• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of geneticsGeneticsCurrent IssueInformation for AuthorsEditorial BoardSubscribeSubmit a Manuscript
Genetics. Nov 1996; 144(3): 1297–1307.
PMCID: PMC1207620

Molecular Evolution between Drosophila Melanogaster and D. Simulans: Reduced Codon Bias, Faster Rates of Amino Acid Substitution, and Larger Proteins in D. Melanogaster

Abstract

Both natural selection and mutational biases contribute to variation in codon usage bias within Drosophila species. This study addresses the cause of codon bias differences between the sibling species, Drosophila melanogaster and D. simulans. Under a model of mutation-selection-drift, variation in mutational processes between species predicts greater base composition differences in neutrally evolving regions than in highly biased genes. Variation in selection intensity, however, predicts larger base composition differences in highly biased loci. Greater differences in the G+C content of 34 coding regions than 46 intron sequences between D. melanogaster and D. simulans suggest that D. melanogaster has undergone a reduction in selection intensity for codon bias. Computer simulations suggest at least a fivefold reduction in N(e)s at silent sites in this lineage. Other classes of molecular change show lineage effects between these species. Rates of amino acid substitution are higher in the D. melanogaster lineage than in D. simulans in 14 genes for which outgroup sequences are available. Surprisingly, protein sizes are larger in D. melanogaster than in D. simulans in the 34 genes compared between the two species. A substantial fraction of silent, replacement, and insertion/deletion mutations in coding regions may be weakly selected in Drosophila.

