• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of geneticsGeneticsCurrent IssueInformation for AuthorsEditorial BoardSubscribeSubmit a Manuscript
Genetics. Aug 1993; 134(4): 1149–1174.
PMCID: PMC1205583

Mapping Simple Repeated DNA Sequences in Heterochromatin of Drosophila Melanogaster

Abstract

Heterochromatin in Drosophila has unusual genetic, cytological and molecular properties. Highly repeated DNA sequences (satellites) are the principal component of heterochromatin. Using probes from cloned satellites, we have constructed a chromosome map of 10 highly repeated, simple DNA sequences in heterochromatin of mitotic chromosomes of Drosophila melanogaster. Despite extensive sequence homology among some satellites, chromosomal locations could be distinguished by stringent in situ hybridizations for each satellite. Only two of the localizations previously determined using gradient-purified bulk satellite probes are correct. Eight new satellite localizations are presented, providing a megabase-level chromosome map of one-quarter of the genome. Five major satellites each exhibit a multichromosome distribution, and five minor satellites hybridize to single sites on the Y chromosome. Satellites closely related in sequence are often located near one another on the same chromosome. About 80% of Y chromosome DNA is composed of nine simple repeated sequences, in particular (AAGAC)(n) (8 Mb), (AAGAG)(n) (7 Mb) and (AATAT)(n) (6 Mb). Similarly, more than 70% of the DNA in chromosome 2 heterochromatin is composed of five simple repeated sequences. We have also generated a high resolution map of satellites in chromosome 2 heterochromatin, using a series of translocation chromosomes whose breakpoints in heterochromatin were ordered by N-banding. Finally, staining and banding patterns of heterochromatic regions are correlated with the locations of specific repeated DNA sequences. The basis for the cytochemical heterogeneity in banding appears to depend exclusively on the different satellite DNAs present in heterochromatin.

