• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of geneticsGeneticsCurrent IssueInformation for AuthorsEditorial BoardSubscribeSubmit a Manuscript
Genetics. Mar 1997; 145(3): 749–758.
PMCID: PMC1207859

Evolution of Pulmonate Gastropod Mitochondrial Genomes: Comparisons of Gene Organizations of Euhadra, Cepaea and Albinaria and Implications of Unusual Trna Secondary Structures

Abstract

Complete gene organizations of the mitochondrial genomes of three pulmonate gastropods, Euhadra herklotsi, Cepaea nemoralis and Albinaria coerulea, permit comparisons of their gene organizations. Euhadra and Cepaea are classified in the same superfamily, Helicoidea, yet they show several differences in the order of tRNA and protein coding genes. Albinaria is distantly related to the other two genera but shares the same gene order in one part of its mitochondrial genome with Euhadra and in another part with Cepaea. Despite their small size (14.1-14.5 kbp), these snail mtDNAs encode 13 protein genes, two rRNA genes and at least 22 tRNA genes. These genomes exhibit several unusual or unique features compared to other published metazoan mitochondrial genomes, including those of other molluscs. Several tRNAs predicted from the DNA sequences possess bizarre structures lacking either the T stem or the D stem, similar to the situation seen in nematode mt-tRNAs. The acceptor stems of many tRNAs show a considerable number of mismatched basepairs, indicating that the RNA editing process recently demonstrated in Euhadra is widespread in the pulmonate gastropods. Strong selection acting on mitochondrial genomes of these animals would have resulted in frequent occurrence of the mismatched basepairs in regions of overlapping genes.

Full Text

The Full Text of this article is available as a PDF (3.7M).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Asakawa S, Kumazawa Y, Araki T, Himeno H, Miura K, Watanabe K. Strand-specific nucleotide composition bias in echinoderm and vertebrate mitochondrial genomes. J Mol Evol. 1991 Jun;32(6):511–520. [PubMed]
  • Asakawa S, Himeno H, Miura K, Watanabe K. Nucleotide sequence and gene organization of the starfish Asterina pectinifera mitochondrial genome. Genetics. 1995 Jul;140(3):1047–1060. [PMC free article] [PubMed]
  • Boore JL, Brown WM. Complete DNA sequence of the mitochondrial genome of the black chiton, Katharina tunicata. Genetics. 1994 Oct;138(2):423–443. [PMC free article] [PubMed]
  • Boore JL, Brown WM. Complete sequence of the mitochondrial DNA of the annelid worm Lumbricus terrestris. Genetics. 1995 Sep;141(1):305–319. [PMC free article] [PubMed]
  • Henikoff S. Unidirectional digestion with exonuclease III creates targeted breakpoints for DNA sequencing. Gene. 1984 Jun;28(3):351–359. [PubMed]
  • Hoeh WR, Stewart DT, Sutherland BW, Zouros E. Cytochrome c oxidase sequence comparisons suggest an unusually high rate of mitochondrial DNA evolution in Mytilus (Mollusca: Bivalvia) Mol Biol Evol. 1996 Feb;13(2):418–421. [PubMed]
  • Hoffmann RJ, Boore JL, Brown WM. A novel mitochondrial genome organization for the blue mussel, Mytilus edulis. Genetics. 1992 Jun;131(2):397–412. [PMC free article] [PubMed]
  • Jacobs HT, Elliott DJ, Math VB, Farquharson A. Nucleotide sequence and gene organization of sea urchin mitochondrial DNA. J Mol Biol. 1988 Jul 20;202(2):185–217. [PubMed]
  • Janke A, Feldmaier-Fuchs G, Thomas WK, von Haeseler A, Päbo S. The marsupial mitochondrial genome and the evolution of placental mammals. Genetics. 1994 May;137(1):243–256. [PMC free article] [PubMed]
  • Lecanidou R, Douris V, Rodakis GC. Novel features of metazoan mtDNA revealed from sequence analysis of three mitochondrial DNA segments of the land snail Albinaria turrita (Gastropoda: Clausiliidae). J Mol Evol. 1994 Apr;38(4):369–382. [PubMed]
  • Lee WJ, Kocher TD. Complete sequence of a sea lamprey (Petromyzon marinus) mitochondrial genome: early establishment of the vertebrate genome organization. Genetics. 1995 Feb;139(2):873–887. [PMC free article] [PubMed]
  • Ojala D, Montoya J, Attardi G. tRNA punctuation model of RNA processing in human mitochondria. Nature. 1981 Apr 9;290(5806):470–474. [PubMed]
  • Okimoto R, Wolstenholme DR. A set of tRNAs that lack either the T psi C arm or the dihydrouridine arm: towards a minimal tRNA adaptor. EMBO J. 1990 Oct;9(10):3405–3411. [PMC free article] [PubMed]
  • Roe BA, Ma DP, Wilson RK, Wong JF. The complete nucleotide sequence of the Xenopus laevis mitochondrial genome. J Biol Chem. 1985 Aug 15;260(17):9759–9774. [PubMed]
  • Saiki RK, Gelfand DH, Stoffel S, Scharf SJ, Higuchi R, Horn GT, Mullis KB, Erlich HA. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science. 1988 Jan 29;239(4839):487–491. [PubMed]
  • Smith MJ, Banfield DK, Doteval K, Gorski S, Kowbel DJ. Gene arrangement in sea star mitochondrial DNA demonstrates a major inversion event during echinoderm evolution. Gene. 1989 Mar 15;76(1):181–185. [PubMed]
  • Smith MJ, Arndt A, Gorski S, Fajber E. The phylogeny of echinoderm classes based on mitochondrial gene arrangements. J Mol Evol. 1993 Jun;36(6):545–554. [PubMed]
  • Snyder M, Fraser AR, Laroche J, Gartner-Kepkay KE, Zouros E. Atypical mitochondrial DNA from the deep-sea scallop Placopecten magellanicus. Proc Natl Acad Sci U S A. 1987 Nov;84(21):7595–7599. [PMC free article] [PubMed]
  • Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994 Nov 11;22(22):4673–4680. [PMC free article] [PubMed]
  • Ueda T, Yotsumoto Y, Ikeda K, Watanabe K. The T-loop region of animal mitochondrial tRNA(Ser)(AGY) is a main recognition site for homologous seryl-tRNA synthetase. Nucleic Acids Res. 1992 May 11;20(9):2217–2222. [PMC free article] [PubMed]
  • Wakita K, Watanabe Y, Yokogawa T, Kumazawa Y, Nakamura S, Ueda T, Watanabe K, Nishikawa K. Higher-order structure of bovine mitochondrial tRNA(Phe) lacking the 'conserved' GG and T psi CG sequences as inferred by enzymatic and chemical probing. Nucleic Acids Res. 1994 Feb 11;22(3):347–353. [PMC free article] [PubMed]
  • Wolstenholme DR. Animal mitochondrial DNA: structure and evolution. Int Rev Cytol. 1992;141:173–216. [PubMed]
  • Wolstenholme DR, Macfarlane JL, Okimoto R, Clary DO, Wahleithner JA. Bizarre tRNAs inferred from DNA sequences of mitochondrial genomes of nematode worms. Proc Natl Acad Sci U S A. 1987 Mar;84(5):1324–1328. [PMC free article] [PubMed]
  • Yokobori S, Päbo S. Transfer RNA editing in land snail mitochondria. Proc Natl Acad Sci U S A. 1995 Oct 24;92(22):10432–10435. [PMC free article] [PubMed]

Articles from Genetics are provided here courtesy of Genetics Society of America

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...