• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of geneticsGeneticsCurrent IssueInformation for AuthorsEditorial BoardSubscribeSubmit a Manuscript
Genetics. Sep 1995; 141(1): 283–303.
PMCID: PMC1206727

Islands of Complex DNA Are Widespread in Drosophila Centric Heterochromatin

Abstract

Heterochromatin is a ubiquitous yet poorly understood component of multicellular eukaryotic genomes. Major gaps exist in our knowledge of the nature and overall organization of DNA sequences present in heterochromatin. We have investigated the molecular structure of the 1 Mb of centric heterochromatin in the Drosophila minichromosome Dp1187. A genetic screen of irradiated minichromosomes yielded rearranged derivatives of Dp1187 whose structures were determined by pulsed-field Southern analysis and PCR. Three Dp1187 deletion derivatives and an inversion had one breakpoint in the euchromatin and one in the heterochromatin, providing direct molecular access to previously inaccessible parts of the heterochromatin. End-probed pulsed-field restriction mapping revealed the presence of at least three ``islands'' of complex DNA, Tahiti, Moorea, and Bora Bora, constituting approximately one half of the Dp1187 heterochromatin. Pulsed-field Southern analysis demonstrated that Drosophila heterochromatin in general is composed of alternating blocks of complex DNA and simple satellite DNA. Cloning and sequencing of a small part of one island, Tahiti, demonstrated the presence of a retroposon. The implications of these findings to heterochromatin structure and function are discussed.

Full Text

The Full Text of this article is available as a PDF (10M).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Abad JP, Carmena M, Baars S, Saunders RD, Glover DM, Ludeña P, Sentis C, Tyler-Smith C, Villasante A. Dodeca satellite: a conserved G+C-rich satellite from the centromeric heterochromatin of Drosophila melanogaster. Proc Natl Acad Sci U S A. 1992 May 15;89(10):4663–4667. [PMC free article] [PubMed]
  • Arn PH, Li X, Smith C, Hsu M, Schwartz DC, Jabs EW. Analysis of DNA restriction fragments greater than 5.7 Mb in size from the centromeric region of human chromosomes. Mamm Genome. 1991;1(4):249–254. [PubMed]
  • Bender W, Spierer P, Hogness DS. Chromosomal walking and jumping to isolate DNA from the Ace and rosy loci and the bithorax complex in Drosophila melanogaster. J Mol Biol. 1983 Jul 25;168(1):17–33. [PubMed]
  • Biessmann H, Kasravi B, Jakes K, Bui T, Ikenaga K, Mason JM. The genomic organization of HeT-A retroposons in Drosophila melanogaster. Chromosoma. 1993 May;102(5):297–305. [PubMed]
  • Bloom K. The centromere frontier: kinetochore components, microtubule-based motility, and the CEN-value paradox. Cell. 1993 May 21;73(4):621–624. [PubMed]
  • Blumenthal AB, Kriegstein HJ, Hogness DS. The units of DNA replication in Drosophila melanogaster chromosomes. Cold Spring Harb Symp Quant Biol. 1974;38:205–223. [PubMed]
  • Bonaccorsi S, Lohe A. Fine mapping of satellite DNA sequences along the Y chromosome of Drosophila melanogaster: relationships between satellite sequences and fertility factors. Genetics. 1991 Sep;129(1):177–189. [PMC free article] [PubMed]
  • Brewer BJ, Fangman WL. The localization of replication origins on ARS plasmids in S. cerevisiae. Cell. 1987 Nov 6;51(3):463–471. [PubMed]