Full Text

The Full Text of this article is available as a PDF (24M).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Abad JP, Carmena M, Baars S, Saunders RD, Glover DM, Ludeña P, Sentis C, Tyler-Smith C, Villasante A. Dodeca satellite: a conserved G+C-rich satellite from the centromeric heterochromatin of Drosophila melanogaster. Proc Natl Acad Sci U S A. 1992 May 15;89(10):4663–4667. [PMC free article] [PubMed]
  • Ayles GB, Sanders TG, Kiefer BI, Suzuki DT. Temperature-sensitive mutations in Drosophila melanogaster. XI. Male sterile mutants of the Y chromosome. Dev Biol. 1973 Jun;32(2):239–257. [PubMed]
  • Barigozzi C, Dolfini S, Fraccaro M, Raimondi GR, Tiepolo L. In vitro study of the DNA replication patterns of somatic chromosomes of Drosophila melanogaster. Exp Cell Res. 1966 Aug;43(1):231–234. [PubMed]
  • Bonaccorsi S, Lohe A. Fine mapping of satellite DNA sequences along the Y chromosome of Drosophila melanogaster: relationships between satellite sequences and fertility factors. Genetics. 1991 Sep;129(1):177–189. [PMC free article] [PubMed]
  • Bridges CB. Non-Disjunction as Proof of the Chromosome Theory of Heredity (Concluded). Genetics. 1916 Mar;1(2):107–163. [PMC free article] [PubMed]
  • Brutlag D, Appels R, Dennis ES, Peacock WJ. Highly repeated DNA in Drosophila melanogaster. J Mol Biol. 1977 May 5;112(1):31–47. [PubMed]
  • Carlson M, Brutlag D. One of the copia genes is adjacent to satellite DNA in Drosophila melanogaster. Cell. 1978 Nov;15(3):733–742. [PubMed]
  • Carlson M, Brutlag D. Different regions of a complex statellite DNA vary in size and sequence of the repeating unit. J Mol Biol. 1979 Dec 5;135(2):483–500. [PubMed]
  • Danilevskaya ON, Kurenova EV, Pavlova MN, Bebehov DV, Link AJ, Koga A, Vellek A, Hartl DL. He-T family DNA sequences in the Y chromosome of Drosophila melanogaster share homology with the X-linked stellate genes. Chromosoma. 1991 Feb;100(2):118–124. [PubMed]
  • DiBartolomeis SM, Tartof KD, Jackson FR. A superfamily of Drosophila satellite related (SR) DNA repeats restricted to the X chromosome euchromatin. Nucleic Acids Res. 1992 Mar 11;20(5):1113–1116. [PMC free article] [PubMed]
  • Endow SA, Polan ML, Gall JG. Satellite DNA sequences of Drosophila melanogaster. J Mol Biol. 1975 Aug 25;96(4):665–692. [PubMed]
  • Fry K, Brutlag D. Detection and resolution of closely related satellite DNA sequences by molecular cloning. J Mol Biol. 1979 Dec 15;135(3):581–593. [PubMed]
  • Gall JG, Cohen EH, Polan ML. Reptitive DNA sequences in drosophila. Chromosoma. 1971;33(3):319–344. [PubMed]
  • Goldstein LS, Hardy RW, Lindsley DL. Structural genes on the Y chromosome of Drosophila melanogaster. Proc Natl Acad Sci U S A. 1982 Dec;79(23):7405–7409. [PMC free article] [PubMed]
  • HANNAH A. Localization and function of heterochromatin in Drosophila melanogaster. Adv Genet. 1951;4:87–125. [PubMed]
  • Hartl DL, Ajioka JW, Cai H, Lohe AR, Lozovskaya ER, Smoller DA, Duncan IW. Towards a Drosophila genome map. Trends Genet. 1992 Feb;8(2):70–75. [PubMed]
  • Hilliker AJ. Genetic analysis of the centromeric heterochromatin of chromosome 2 of Drosophila melanogaster: deficiency mapping of EMS-induced lethal complementation groups. Genetics. 1976 Aug;83(4):765–782. [PMC free article] [PubMed]
  • Hilliker AJ, Appels R. Pleiotropic effects associated with the deletion of heterochromatin surrounding rDNA on the X chromosome of Drosophila. Chromosoma. 1982;86(4):469–490. [PubMed]
  • Hilliker AJ, Appels R, Schalet A. The genetic analysis of D. melanogaster heterochromatin. Cell. 1980 Oct;21(3):607–619. [PubMed]
  • Hilliker AJ, Trusis-Coulter SN. Analysis of the functional significance of linkage group conservation in Drosophila. Genetics. 1987 Oct;117(2):233–244. [PMC free article] [PubMed]
  • Hsieh T, Brutlag D. Sequence and sequence variation within the 1.688 g/cm3 satellite DNA of Drosophila melanogaster. J Mol Biol. 1979 Dec 5;135(2):465–481. [PubMed]
  • Inouye S, Yuki S, Saigo K. Complete nucleotide sequence and genome organization of a Drosophila transposable genetic element, 297. Eur J Biochem. 1986 Jan 15;154(2):417–425. [PubMed]
  • Langer PR, Waldrop AA, Ward DC. Enzymatic synthesis of biotin-labeled polynucleotides: novel nucleic acid affinity probes. Proc Natl Acad Sci U S A. 1981 Nov;78(11):6633–6637. [PMC free article] [PubMed]
