required for meiotic chromosome pairing in Caenorhabditis elegans. Genetics. 1993 Jul;134(3):749–768. [PMC free article] [PubMed]
  • Meneely PM, Herman RK. Lethals, steriles and deficiencies in a region of the X chromosome of Caenorhabditis elegans. Genetics. 1979 May;92(1):99–115. [PMC free article] [PubMed]
  • Miller DM, 3rd, Ortiz I, Berliner GC, Epstein HF. Differential localization of two myosins within nematode thick filaments. Cell. 1983 Sep;34(2):477–490. [PubMed]
  • Podbilewicz B, White JG. Cell fusions in the developing epithelial of C. elegans. Dev Biol. 1994 Feb;161(2):408–424. [PubMed]
  • Priess JR, Hirsh DI. Caenorhabditis elegans morphogenesis: the role of the cytoskeleton in elongation of the embryo. Dev Biol. 1986 Sep;117(1):156–173. [PubMed]
  • Priess JR. Establishment of initial asymmetry in early Caenorhabditis elegans embryos. Curr Opin Genet Dev. 1994 Aug;4(4):563–568. [PubMed]
  • Rogalski TM, Riddle DL. A Caenorhabditis elegans RNA polymerase II gene, ama-1 IV, and nearby essential genes. Genetics. 1988 Jan;118(1):61–74. [PMC free article] [PubMed]
  • Rosenbluth RE, Cuddeford C, Baillie DL. Mutagenesis in Caenorhabditis elegans. II. A spectrum of mutational events induced with 1500 r of gamma-radiation. Genetics. 1985 Mar;109(3):493–511. [PMC free article] [PubMed]
  • Savage C, Hamelin M, Culotti JG, Coulson A, Albertson DG, Chalfie M. mec-7 is a beta-tubulin gene required for the production of 15-protofilament microtubules in Caenorhabditis elegans. Genes Dev. 1989 Jun;3(6):870–881. [PubMed]
  • Schauer IE, Wood WB. Early C. elegans embryos are transcriptionally active. Development. 1990 Dec;110(4):1303–1317. [PubMed]
  • Schnabel R. Pattern formation: regional specification in the early C. elegans embryo. Bioessays. 1996 Jul;18(7):591–594. [PubMed]
  • Sigurdson DC, Spanier GJ, Herman RK. Caenorhabditis elegans deficiency mapping. Genetics. 1984 Oct;108(2):331–345. [PMC free article] [PubMed]
  • Stewart HI, Rosenbluth RE, Baillie DL. Most ultraviolet irradiation induced mutations in the nematode Caenorhabditis elegans are chromosomal rearrangements. Mutat Res. 1991 Jul;249(1):37–54. [PubMed]
  • Storfer-Glazer FA, Wood WB. Effects of chromosomal deficiencies on early cleavage patterning and terminal phenotype in Caenorhabditis elegans embryos. Genetics. 1994 Jun;137(2):499–508. [PMC free article] [PubMed]
  • Sulston JE, Schierenberg E, White JG, Thomson JN. The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev Biol. 1983 Nov;100(1):64–119. [PubMed]
  • Trent C, Tsuing N, Horvitz HR. Egg-laying defective mutants of the nematode Caenorhabditis elegans. Genetics. 1983 Aug;104(4):619–647. [PMC free article] [PubMed]
  • Varkey JP, Jansma PL, Minniti AN, Ward S. The Caenorhabditis elegans spe-6 gene is required for major sperm protein assembly and shows second site non-complementation with an unlinked deficiency. Genetics. 1993 Jan;133(1):79–86. [PMC free article] [PubMed]
  • Vincent S, Vonesch JL, Giangrande A. Glide directs glial fate commitment and cell fate switch between neurones and glia. Development. 1996 Jan;122(1):131–139. [PubMed]
  • Yandell MD, Edgar LG, Wood WB. Trimethylpsoralen induces small deletion mutations in Caenorhabditis elegans. Proc Natl Acad Sci U S A. 1994 Feb 15;91(4):1381–1385. [PMC free article] [PubMed]

Articles from Genetics are provided here courtesy of Genetics Society of America


Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...


Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...