  • Brown WR, MacKinnon PJ, Villasanté A, Spurr N, Buckle VJ, Dobson MJ. Structure and polymorphism of human telomere-associated DNA. Cell. 1990 Oct 5;63(1):119–132. [PubMed]
  • Brutlag D, Fry K, Nelson T, Hung P. Synthesis of hybrid bacterial plasmids containing highly repeated satellite DNA. Cell. 1977 Mar;10(3):509–519. [PubMed]
  • Caizzi R, Caggese C, Pimpinelli S. Bari-1, a new transposon-like family in Drosophila melanogaster with a unique heterochromatic organization. Genetics. 1993 Feb;133(2):335–345. [PMC free article] [PubMed]
  • Charlesworth B, Jarne P, Assimacopoulos S. The distribution of transposable elements within and between chromosomes in a population of Drosophila melanogaster. III. Element abundances in heterochromatin. Genet Res. 1994 Dec;64(3):183–197. [PubMed]
  • Charlesworth B, Sniegowski P, Stephan W. The evolutionary dynamics of repetitive DNA in eukaryotes. Nature. 1994 Sep 15;371(6494):215–220. [PubMed]
  • Cook KR, Karpen GH. A rosy future for heterochromatin. Proc Natl Acad Sci U S A. 1994 Jun 7;91(12):5219–5221. [PMC free article] [PubMed]
  • Cooper KF, Fisher RB, Tyler-Smith C. Structure of the sequences adjacent to the centromeric alphoid satellite DNA array on the human Y chromosome. J Mol Biol. 1993 Apr 5;230(3):787–799. [PubMed]
  • Danilevskaya ON, Petrov DA, Pavlova MN, Koga A, Kurenova EV, Hartl DL. A repetitive DNA element, associated with telomeric sequences in Drosophila melanogaster, contains open reading frames. Chromosoma. 1992 Dec;102(1):32–40. [PubMed]
  • de Lange T, Shiue L, Myers RM, Cox DR, Naylor SL, Killery AM, Varmus HE. Structure and variability of human chromosome ends. Mol Cell Biol. 1990 Feb;10(2):518–527. [PMC free article] [PubMed]
  • Devlin RH, Holm DG, Morin KR, Honda BM. Identifying a single-copy DNA sequence associated with the expression of a heterochromatic gene, the light locus of Drosophila melanogaster. Genome. 1990 Jun;33(3):405–415. [PubMed]
  • Dover GA. Evolution of genetic redundancy for advanced players. Curr Opin Genet Dev. 1993 Dec;3(6):902–910. [PubMed]
  • Dunham I, Lengauer C, Cremer T, Featherstone T. Rapid generation of chromosome-specific alphoid DNA probes using the polymerase chain reaction. Hum Genet. 1992 Feb;88(4):457–462. [PubMed]
  • Dutrillaux B, Gerbault-Seureau M, Zafrani B. Characterization of chromosomal anomalies in human breast cancer. A comparison of 30 paradiploid cases with few chromosome changes. Cancer Genet Cytogenet. 1990 Oct 15;49(2):203–217. [PubMed]
  • Eberl DF, Duyf BJ, Hilliker AJ. The role of heterochromatin in the expression of a heterochromatic gene, the rolled locus of Drosophila melanogaster. Genetics. 1993 May;134(1):277–292. [PMC free article] [PubMed]
  • Ferguson BM, Fangman WL. A position effect on the time of replication origin activation in yeast. Cell. 1992 Jan 24;68(2):333–339. [PubMed]
  • Ferguson BM, Brewer BJ, Reynolds AE, Fangman WL. A yeast origin of replication is activated late in S phase. Cell. 1991 May 3;65(3):507–515. [PubMed]
  • Foe VE, Alberts BM. Reversible chromosome condensation induced in Drosophila embryos by anoxia: visualization of interphase nuclear organization. J Cell Biol. 1985 May;100(5):1623–1636. [PMC free article] [PubMed]
  • Foote S, Vollrath D, Hilton A, Page DC. The human Y chromosome: overlapping DNA clones spanning the euchromatic region. Science. 1992 Oct 2;258(5079):60–66. [PubMed]
