• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of geneticsGeneticsCurrent IssueInformation for AuthorsEditorial BoardSubscribeSubmit a Manuscript
Genetics. Nov 1995; 141(3): 1015–1023.
PMCID: PMC1206825

Variability within the Seychelles Cytoplasmic Incompatibility System in Drosophila Simulans

Abstract

In Drosophila simulans, we described a cytoplasmic incompatibility (CI) system (Seychelles) restricted to insular populations that harbor the mitochondrial type SiI. Since then, these populations have been shown to be heterogeneous, some being infected by one Wolbachia genetic variant only (wHa), while others are infected simultaneously by wHa and by another variant (wNo) always found in association with wHa. We have experimentally obtained two D. simulans strains only infected by the wNo variant. This variant determines its own cytoplasmic incompatibility type. In particular, the cross between wNo-bearing flies and wHa-bearing ones is bidirectionally incompatible. The Seychelles CI type, stricto sensu, is distinguished by being determined by the simultaneous presence of two Wolbachia variants that we found to be mutually incompatible. In addition, we observed incomplete maternal transmission of the Wolbachia.

Full Text

The Full Text of this article is available as a PDF (912K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Baba-Aïssa F, Solignac M, Dennebouy N, David JR. Mitochondrial DNA variability in Drosophila simulans: quasi absence of polymorphism within each of the three cytoplasmic races. Heredity (Edinb) 1988 Dec;61(Pt 3):419–426. [PubMed]
  • Bressac C, Rousset F. The reproductive incompatibility system in Drosophila simulans: DAPI-staining analysis of the Wolbachia symbionts in sperm cysts. J Invertebr Pathol. 1993 May;61(3):226–230. [PubMed]
  • Breeuwer JA, Stouthamer R, Barns SM, Pelletier DA, Weisburg WG, Werren JH. Phylogeny of cytoplasmic incompatibility micro-organisms in the parasitoid wasp genus Nasonia (Hymenoptera: Pteromalidae) based on 16S ribosomal DNA sequences. Insect Mol Biol. 1992;1(1):25–36. [PubMed]
  • Cariou ML. Biochemical phylogeny of the eight species in the Drosophila melanogaster subgroup, including D. sechellia and D. orena. Genet Res. 1987 Dec;50(3):181–185. [PubMed]
  • Holden PR, Brookfield JF, Jones P. Cloning and characterization of an ftsZ homologue from a bacterial symbiont of Drosophila melanogaster. Mol Gen Genet. 1993 Aug;240(2):213–220. [PubMed]
  • Hey J, Kliman RM. Population genetics and phylogenetics of DNA sequence variation at multiple loci within the Drosophila melanogaster species complex. Mol Biol Evol. 1993 Jul;10(4):804–822. [PubMed]
  • Hoffmann AA, Turelli M. Unidirectional incompatibility in Drosophila simulans: inheritance, geographic variation and fitness effects. Genetics. 1988 Jun;119(2):435–444. [PMC free article] [PubMed]
  • Hoffmann AA, Turelli M, Harshman LG. Factors affecting the distribution of cytoplasmic incompatibility in Drosophila simulans. Genetics. 1990 Dec;126(4):933–948. [PMC free article] [PubMed]
  • Karr TL, Alberts BM. Organization of the cytoskeleton in early Drosophila embryos. J Cell Biol. 1986 Apr;102(4):1494–1509. [PMC free article] [PubMed]
  • Kocher TD, Thomas WK, Meyer A, Edwards SV, Päbo S, Villablanca FX, Wilson AC. Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers. Proc Natl Acad Sci U S A. 1989 Aug;86(16):6196–6200. [PMC free article] [PubMed]
  • Montchamp-Moreau C, Ferveur JF, Jacques M. Geographic distribution and inheritance of three cytoplasmic incompatibility types in Drosophila simulans. Genetics. 1991 Oct;129(2):399–407. [PMC free article] [PubMed]
  • Nigro L. The effect of heteroplasmy on cytoplasmic incompatibility in transplasmic lines of Drosophila simulans showing a complete replacement of the mitochondrial DNA. Heredity (Edinb) 1991 Feb;66(Pt 1):41–45. [PubMed]
  • O'Neill SL, Giordano R, Colbert AM, Karr TL, Robertson HM. 16S rRNA phylogenetic analysis of the bacterial endosymbionts associated with cytoplasmic incompatibility in insects. Proc Natl Acad Sci U S A. 1992 Apr 1;89(7):2699–2702. [PMC free article] [PubMed]
  • Rousset F, Solignac M. Evolution of single and double Wolbachia symbioses during speciation in the Drosophila simulans complex. Proc Natl Acad Sci U S A. 1995 Jul 3;92(14):6389–6393. [PMC free article] [PubMed]
  • Rousset F, Vautrin D, Solignac M. Molecular identification of Wolbachia, the agent of cytoplasmic incompatibility in Drosophila simulans, and variability in relation with host mitochondrial types. Proc Biol Sci. 1992 Mar 23;247(1320):163–168. [PubMed]
  • Stouthamer R, Breeuwert JA, Luck RF, Werren JH. Molecular identification of microorganisms associated with parthenogenesis. Nature. 1993 Jan 7;361(6407):66–68. [PubMed]
  • Turelli M, Hoffmann AA, McKechnie SW. Dynamics of cytoplasmic incompatibility and mtDNA variation in natural Drosophila simulans populations. Genetics. 1992 Nov;132(3):713–723. [PMC free article] [PubMed]
  • Werren JH, Zhang W, Guo LR. Evolution and phylogeny of Wolbachia: reproductive parasites of arthropods. Proc Biol Sci. 1995 Jul 22;261(1360):55–63. [PubMed]

Articles from Genetics are provided here courtesy of Genetics Society of America

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...