• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of geneticsGeneticsCurrent IssueInformation for AuthorsEditorial BoardSubscribeSubmit a Manuscript
Genetics. Jan 1995; 139(1): 463–471.
PMCID: PMC1206344

An Evaluation of Genetic Distances for Use with Microsatellite Loci

Abstract

Mutations of alleles at microsatellite loci tend to result in alleles with repeat scores similar to those of the alleles from which they were derived. Therefore the difference in repeat score between alleles carries information about the amount of time that has passed since they shared a common ancestral allele. This information is ignored by genetic distances based on the infinite alleles model. Here we develop a genetic distance based on the stepwise mutation model that includes allelic repeat score. We adapt earlier treatments of the stepwise mutation model to show analytically that the expectation of this distance is a linear function of time. We then use computer simulations to evaluate the overall reliability of this distance and to compare it with allele sharing and Nei's distance. We find that no distance is uniformly superior for all purposes, but that for phylogenetic reconstruction of taxa that are sufficiently diverged, our new distance is preferable.

Full Text

The Full Text of this article is available as a PDF (1.3M).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Bowcock AM, Ruiz-Linares A, Tomfohrde J, Minch E, Kidd JR, Cavalli-Sforza LL. High resolution of human evolutionary trees with polymorphic microsatellites. Nature. 1994 Mar 31;368(6470):455–457. [PubMed]
  • Brown AH, Marshall DR, Albrecht L. Profiles of electrophoretic alleles in natural populations. Genet Res. 1975 Apr;25(2):137–143. [PubMed]
  • Chakraborty R, Jin L. A unified approach to study hypervariable polymorphisms: statistical considerations of determining relatedness and population distances. EXS. 1993;67:153–175. [PubMed]
  • Dietrich W, Katz H, Lincoln SE, Shin HS, Friedman J, Dracopoli NC, Lander ES. A genetic map of the mouse suitable for typing intraspecific crosses. Genetics. 1992 Jun;131(2):423–447. [PMC free article] [PubMed]
  • Di Rienzo A, Peterson AC, Garza JC, Valdes AM, Slatkin M, Freimer NB. Mutational processes of simple-sequence repeat loci in human populations. Proc Natl Acad Sci U S A. 1994 Apr 12;91(8):3166–3170. [PMC free article] [PubMed]
  • Goldstein DB, Pollock DD. Least squares estimation of molecular distance--noise abatement in phylogenetic reconstruction. Theor Popul Biol. 1994 Jun;45(3):219–226. [PubMed]
  • Henderson ST, Petes TD. Instability of simple sequence DNA in Saccharomyces cerevisiae. Mol Cell Biol. 1992 Jun;12(6):2749–2757. [PMC free article] [PubMed]
  • Jeffreys AJ, Pena SD. Brief introduction to human DNA fingerprinting. EXS. 1993;67:1–20. [PubMed]
  • Jeffreys AJ, Royle NJ, Wilson V, Wong Z. Spontaneous mutation rates to new length alleles at tandem-repetitive hypervariable loci in human DNA. Nature. 1988 Mar 17;332(6161):278–281. [PubMed]
  • Kelly R, Gibbs M, Collick A, Jeffreys AJ. Spontaneous mutation at the hypervariable mouse minisatellite locus Ms6-hm: flanking DNA sequence and analysis of germline and early somatic mutation events. Proc Biol Sci. 1991 Sep 23;245(1314):235–245. [PubMed]
  • Kunkel TA. Nucleotide repeats. Slippery DNA and diseases. Nature. 1993 Sep 16;365(6443):207–208. [PubMed]
  • Levinson G, Gutman GA. Slipped-strand mispairing: a major mechanism for DNA sequence evolution. Mol Biol Evol. 1987 May;4(3):203–221. [PubMed]
  • Meyer A, Kocher TD, Basasibwaki P, Wilson AC. Monophyletic origin of Lake Victoria cichlid fishes suggested by mitochondrial DNA sequences. Nature. 1990 Oct 11;347(6293):550–553. [PubMed]
  • Moran PA. Wandering distributions and the electrophoretic profile. Theor Popul Biol. 1975 Dec;8(3):318–330. [PubMed]
  • Ohta T, Kimura M. A model of mutation appropriate to estimate the number of electrophoretically detectable alleles in a finite population. Genet Res. 1973 Oct;22(2):201–204. [PubMed]
  • Schlötterer C, Tautz D. Slippage synthesis of simple sequence DNA. Nucleic Acids Res. 1992 Jan 25;20(2):211–215. [PMC free article] [PubMed]
  • Shriver MD, Jin L, Chakraborty R, Boerwinkle E. VNTR allele frequency distributions under the stepwise mutation model: a computer simulation approach. Genetics. 1993 Jul;134(3):983–993. [PMC free article] [PubMed]
  • Slatkin M. A measure of population subdivision based on microsatellite allele frequencies. Genetics. 1995 Jan;139(1):457–462. [PMC free article] [PubMed]
  • Stephens JC, Gilbert DA, Yuhki N, O'Brien SJ. Estimation of heterozygosity for single-probe multilocus DNA fingerprints. Mol Biol Evol. 1992 Jul;9(4):729–743. [PubMed]
  • Strand M, Prolla TA, Liskay RM, Petes TD. Destabilization of tracts of simple repetitive DNA in yeast by mutations affecting DNA mismatch repair. Nature. 1993 Sep 16;365(6443):274–276. [PubMed]
  • Tautz D. Notes on the definition and nomenclature of tandemly repetitive DNA sequences. EXS. 1993;67:21–28. [PubMed]
  • Todd JA, Aitman TJ, Cornall RJ, Ghosh S, Hall JR, Hearne CM, Knight AM, Love JM, McAleer MA, Prins JB, et al. Genetic analysis of autoimmune type 1 diabetes mellitus in mice. Nature. 1991 Jun 13;351(6327):542–547. [PubMed]
  • Walsh JB. Persistence of tandem arrays: implications for satellite and simple-sequence DNAs. Genetics. 1987 Mar;115(3):553–567. [PMC free article] [PubMed]
  • Wehrhahn CF. The evolution of selectively similar electrophoretically detectable alleles in finite natural populations. Genetics. 1975 Jun;80(2):375–394. [PMC free article] [PubMed]
  • Weir BS. Testing for selective neutrality of electrophoretically detectable protein polymorphisms. Genetics. 1976 Nov;84(3):639–659. [PMC free article] [PubMed]

Articles from Genetics are provided here courtesy of Genetics Society of America

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

  • PubMed
    PubMed
    PubMed citations for these articles

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...