  • Fry M, Loeb LA. The fragile X syndrome d(CGG)n nucleotide repeats form a stable tetrahelical structure. Proc Natl Acad Sci U S A. 1994 May 24;91(11):4950–4954. [PMC free article] [PubMed]
  • Gall JG, Cohen EH, Polan ML. Reptitive DNA sequences in drosophila. Chromosoma. 1971;33(3):319–344. [PubMed]
  • Gatti M, Bonaccorsi S, Pimpinelli S. Looking at Drosophila mitotic chromosomes. Methods Cell Biol. 1994;44:371–391. [PubMed]
  • Gatti M, Pimpinelli S. Functional elements in Drosophila melanogaster heterochromatin. Annu Rev Genet. 1992;26:239–275. [PubMed]
  • Gloor GB, Nassif NA, Johnson-Schlitz DM, Preston CR, Engels WR. Targeted gene replacement in Drosophila via P element-induced gap repair. Science. 1991 Sep 6;253(5024):1110–1117. [PubMed]
  • Goldman MA, Holmquist GP, Gray MC, Caston LA, Nag A. Replication timing of genes and middle repetitive sequences. Science. 1984 May 18;224(4650):686–692. [PubMed]
  • Gommers-Ampt JH, Van Leeuwen F, de Beer AL, Vliegenthart JF, Dizdaroglu M, Kowalak JA, Crain PF, Borst P. beta-D-glucosyl-hydroxymethyluracil: a novel modified base present in the DNA of the parasitic protozoan T. brucei. Cell. 1993 Dec 17;75(6):1129–1136. [PubMed]
  • Gottschling DE. Telomere-proximal DNA in Saccharomyces cerevisiae is refractory to methyltransferase activity in vivo. Proc Natl Acad Sci U S A. 1992 May 1;89(9):4062–4065. [PMC free article] [PubMed]
  • Haaf T, Sumner AT, Köhler J, Willard HF, Schmid M, Summer AT. A microchromosome derived from chromosome 11 in a patient with the CREST syndrome of scleroderma. Cytogenet Cell Genet. 1992;60(1):12–17. [PubMed]
  • Haas OA. Centromeric heterochromatin instability of chromosomes 1, 9, and 16 in variable immunodeficiency syndrome--a virus-induced phenomenon? Hum Genet. 1990 Jul;85(2):244–246. [PubMed]
  • Hansen RS, Canfield TK, Lamb MM, Gartler SM, Laird CD. Association of fragile X syndrome with delayed replication of the FMR1 gene. Cell. 1993 Jul 2;73(7):1403–1409. [PubMed]
  • Hawley RS, Theurkauf WE. Requiem for distributive segregation: achiasmate segregation in Drosophila females. Trends Genet. 1993 Sep;9(9):310–317. [PubMed]
  • Hawley RS, Irick H, Zitron AE, Haddox DA, Lohe A, New C, Whitley MD, Arbel T, Jang J, McKim K, et al. There are two mechanisms of achiasmate segregation in Drosophila females, one of which requires heterochromatic homology. Dev Genet. 1992;13(6):440–467. [PubMed]
  • Hochstenbach R, Pötgens A, Meijer H, Dijkhof R, Knops M, Schouren K, Hennig W. Partial reconstruction of the lampbrush loop pair Nooses on the Y chromosome of Drosophila hydei. Chromosoma. 1993 Sep;102(8):526–545. [PubMed]
  • Jabs EW, Persico MG. Characterization of human centromeric regions of specific chromosomes by means of alphoid DNA sequences. Am J Hum Genet. 1987 Sep;41(3):374–390. [PMC free article] [PubMed]
  • Karpen GH. Position-effect variegation and the new biology of heterochromatin. Curr Opin Genet Dev. 1994 Apr;4(2):281–291. [PubMed]
  • Karpen GH, Spradling AC. Reduced DNA polytenization of a minichromosome region undergoing position-effect variegation in Drosophila. Cell. 1990 Oct 5;63(1):97–107. [PMC free article] [PubMed]
  • Karpen GH, Spradling AC. Analysis of subtelomeric heterochromatin in the Drosophila minichromosome Dp1187 by single P element insertional mutagenesis. Genetics. 1992 Nov;132(3):737–753. [PMC free article] [PubMed]
