• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of geneticsGeneticsCurrent IssueInformation for AuthorsEditorial BoardSubscribeSubmit a Manuscript
Genetics. Sep 1996; 144(1): 249–254.
PMCID: PMC1207498

Evolution of Mouse T-Box Genes by Tandem Duplication and Cluster Dispersion


The T-box genes comprise an ancient family of putative transcription factors conserved across species as divergent as Mus musculus and Caenorhabditis elegans. All T-box gene products are characterized by a novel 174-186-amino acid DNA binding domain called the T-box that was first discovered in the polypeptide products of the mouse T locus and the Drosophila melanogaster optomotor-blind gene. Earlier studies allowed the identification of five mouse T-box genes, T, Tbx1-3, and Tbr1, that all map to different chromosomal locations and are expressed in unique temporal and spatial patterns during embryogenesis. Here, we report the discovery of three new members of the mouse T-box gene family, named Tbx4, Tbx5, and Tbx6. Two of these newly discovered genes, Tbx4 and Tbx5, were found to be tightly linked to previously identified T-box genes. Combined results from phylogenetic, linkage, and physical mapping studies provide a picture for the evolution of a T-box subfamily by unequal crossing over to form a two-gene cluster that was duplicated and dispersed to two chromosomal locations. This analysis suggests that Tbx4 and Tbx5 are cognate genes that diverged apart from a common ancestral gene during early vertebrate evolution.

Full Text

The Full Text of this article is available as a PDF (649K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Bollag RJ, Siegfried Z, Cebra-Thomas JA, Garvey N, Davison EM, Silver LM. An ancient family of embryonically expressed mouse genes sharing a conserved protein motif with the T locus. Nat Genet. 1994 Jul;7(3):383–389. [PubMed]
  • Bulfone A, Smiga SM, Shimamura K, Peterson A, Puelles L, Rubenstein JL. T-brain-1: a homolog of Brachyury whose expression defines molecularly distinct domains within the cerebral cortex. Neuron. 1995 Jul;15(1):63–78. [PubMed]
  • Burke DT, Rossi JM, Leung J, Koos DS, Tilghman SM. A mouse genomic library of yeast artificial chromosome clones. Mamm Genome. 1991;1(1):65–65. [PubMed]
  • Cabot EL, Beckenbach AT. Simultaneous editing of multiple nucleic acid and protein sequences with ESEE. Comput Appl Biosci. 1989 Jul;5(3):233–234. [PubMed]
  • Church GM, Gilbert W. Genomic sequencing. Proc Natl Acad Sci U S A. 1984 Apr;81(7):1991–1995. [PMC free article] [PubMed]
  • Green ED, Olson MV. Systematic screening of yeast artificial-chromosome libraries by use of the polymerase chain reaction. Proc Natl Acad Sci U S A. 1990 Feb;87(3):1213–1217. [PMC free article] [PubMed]
  • Herrmann BG, Kispert A. The T genes in embryogenesis. Trends Genet. 1994 Aug;10(8):280–286. [PubMed]
  • Herrmann BG, Labeit S, Poustka A, King TR, Lehrach H. Cloning of the T gene required in mesoderm formation in the mouse. Nature. 1990 Feb 15;343(6259):617–622. [PubMed]
  • Kispert A, Herrmann BG. The Brachyury gene encodes a novel DNA binding protein. EMBO J. 1993 Aug;12(8):3211–3220. [PMC free article] [PubMed]
  • Kispert A, Herrmann BG, Leptin M, Reuter R. Homologs of the mouse Brachyury gene are involved in the specification of posterior terminal structures in Drosophila, Tribolium, and Locusta. Genes Dev. 1994 Sep 15;8(18):2137–2150. [PubMed]
  • Kusumi K, Smith JS, Segre JA, Koos DS, Lander ES. Construction of a large-insert yeast artificial chromosome library of the mouse genome. Mamm Genome. 1993;4(7):391–392. [PubMed]
  • Pendleton JW, Nagai BK, Murtha MT, Ruddle FH. Expansion of the Hox gene family and the evolution of chordates. Proc Natl Acad Sci U S A. 1993 Jul 1;90(13):6300–6304. [PMC free article] [PubMed]
  • Pflugfelder GO, Roth H, Poeck B. A homology domain shared between Drosophila optomotor-blind and mouse Brachyury is involved in DNA binding. Biochem Biophys Res Commun. 1992 Jul 31;186(2):918–925. [PubMed]
  • Rowe LB, Nadeau JH, Turner R, Frankel WN, Letts VA, Eppig JT, Ko MS, Thurston SJ, Birkenmeier EH. Maps from two interspecific backcross DNA panels available as a community genetic mapping resource. Mamm Genome. 1994 May;5(5):253–274. [PubMed]
  • Rzhetsky A, Nei M. METREE: a program package for inferring and testing minimum-evolution trees. Comput Appl Biosci. 1994 Jul;10(4):409–412. [PubMed]
  • Wallin J, Mizutani Y, Imai K, Miyashita N, Moriwaki K, Taniguchi M, Koseki H, Balling R. A new Pax gene, Pax-9, maps to mouse chromosome 12. Mamm Genome. 1993;4(7):354–358. [PubMed]

Articles from Genetics are provided here courtesy of Genetics Society of America


Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...


Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...