• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of geneticsGeneticsCurrent IssueInformation for AuthorsEditorial BoardSubscribeSubmit a Manuscript
Genetics. Oct 1995; 141(2): 771–783.
PMCID: PMC1206772

Estimating Substitution Rates in Ribosomal RNA Genes

Abstract

A model is introduced describing nucleotide substitution in ribosomal RNA (rRNA) genes. In this model, substitution in the stem and loop regions of rRNA is modeled with 16- and four-state continuous time Markov chains, respectively. The mean substitution rates at nucleotide sites are assumed to follow gamma distributions that are different for the two types of regions. The simplest formulation of the model allows for explicit expressions for transition probabilities of the Markov processes to be found. These expressions were used to analyze several 16S-like rRNA genes from higher eukaryotes with the maximum likelihood method. Although the observed proportion of invariable sites was only slightly higher in the stem regions, the estimated average substitution rates in the stem regions were almost two times as high as in the loop regions. Therefore, the degree of site heterogeneity of substitution rates in the stem regions seems to be higher than in the loop regions of animal 16S-like rRNAs due to presence of a few rapidly evolving sites. The model appears to be helpful in understanding the regularities of nucleotide substitution in rRNAs and probably minimizing errors in recovering phylogeny for distantly related taxa from these genes.

Full Text

The Full Text of this article is available as a PDF (5.4M).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Aagaard C, Douthwaite S. Requirement for a conserved, tertiary interaction in the core of 23S ribosomal RNA. Proc Natl Acad Sci U S A. 1994 Apr 12;91(8):2989–2993. [PMC free article] [PubMed]
  • Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol. 1981;17(6):368–376. [PubMed]
  • Glotz C, Brimacombe R. An experimentally-derived model for the secondary structure of the 16S ribosomal RNA from Escherichia coli. Nucleic Acids Res. 1980 Jun 11;8(11):2377–2395. [PMC free article] [PubMed]
  • Gutell RR, Weiser B, Woese CR, Noller HF. Comparative anatomy of 16-S-like ribosomal RNA. Prog Nucleic Acid Res Mol Biol. 1985;32:155–216. [PubMed]
  • James BD, Olsen GJ, Liu JS, Pace NR. The secondary structure of ribonuclease P RNA, the catalytic element of a ribonucleoprotein enzyme. Cell. 1988 Jan 15;52(1):19–26. [PubMed]
  • Jin L, Nei M. Limitations of the evolutionary parsimony method of phylogenetic analysis. Mol Biol Evol. 1990 Jan;7(1):82–102. [PubMed]
  • Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol. 1980 Dec;16(2):111–120. [PubMed]
  • Larsen N, Olsen GJ, Maidak BL, McCaughey MJ, Overbeek R, Macke TJ, Marsh TL, Woese CR. The ribosomal database project. Nucleic Acids Res. 1993 Jul 1;21(13):3021–3023. [PMC free article] [PubMed]
  • Li WH, Gouy M, Sharp PM, O'hUigin C, Yang YW. Molecular phylogeny of Rodentia, Lagomorpha, Primates, Artiodactyla, and Carnivora and molecular clocks. Proc Natl Acad Sci U S A. 1990 Sep;87(17):6703–6707. [PMC free article] [PubMed]
  • Nei M, Gojobori T. Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol Biol Evol. 1986 Sep;3(5):418–426. [PubMed]
  • Noller HF, Kop J, Wheaton V, Brosius J, Gutell RR, Kopylov AM, Dohme F, Herr W, Stahl DA, Gupta R, et al. Secondary structure model for 23S ribosomal RNA. Nucleic Acids Res. 1981 Nov 25;9(22):6167–6189. [PMC free article] [PubMed]
  • Ragan MA, Bird CJ, Rice EL, Gutell RR, Murphy CA, Singh RK. A molecular phylogeny of the marine red algae (Rhodophyta) based on the nuclear small-subunit rRNA gene. Proc Natl Acad Sci U S A. 1994 Jul 19;91(15):7276–7280. [PMC free article] [PubMed]
  • Rodríguez F, Oliver JL, Marín A, Medina JR. The general stochastic model of nucleotide substitution. J Theor Biol. 1990 Feb 22;142(4):485–501. [PubMed]
