• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of geneticsGeneticsCurrent IssueInformation for AuthorsEditorial BoardSubscribeSubmit a Manuscript
Genetics. Feb 1995; 139(2): 1067–1076.
PMCID: PMC1206357

Inferring Weak Selection from Patterns of Polymorphism and Divergence at ``silent'' Sites in Drosophila DNA

Abstract

Patterns of codon usage and ``silent'' DNA divergence suggest that natural selection discriminates among synonymous codons in Drosophila. ``Preferred'' codons are consistently found in higher frequencies within their synonymous families in Drosophila melanogaster genes. This suggests a simple model of silent DNA evolution where natural selection favors mutations from unpreferred to preferred codons (preferred changes). Changes in the opposite direction, from preferred to unpreferred synonymous codons (unpreferred changes), are selected against. Here, selection on synonymous DNA mutations is investigated by comparing the evolutionary dynamics of these two categories of silent DNA changes. Sequences from outgroups are used to determine the direction of synonymous DNA changes within and between D. melanogaster and Drosophila simulans for five genes. Population genetics theory shows that differences in the fitness effect of mutations can be inferred from the comparison of ratios of polymorphism to divergence. Unpreferred changes show a significantly higher ratio of polymorphism to divergence than preferred changes in the D. simulans lineage, confirming the action of selection at silent sites. An excess of unpreferred fixations in 28 genes suggests a relaxation of selection on synonymous mutations in D. melanogaster. Estimates of selection coefficients for synonymous mutations (3.6 <|N(e)s| < 1.3) in D. simulans are consistent with the reduced efficacy of natural selection (|N(e)s| < 1) in the three- to sixfold smaller effective population size of D. melanogaster. Synonymous DNA changes appear to be a prevalent class of weakly selected mutations in Drosophila.