Full Text

The Full Text of this article is available as a PDF (1.1M).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Andersson SG, Kurland CG. Codon preferences in free-living microorganisms. Microbiol Rev. 1990 Jun;54(2):198–210. [PMC free article] [PubMed]
  • Aquadro CF. Why is the genome variable? Insights from Drosophila. Trends Genet. 1992 Oct;8(10):355–362. [PubMed]
  • Ayala FJ, Hartl DL. Molecular drift of the bride of sevenless (boss) gene in Drosophila. Mol Biol Evol. 1993 Sep;10(5):1030–1040. [PubMed]
  • Ayala FJ, Chang BS, Hartl DL. Molecular evolution of the Rh3 gene in Drosophila. Genetica. 1993;92(1):23–32. [PubMed]
  • Ballard JW, Kreitman M. Unraveling selection in the mitochondrial genome of Drosophila. Genetics. 1994 Nov;138(3):757–772. [PMC free article] [PubMed]
  • Barton NH. Linkage and the limits to natural selection. Genetics. 1995 Jun;140(2):821–841. [PMC free article] [PubMed]
  • Begun DJ, Aquadro CF. Molecular variation at the vermilion locus in geographically diverse populations of Drosophila melanogaster and D. simulans. Genetics. 1995 Jul;140(3):1019–1032. [PMC free article] [PubMed]
  • Bennetzen JL, Hall BD. Codon selection in yeast. J Biol Chem. 1982 Mar 25;257(6):3026–3031. [PubMed]
  • Berry AJ, Ajioka JW, Kreitman M. Lack of polymorphism on the Drosophila fourth chromosome resulting from selection. Genetics. 1991 Dec;129(4):1111–1117. [PMC free article] [PubMed]
  • Carulli JP, Krane DE, Hartl DL, Ochman H. Compositional heterogeneity and patterns of molecular evolution in the Drosophila genome. Genetics. 1993 Jul;134(3):837–845. [PMC free article] [PubMed]
  • Eanes WF, Kirchner M, Yoon J. Evidence for adaptive evolution of the G6pd gene in the Drosophila melanogaster and Drosophila simulans lineages. Proc Natl Acad Sci U S A. 1993 Aug 15;90(16):7475–7479. [PMC free article] [PubMed]
  • Easteal S, Collet C. Consistent variation in amino-acid substitution rate, despite uniformity of mutation rate: protein evolution in mammals is not neutral. Mol Biol Evol. 1994 Jul;11(4):643–647. [PubMed]
  • Eyre-Walker A, Bulmer M. Synonymous substitution rates in enterobacteria. Genetics. 1995 Aug;140(4):1407–1412. [PMC free article] [PubMed]
  • Felsenstein J. The evolutionary advantage of recombination. Genetics. 1974 Oct;78(2):737–756. [PMC free article] [PubMed]
  • Gillespie JH. Substitution processes in molecular evolution. III. Deleterious alleles. Genetics. 1994 Nov;138(3):943–952. [PMC free article] [PubMed]
  • Gouy M, Gautier C. Codon usage in bacteria: correlation with gene expressivity. Nucleic Acids Res. 1982 Nov 25;10(22):7055–7074. [PMC free article] [PubMed]
  • Grantham R, Gautier C, Gouy M, Jacobzone M, Mercier R. Codon catalog usage is a genome strategy modulated for gene expressivity. Nucleic Acids Res. 1981 Jan 10;9(1):r43–r74. [PMC free article] [PubMed]
  • Grosjean H, Fiers W. Preferential codon usage in prokaryotic genes: the optimal codon-anticodon interaction energy and the selective codon usage in efficiently expressed genes. Gene. 1982 Jun;18(3):199–209. [PubMed]
  • Hartl DL, Dykhuizen DE, Dean AM. Limits of adaptation: the evolution of selective neutrality. Genetics. 1985 Nov;111(3):655–674. [PMC free article] [PubMed]
  • Higgins DG, Sharp PM. CLUSTAL: a package for performing multiple sequence alignment on a microcomputer. Gene. 1988 Dec 15;73(1):237–244. [PubMed]
  • Hill WG, Robertson A. The effect of linkage on limits to artificial selection. Genet Res. 1966 Dec;8(3):269–294. [PubMed]
  • Hudson RR, Bailey K, Skarecky D, Kwiatowski J, Ayala FJ. Evidence for positive selection in the superoxide dismutase (Sod) region of Drosophila melanogaster. Genetics. 1994 Apr;136(4):1329–1340. [PMC free article] [PubMed]
  • Ikemura T. Correlation between the abundance of yeast transfer RNAs and the occurrence of the respective codons in protein genes. Differences in synonymous codon choice patterns of yeast and Escherichia coli with reference to the abundance of isoaccepting transfer RNAs. J Mol Biol. 1982 Jul 15;158(4):573–597. [PubMed]
  • Ikemura T. Codon usage and tRNA content in unicellular and multicellular organisms. Mol Biol Evol. 1985 Jan;2(1):13–34. [PubMed]
  • KIMURA M. On the probability of fixation of mutant genes in a population. Genetics. 1962 Jun;47:713–719. [PMC free article] [PubMed]
  • Kimura M, Ohta T. Protein polymorphism as a phase of molecular evolution. Nature. 1971 Feb 12;229(5285):467–469. [PubMed]
  • Kliman RM, Hey J. Reduced natural selection associated with low recombination in Drosophila melanogaster. Mol Biol Evol. 1993 Nov;10(6):1239–1258. [PubMed]
  • Kreitman M. Nucleotide polymorphism at the alcohol dehydrogenase locus of Drosophila melanogaster. Nature. 1983 Aug 4;304(5925):412–417. [PubMed]