  • Rousset F, Pélandakis M, Solignac M. Evolution of compensatory substitutions through G.U intermediate state in Drosophila rRNA. Proc Natl Acad Sci U S A. 1991 Nov 15;88(22):10032–10036. [PMC free article] [PubMed]
  • Schöniger M, von Haeseler A. A stochastic model for the evolution of autocorrelated DNA sequences. Mol Phylogenet Evol. 1994 Sep;3(3):240–247. [PubMed]
  • Stephan W, Kirby DA. RNA folding in Drosophila shows a distance effect for compensatory fitness interactions. Genetics. 1993 Sep;135(1):97–103. [PMC free article] [PubMed]
  • MOL IH. The dynamic behaviour of the ear after the fenestration operation. Acta Otolaryngol. 1951 Oct;39(5):409–417. [PubMed]
  • Vawter L, Brown WM. Rates and patterns of base change in the small subunit ribosomal RNA gene. Genetics. 1993 Jun;134(2):597–608. [PMC free article] [PubMed]
  • Wainright PO, Hinkle G, Sogin ML, Stickel SK. Monophyletic origins of the metazoa: an evolutionary link with fungi. Science. 1993 Apr 16;260(5106):340–342. [PubMed]
  • Woese CR. Bacterial evolution. Microbiol Rev. 1987 Jun;51(2):221–271. [PMC free article] [PubMed]
  • Woese CR, Magrum LJ, Gupta R, Siegel RB, Stahl DA, Kop J, Crawford N, Brosius J, Gutell R, Hogan JJ, et al. Secondary structure model for bacterial 16S ribosomal RNA: phylogenetic, enzymatic and chemical evidence. Nucleic Acids Res. 1980 May 24;8(10):2275–2293. [PMC free article] [PubMed]
  • Woese CR, Gutell R, Gupta R, Noller HF. Detailed analysis of the higher-order structure of 16S-like ribosomal ribonucleic acids. Microbiol Rev. 1983 Dec;47(4):621–669. [PMC free article] [PubMed]
  • Zwieb C, Brimacombe R. Localisation of a series of intra-RNA cross-links in 16S RNA, induced by ultraviolet irradiation of Escherichia coli 30S ribosomal subunits. Nucleic Acids Res. 1980 Jun 11;8(11):2397–2411. [PMC free article] [PubMed]
  • Atkinson BG, Raizada M, Bouchard RA, Frappier RH, Walden DB. The independent stage-specific expression of the 18-kDa heat shock protein genes during microsporogenesis in Zea mays L. Dev Genet. 1993;14(1):15–26. [PubMed]
  • Becker J, Craig EA. Heat-shock proteins as molecular chaperones. Eur J Biochem. 1994 Jan 15;219(1-2):11–23. [PubMed]
  • Beckmann RP, Mizzen LE, Welch WJ. Interaction of Hsp 70 with newly synthesized proteins: implications for protein folding and assembly. Science. 1990 May 18;248(4957):850–854. [PubMed]
  • Boorstein WR, Ziegelhoffer T, Craig EA. Molecular evolution of the HSP70 multigene family. J Mol Evol. 1994 Jan;38(1):1–17. [PubMed]
  • Craig EA, Weissman JS, Horwich AL. Heat shock proteins and molecular chaperones: mediators of protein conformation and turnover in the cell. Cell. 1994 Aug 12;78(3):365–372. [PubMed]
  • Eernisse DJ. DNA Translator and Aligner: HyperCard utilities to aid phylogenetic analysis of molecules. Comput Appl Biosci. 1992 Apr;8(2):177–184. [PubMed]
  • Fitch DH, Bailey WJ, Tagle DA, Goodman M, Sieu L, Slightom JL. Duplication of the gamma-globin gene mediated by L1 long interspersed repetitive elements in an early ancestor of simian primates. Proc Natl Acad Sci U S A. 1991 Aug 15;88(16):7396–7400. [PMC free article] [PubMed]
  • Gething MJ, Sambrook J. Protein folding in the cell. Nature. 1992 Jan 2;355(6355):33–45. [PubMed]
  • Goodman M, Czelusniak J, Koop BF, Tagle DA, Slightom JL. Globins: a case study in molecular phylogeny. Cold Spring Harb Symp Quant Biol. 1987;52:875–890. [PubMed]
  • Hughes AL. Contrasting evolutionary rates in the duplicate chaperonin genes of Mycobacterium tuberculosis and M. leprae. Mol Biol Evol. 1993 Nov;10(6):1343–1359. [PubMed]
  • Hughes AL. Nonlinear relationships among evolutionary rates identify regions of functional divergence in heat-shock protein 70 genes. Mol Biol Evol. 1993 Jan;10(1):243–255. [PubMed]