  • Livak KJ. Organization and mapping of a sequence on the Drosophila melanogaster X and Y chromosomes that is transcribed during spermatogenesis. Genetics. 1984 Aug;107(4):611–634. [PMC free article] [PubMed]
  • Lohe AR, Brutlag DL. Multiplicity of satellite DNA sequences in Drosophila melanogaster. Proc Natl Acad Sci U S A. 1986 Feb;83(3):696–700. [PMC free article] [PubMed]
  • Lohe AR, Brutlag DL. Identical satellite DNA sequences in sibling species of Drosophila. J Mol Biol. 1987 Mar 20;194(2):161–170. [PubMed]
  • Lohe AR, Brutlag DL. Adjacent satellite DNA segments in Drosophila structure of junctions. J Mol Biol. 1987 Mar 20;194(2):171–179. [PubMed]
  • Lohe AR, Roberts PA. An unusual Y chromosome of Drosophila simulans carrying amplified rDNA spacer without rRNA genes. Genetics. 1990 Jun;125(2):399–406. [PMC free article] [PubMed]
  • Marchant GE, Holm DG. Genetic analysis of the heterochromatin of chromosome 3 in Drosophila melanogaster. I. Products of compound-autosome detachment. Genetics. 1988 Oct;120(2):503–517. [PMC free article] [PubMed]
  • Marchant GE, Holm DG. Genetic Analysis of the Heterochromatin of Chromosome 3 in Drosophila Melanogaster. II. Vital Loci Identified through Ems Mutagenesis. Genetics. 1988 Oct;120(2):519–532. [PMC free article] [PubMed]
  • Muller HJ, Gershenson SM. Inert Regions of Chromosomes as the Temporary Products of Individual Genes. Proc Natl Acad Sci U S A. 1935 Feb;21(2):69–75. [PMC free article] [PubMed]
  • Peacock WJ, Brutlag D, Goldring E, Appels R, Hinton CW, Lindsley DL. The organization of highly repeated DNA sequences in Drosophila melanogaster chromosomes. Cold Spring Harb Symp Quant Biol. 1974;38:405–416. [PubMed]
  • Peacock WJ, Lohe AR, Gerlach WL, Dunsmuir P, Dennis ES, Appels R. Fine structure and evolution of DNA in heterochromatin. Cold Spring Harb Symp Quant Biol. 1978;42(Pt 2):1121–1135. [PubMed]
  • Pimpinelli S, Dimitri P. Cytogenetic analysis of segregation distortion in Drosophila melanogaster: the cytological organization of the Responder (Rsp) locus. Genetics. 1989 Apr;121(4):765–772. [PMC free article] [PubMed]
  • Pimpinelli S, Santini G, Gatti M. Characterization of Drosophila heterochromatin. II. C- and N-banding. Chromosoma. 1976 Sep 24;57(4):377–386. [PubMed]
  • Pimpinelli S, Sullivan W, Prout M, Sandler L. On biological functions mapping to the heterochromatin of Drosophila melanogaster. Genetics. 1985 Apr;109(4):701–724. [PMC free article] [PubMed]
  • ROBERTS PA. DIFFERENCE IN THE BEHAVIOR OF EU- AND HETERO-CHROMATIN: CROSSING-OVER. Nature. 1965 Feb 13;205:725–726. [PubMed]
  • Rudkin GT. Non replicating DNA in Drosophila. Genetics. 1969;61(1 Suppl):227–238. [PubMed]
  • Spear BB. The genes for ribosomal RNA in diploid and polytene chromosomes of Drosophila melanogaster. Chromosoma. 1974;48(2):159–179. [PubMed]
  • Spradling AC, de Cicco DV, Wakimoto BT, Levine JF, Kalfayan LJ, Cooley L. Amplification of the X-linked Drosophila chorion gene cluster requires a region upstream from the s38 chorion gene. EMBO J. 1987 Apr;6(4):1045–1053. [PMC free article] [PubMed]
  • Steffensen DM, Appels R, Peacock WJ. The distribution of two highly repeated DNA sequences within Drosophila melanogaster chromosomes. Chromosoma. 1981;82(4):525–541. [PubMed]
  • Szabo P, Elder R, Steffensen DM, Uhlenbeck OC. Quantitative in situ hybridization of ribosomal RNA species to polytene chromosomes of Drosophila melanogaster. J Mol Biol. 1977 Sep 25;115(3):539–563. [PubMed]
  • Tautz D, Hancock JM, Webb DA, Tautz C, Dover GA. Complete sequences of the rRNA genes of Drosophila melanogaster. Mol Biol Evol. 1988 Jul;5(4):366–376. [PubMed]
  • Williamson JH. Ethyl methanesulfonate-induced mutants in the Y chromosome of Drosophila melanogaster. Mutat Res. 1970 Dec;10(6):597–605. [PubMed]
  • Williamson JH. Allelic complementation between mutants in the fertility factyors of the Y chromosome in Drosophila melanogaster. Mol Gen Genet. 1972;119(1):43–47. [PubMed]
  • Wu CI, Lyttle TW, Wu ML, Lin GF. Association between a satellite DNA sequence and the Responder of Segregation Distorter in D. melanogaster. Cell. 1988 Jul 15;54(2):179–189. [PubMed]

Articles from Genetics are provided here courtesy of Genetics Society of America

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...