  • Kreitman M, Hudson RR. Inferring the evolutionary histories of the Adh and Adh-dup loci in Drosophila melanogaster from patterns of polymorphism and divergence. Genetics. 1991 Mar;127(3):565–582. [PMC free article] [PubMed]
  • Leicht BG, Muse SV, Hanczyc M, Clark AG. Constraints on intron evolution in the gene encoding the myosin alkali light chain in Drosophila. Genetics. 1995 Jan;139(1):299–308. [PMC free article] [PubMed]
  • Li WH, Tanimura M, Sharp PM. An evaluation of the molecular clock hypothesis using mammalian DNA sequences. J Mol Evol. 1987;25(4):330–342. [PubMed]
  • MANTEL N, HAENSZEL W. Statistical aspects of the analysis of data from retrospective studies of disease. J Natl Cancer Inst. 1959 Apr;22(4):719–748. [PubMed]
  • Martin CH, Mayeda CA, Meyerowitz EM. Evolution and expression of the Sgs-3 glue gene of Drosophila. J Mol Biol. 1988 May 20;201(2):273–287. [PubMed]
  • Martinez HM. A flexible multiple sequence alignment program. Nucleic Acids Res. 1988 Mar 11;16(5):1683–1691. [PMC free article] [PubMed]
  • McDonald JH, Kreitman M. Adaptive protein evolution at the Adh locus in Drosophila. Nature. 1991 Jun 20;351(6328):652–654. [PubMed]
  • Moran NA. Accelerated evolution and Muller's rachet in endosymbiotic bacteria. Proc Natl Acad Sci U S A. 1996 Apr 2;93(7):2873–2878. [PMC free article] [PubMed]
  • Mount SM, Burks C, Hertz G, Stormo GD, White O, Fields C. Splicing signals in Drosophila: intron size, information content, and consensus sequences. Nucleic Acids Res. 1992 Aug 25;20(16):4255–4262. [PMC free article] [PubMed]
  • Mukai T. The Genetic Structure of Natural Populations of DROSOPHILA MELANOGASTER. VII Synergistic Interaction of Spontaneous Mutant Polygenes Controlling Viability. Genetics. 1969 Mar;61(3):749–761. [PMC free article] [PubMed]
  • Nachman MW, Boyer SN, Aquadro CF. Nonneutral evolution at the mitochondrial NADH dehydrogenase subunit 3 gene in mice. Proc Natl Acad Sci U S A. 1994 Jul 5;91(14):6364–6368. [PMC free article] [PubMed]
  • Needleman SB, Wunsch CD. A general method applicable to the search for similarities in the amino acid sequence of two proteins. J Mol Biol. 1970 Mar;48(3):443–453. [PubMed]
  • Ohta T. Slightly deleterious mutant substitutions in evolution. Nature. 1973 Nov 9;246(5428):96–98. [PubMed]
  • Ota T. Statistical analyses of Drosophila and human protein polymorphisms. Proc Natl Acad Sci U S A. 1975 Aug;72(8):3194–3196. [PMC free article] [PubMed]
  • Ohta T. Amino acid substitution at the Adh locus of Drosophila is facilitated by small population size. Proc Natl Acad Sci U S A. 1993 May 15;90(10):4548–4551. [PMC free article] [PubMed]
  • Sawyer SA, Dykhuizen DE, Hartl DL. Confidence interval for the number of selectively neutral amino acid polymorphisms. Proc Natl Acad Sci U S A. 1987 Sep;84(17):6225–6228. [PMC free article] [PubMed]
  • Sawyer SA, Hartl DL. Population genetics of polymorphism and divergence. Genetics. 1992 Dec;132(4):1161–1176. [PMC free article] [PubMed]
  • Schaeffer SW, Miller EL. Estimates of linkage disequilibrium and the recombination parameter determined from segregating nucleotide sites in the alcohol dehydrogenase region of Drosophila pseudoobscura. Genetics. 1993 Oct;135(2):541–552. [PMC free article] [PubMed]
  • Sharp PM, Li WH. The rate of synonymous substitution in enterobacterial genes is inversely related to codon usage bias. Mol Biol Evol. 1987 May;4(3):222–230. [PubMed]
  • Sharp PM, Li WH. On the rate of DNA sequence evolution in Drosophila. J Mol Evol. 1989 May;28(5):398–402. [PubMed]
  • Shields DC, Sharp PM, Higgins DG, Wright F. "Silent" sites in Drosophila genes are not neutral: evidence of selection among synonymous codons. Mol Biol Evol. 1988 Nov;5(6):704–716. [PubMed]
  • Simmons GM, Kwok W, Matulonis P, Venkatesh T. Polymorphism and divergence at the prune locus in Drosophila melanogaster and D. simulans. Mol Biol Evol. 1994 Jul;11(4):666–671. [PubMed]
  • Stephan W, Kirby DA. RNA folding in Drosophila shows a distance effect for compensatory fitness interactions. Genetics. 1993 Sep;135(1):97–103. [PMC free article] [PubMed]
  • Stephan W, Rodriguez VS, Zhou B, Parsch J. Molecular evolution of the metallothionein gene Mtn in the melanogaster species group: results from Drosophila ananassae. Genetics. 1994 Sep;138(1):135–143. [PMC free article] [PubMed]
  • Wayne ML, Contamine D, Kreitman M. Molecular population genetics of ref(2)P, a locus which confers viral resistance in Drosophila. Mol Biol Evol. 1996 Jan;13(1):191–199. [PubMed]
  • Wilbur WJ, Lipman DJ. Rapid similarity searches of nucleic acid and protein data banks. Proc Natl Acad Sci U S A. 1983 Feb;80(3):726–730. [PMC free article] [PubMed]

Articles from Genetics are provided here courtesy of Genetics Society of America

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...