  • Jakob U, Buchner J. Assisting spontaneity: the role of Hsp90 and small Hsps as molecular chaperones. Trends Biochem Sci. 1994 May;19(5):205–211. [PubMed]
  • Jakob U, Gaestel M, Engel K, Buchner J. Small heat shock proteins are molecular chaperones. J Biol Chem. 1993 Jan 25;268(3):1517–1520. [PubMed]
  • de Jong WW, Leunissen JA, Voorter CE. Evolution of the alpha-crystallin/small heat-shock protein family. Mol Biol Evol. 1993 Jan;10(1):103–126. [PubMed]
  • Karlin S, Brendel V, Bucher P. Significant similarity and dissimilarity in homologous proteins. Mol Biol Evol. 1992 Jan;9(1):152–167. [PubMed]
  • Knack G, Liu Z, Kloppstech K. Low molecular mass heat-shock proteins of a light-resistant photoautotrophic cell culture. Eur J Cell Biol. 1992 Oct;59(1):166–175. [PubMed]
  • Kobayashi T, Kobayashi E, Sato S, Hotta Y, Miyajima N, Tanaka A, Tabata S. Characterization of cDNAs induced in meiotic prophase in lily microsporocytes. DNA Res. 1994;1(1):15–26. [PubMed]
  • Krishna P, Felsheim RF, Larkin JC, Das A. Structure and Light-Induced Expression of a Small Heat-Shock Protein Gene of Pharbitis nil. Plant Physiol. 1992 Dec;100(4):1772–1779. [PMC free article] [PubMed]
  • Lee GJ, Pokala N, Vierling E. Structure and in vitro molecular chaperone activity of cytosolic small heat shock proteins from pea. J Biol Chem. 1995 May 5;270(18):10432–10438. [PubMed]
  • Lenne C, Douce R. A Low Molecular Mass Heat-Shock Protein Is Localized to Higher Plant Mitochondria. Plant Physiol. 1994 Aug;105(4):1255–1261. [PMC free article] [PubMed]
  • Li WH. Unbiased estimation of the rates of synonymous and nonsynonymous substitution. J Mol Evol. 1993 Jan;36(1):96–99. [PubMed]
  • Lindquist S, Craig EA. The heat-shock proteins. Annu Rev Genet. 1988;22:631–677. [PubMed]
  • Meagher RB, Berry-Lowe S, Rice K. Molecular evolution of the small subunit of ribulose bisphosphate carboxylase: nucleotide substitution and gene conversion. Genetics. 1989 Dec;123(4):845–863. [PMC free article] [PubMed]
  • Nagylaki T. Evolution of multigene families under interchromosomal gene conversion. Proc Natl Acad Sci U S A. 1984 Jun;81(12):3796–3800. [PMC free article] [PubMed]
  • Ohta T. Evolution by gene duplication and compensatory advantageous mutations. Genetics. 1988 Nov;120(3):841–847. [PMC free article] [PubMed]
  • Ohta T. Time for acquiring a new gene by duplication. Proc Natl Acad Sci U S A. 1988 May;85(10):3509–3512. [PMC free article] [PubMed]
  • Ohta T. Multigene families and the evolution of complexity. J Mol Evol. 1991 Jul;33(1):34–41. [PubMed]
  • Plesofsky-Vig N, Vig J, Brambl R. Phylogeny of the alpha-crystallin-related heat-shock proteins. J Mol Evol. 1992 Dec;35(6):537–545. [PubMed]
  • Rensing SA, Maier UG. Phylogenetic analysis of the stress-70 protein family. J Mol Evol. 1994 Jul;39(1):80–86. [PubMed]
  • Schneider HC, Berthold J, Bauer MF, Dietmeier K, Guiard B, Brunner M, Neupert W. Mitochondrial Hsp70/MIM44 complex facilitates protein import. Nature. 1994 Oct 27;371(6500):768–774. [PubMed]
  • Walsh JB. Sequence-dependent gene conversion: can duplicated genes diverge fast enough to escape conversion? Genetics. 1987 Nov;117(3):543–557. [PMC free article] [PubMed]
  • Walsh JB. How often do duplicated genes evolve new functions? Genetics. 1995 Jan;139(1):421–428. [PMC free article] [PubMed]
  • Wu CI, Li WH. Evidence for higher rates of nucleotide substitution in rodents than in man. Proc Natl Acad Sci U S A. 1985 Mar;82(6):1741–1745. [PMC free article] [PubMed]

Articles from Genetics are provided here courtesy of Genetics Society of America

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

  • MedGen
    MedGen
    Related information in MedGen
  • PubMed
    PubMed
    PubMed citations for these articles
  • Substance
    Substance
    PubChem Substance links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...