Full Text

The Full Text of this article is available as a PDF (1013K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Aguadé M, Miyashita N, Langley CH. Polymorphism and divergence in the Mst26A male accessory gland gene region in Drosophila. Genetics. 1992 Nov;132(3):755–770. [PMC free article] [PubMed]
  • Akashi H. Synonymous codon usage in Drosophila melanogaster: natural selection and translational accuracy. Genetics. 1994 Mar;136(3):927–935. [PMC free article] [PubMed]
  • Aquadro CF. Why is the genome variable? Insights from Drosophila. Trends Genet. 1992 Oct;8(10):355–362. [PubMed]
  • Bennetzen JL, Hall BD. Codon selection in yeast. J Biol Chem. 1982 Mar 25;257(6):3026–3031. [PubMed]
  • Berry AJ, Ajioka JW, Kreitman M. Lack of polymorphism on the Drosophila fourth chromosome resulting from selection. Genetics. 1991 Dec;129(4):1111–1117. [PMC free article] [PubMed]
  • Bulmer M. The selection-mutation-drift theory of synonymous codon usage. Genetics. 1991 Nov;129(3):897–907. [PMC free article] [PubMed]
  • Carulli JP, Krane DE, Hartl DL, Ochman H. Compositional heterogeneity and patterns of molecular evolution in the Drosophila genome. Genetics. 1993 Jul;134(3):837–845. [PMC free article] [PubMed]
  • Charlesworth B. The effect of background selection against deleterious mutations on weakly selected, linked variants. Genet Res. 1994 Jun;63(3):213–227. [PubMed]
  • Eanes WF, Kirchner M, Yoon J. Evidence for adaptive evolution of the G6pd gene in the Drosophila melanogaster and Drosophila simulans lineages. Proc Natl Acad Sci U S A. 1993 Aug 15;90(16):7475–7479. [PMC free article] [PubMed]
  • Grosjean H, Fiers W. Preferential codon usage in prokaryotic genes: the optimal codon-anticodon interaction energy and the selective codon usage in efficiently expressed genes. Gene. 1982 Jun;18(3):199–209. [PubMed]
  • Hartl DL, Moriyama EN, Sawyer SA. Selection intensity for codon bias. Genetics. 1994 Sep;138(1):227–234. [PMC free article] [PubMed]
  • Hughes AL, Ota T, Nei M. Positive Darwinian selection promotes charge profile diversity in the antigen-binding cleft of class I major-histocompatibility-complex molecules. Mol Biol Evol. 1990 Nov;7(6):515–524. [PubMed]
  • Jeffs PS, Holmes EC, Ashburner M. The molecular evolution of the alcohol dehydrogenase and alcohol dehydrogenase-related genes in the Drosophila melanogaster species subgroup. Mol Biol Evol. 1994 Mar;11(2):287–304. [PubMed]
  • Kimura M. Possibility of extensive neutral evolution under stabilizing selection with special reference to nonrandom usage of synonymous codons. Proc Natl Acad Sci U S A. 1981 Sep;78(9):5773–5777. [PMC free article] [PubMed]
  • Kliman RM, Hey J. Reduced natural selection associated with low recombination in Drosophila melanogaster. Mol Biol Evol. 1993 Nov;10(6):1239–1258. [PubMed]
  • Kliman RM, Hey J. DNA sequence variation at the period locus within and among species of the Drosophila melanogaster complex. Genetics. 1993 Feb;133(2):375–387. [PMC free article] [PubMed]
  • Kliman RM, Hey J. The effects of mutation and natural selection on codon bias in the genes of Drosophila. Genetics. 1994 Aug;137(4):1049–1056. [PMC free article] [PubMed]
  • Kreitman M. Nucleotide polymorphism at the alcohol dehydrogenase locus of Drosophila melanogaster. Nature. 1983 Aug 4;304(5925):412–417. [PubMed]
  • Kreitman M, Hudson RR. Inferring the evolutionary histories of the Adh and Adh-dup loci in Drosophila melanogaster from patterns of polymorphism and divergence. Genetics. 1991 Mar;127(3):565–582. [PMC free article] [PubMed]
  • Long M, Langley CH. Natural selection and the origin of jingwei, a chimeric processed functional gene in Drosophila. Science. 1993 Apr 2;260(5104):91–95. [PubMed]
  • MANTEL N, HAENSZEL W. Statistical aspects of the analysis of data from retrospective studies of disease. J Natl Cancer Inst. 1959 Apr;22(4):719–748. [PubMed]
  • Moriyama EN, Hartl DL. Codon usage bias and base composition of nuclear genes in Drosophila. Genetics. 1993 Jul;134(3):847–858. [PMC free article] [PubMed]
  • Sawyer SA, Hartl DL. Population genetics of polymorphism and divergence. Genetics. 1992 Dec;132(4):1161–1176. [PMC free article] [PubMed]
  • Sharp PM, Li WH. An evolutionary perspective on synonymous codon usage in unicellular organisms. J Mol Evol. 1986;24(1-2):28–38. [PubMed]
  • Sharp PM, Li WH. The rate of synonymous substitution in enterobacterial genes is inversely related to codon usage bias. Mol Biol Evol. 1987 May;4(3):222–230. [PubMed]
  • Sharp PM, Li WH. On the rate of DNA sequence evolution in Drosophila. J Mol Evol. 1989 May;28(5):398–402. [PubMed]
  • Shields DC, Sharp PM, Higgins DG, Wright F. "Silent" sites in Drosophila genes are not neutral: evidence of selection among synonymous codons. Mol Biol Evol. 1988 Nov;5(6):704–716. [PubMed]
  • Varenne S, Baty D, Verheij H, Shire D, Lazdunski C. The maximum rate of gene expression is dependent on the downstream context of unfavourable codons. Biochimie. 1989 Nov-Dec;71(11-12):1221–1229. [PubMed]

Articles from Genetics are provided here courtesy of Genetics Society of America

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...