  • Kunst CB, Warren ST. Cryptic and polar variation of the fragile X repeat could result in predisposing normal alleles. Cell. 1994 Jun 17;77(6):853–861. [PubMed]
  • Levis RW, Ganesan R, Houtchens K, Tolar LA, Sheen FM. Transposons in place of telomeric repeats at a Drosophila telomere. Cell. 1993 Dec 17;75(6):1083–1093. [PubMed]
  • Lica LM, Narayanswami S, Hamkalo BA. Mouse satellite DNA, centromere structure, and sister chromatid pairing. J Cell Biol. 1986 Oct;103(4):1145–1151. [PMC free article] [PubMed]
  • Lohe AR, Hilliker AJ, Roberts PA. Mapping simple repeated DNA sequences in heterochromatin of Drosophila melanogaster. Genetics. 1993 Aug;134(4):1149–1174. [PMC free article] [PubMed]
  • Louis EJ, Haber JE. The structure and evolution of subtelomeric Y' repeats in Saccharomyces cerevisiae. Genetics. 1992 Jul;131(3):559–574. [PMC free article] [PubMed]
  • Lyttle TW. Segregation distorters. Annu Rev Genet. 1991;25:511–557. [PubMed]
  • Mahtani MM, Willard HF. Pulsed-field gel analysis of alpha-satellite DNA at the human X chromosome centromere: high-frequency polymorphisms and array size estimate. Genomics. 1990 Aug;7(4):607–613. [PubMed]
  • McCarroll RM, Fangman WL. Time of replication of yeast centromeres and telomeres. Cell. 1988 Aug 12;54(4):505–513. [PubMed]
  • McKee BD, Habera L, Vrana JA. Evidence that intergenic spacer repeats of Drosophila melanogaster rRNA genes function as X-Y pairing sites in male meiosis, and a general model for achiasmatic pairing. Genetics. 1992 Oct;132(2):529–544. [PMC free article] [PubMed]
  • McKnight SL, Miller OL., Jr Electron microscopic analysis of chromatin replication in the cellular blastoderm Drosophila melanogaster embryo. Cell. 1977 Nov;12(3):795–804. [PubMed]
  • Miklos GL, Cotsell JN. Chromosome structure at interfaces between major chromatin types: alpha- and beta-heterochromatin. Bioessays. 1990 Jan;12(1):1–6. [PubMed]
  • Mitchelson A, Simonelig M, Williams C, O'Hare K. Homology with Saccharomyces cerevisiae RNA14 suggests that phenotypic suppression in Drosophila melanogaster by suppressor of forked occurs at the level of RNA stability. Genes Dev. 1993 Feb;7(2):241–249. [PubMed]
  • Miyazaki WY, Orr-Weaver TL. Sister-chromatid cohesion in mitosis and meiosis. Annu Rev Genet. 1994;28:167–187. [PubMed]
  • Nurminsky DI, Shevelyov YYa, Nuzhdin SV, Gvozdev VA. Structure, molecular evolution and maintenance of copy number of extended repeated structures in the X-heterochromatin of Drosophila melanogaster. Chromosoma. 1994 Jul;103(4):277–285. [PubMed]
  • O'Hare K, Alley MR, Cullingford TE, Driver A, Sanderson MJ. DNA sequence of the Doc retroposon in the white-one mutant of Drosophila melanogaster and of secondary insertions in the phenotypically altered derivatives white-honey and white-eosin. Mol Gen Genet. 1991 Jan;225(1):17–24. [PubMed]
  • Pimpinelli S, Sullivan W, Prout M, Sandler L. On biological functions mapping to the heterochromatin of Drosophila melanogaster. Genetics. 1985 Apr;109(4):701–724. [PMC free article] [PubMed]
  • Pimpinelli S, Berloco M, Fanti L, Dimitri P, Bonaccorsi S, Marchetti E, Caizzi R, Caggese C, Gatti M. Transposable elements are stable structural components of Drosophila melanogaster heterochromatin. Proc Natl Acad Sci U S A. 1995 Apr 25;92(9):3804–3808. [PMC free article] [PubMed]
  • Roseman RR, Pirrotta V, Geyer PK. The su(Hw) protein insulates expression of the Drosophila melanogaster white gene from chromosomal position-effects. EMBO J. 1993 Feb;12(2):435–442. [PMC free article] [PubMed]
  • Saura AO, Heino TI, Sorsa V. Electron microscopic analysis of the banding pattern in the salivary gland chromosomes of Drosophila melanogaster. Divisions 11 through 20 of X. Hereditas. 1993;119(2):123–141. [PubMed]
  • Shibata D, Peinado MA, Ionov Y, Malkhosyan S, Perucho M. Genomic instability in repeated sequences is an early somatic event in colorectal tumorigenesis that persists after transformation. Nat Genet. 1994 Mar;6(3):273–281. [PubMed]
  • Spradling AC. Position effect variegation and genomic instability. Cold Spring Harb Symp Quant Biol. 1993;58:585–596. [PubMed]
  • Tartof KD, Henikoff S. Trans-sensing effects from Drosophila to humans. Cell. 1991 Apr 19;65(2):201–203. [PubMed]
  • Ten Hagen KG, Gilbert DM, Willard HF, Cohen SN. Replication timing of DNA sequences associated with human centromeres and telomeres. Mol Cell Biol. 1990 Dec;10(12):6348–6355. [PMC free article] [PubMed]
  • Tower J, Karpen GH, Craig N, Spradling AC. Preferential transposition of Drosophila P elements to nearby chromosomal sites. Genetics. 1993 Feb;133(2):347–359. [PMC free article] [PubMed]
  • Wevrick R, Willard HF. Long-range organization of tandem arrays of alpha satellite DNA at the centromeres of human chromosomes: high-frequency array-length polymorphism and meiotic stability. Proc Natl Acad Sci U S A. 1989 Dec;86(23):9394–9398. [PMC free article] [PubMed]
  • Wevrick R, Willard VP, Willard HF. Structure of DNA near long tandem arrays of alpha satellite DNA at the centromere of human chromosome 7. Genomics. 1992 Dec;14(4):912–923. [PubMed]
  • Willard HF, Waye JS, Skolnick MH, Schwartz CE, Powers VE, England SB. Detection of restriction fragment length polymorphisms at the centromeres of human chromosomes by using chromosome-specific alpha satellite DNA probes: implications for development of centromere-based genetic linkage maps. Proc Natl Acad Sci U S A. 1986 Aug;83(15):5611–5615. [PMC free article] [PubMed]
  • Wright JH, Gottschling DE, Zakian VA. Saccharomyces telomeres assume a non-nucleosomal chromatin structure. Genes Dev. 1992 Feb;6(2):197–210. [PubMed]
  • Young BS, Pession A, Traverse KL, French C, Pardue ML. Telomere regions in Drosophila share complex DNA sequences with pericentric heterochromatin. Cell. 1983 Aug;34(1):85–94. [PubMed]
  • Young MW. Middle repetitive DNA: a fluid component of the Drosophila genome. Proc Natl Acad Sci U S A. 1979 Dec;76(12):6274–6278. [PMC free article] [PubMed]
  • Young MW, Schwartz HE. Nomadic gene families in Drosophila. Cold Spring Harb Symp Quant Biol. 1981;45(Pt 2):629–640. [PubMed]
  • Zhang P, Spradling AC. Efficient and dispersed local P element transposition from Drosophila females. Genetics. 1993 Feb;133(2):361–373. [PMC free article] [PubMed]
  • Zhang P, Spradling AC. Insertional mutagenesis of Drosophila heterochromatin with single P elements. Proc Natl Acad Sci U S A. 1994 Apr 26;91(9):3539–3543. [PMC free article] [PubMed]
  • Zhang P, Spradling AC. The Drosophila salivary gland chromocenter contains highly polytenized subdomains of mitotic heterochromatin. Genetics. 1995 Feb;139(2):659–670. [PMC free article] [PubMed]

Articles from Genetics are provided here courtesy of Genetics Society of America

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...