• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of geneticsGeneticsCurrent IssueInformation for AuthorsEditorial BoardSubscribeSubmit a Manuscript
Genetics. Jul 1992; 131(3): 559–574.
PMCID: PMC1205030

The Structure and Evolution of Subtelomeric Y' Repeats in Saccharomyces Cerevisiae

Abstract

The subtelomeric Y' family of repeated DNA sequences in the yeast Saccharomyces cerevisiae is of unknown origin and function. Y's vary in copy number and location among strains. Eight Y's, from two strains, were cloned and sequenced over the same 3.2-kb interval in order to assess the withinand between-strain variation as well as address their origin and function. One entire Y' sequence was reconstructed from two clones presented here and a previously sequenced 833-bp region. It contains two large overlapping open reading frames (ORFs). The putative protein sequences have no strong homologies to any known proteins except for one region that has 27% identity with RNA helicases. RNA homologous to each ORF was detected. Comparison of the sequences revealed that the known long (Y'-L) and short (Y'-S) size classes, which coexist within cells, differ by several insertions and/or deletions within this region. The Y'-Ls from strain Y55 also differ from those of strain YP1 by several short deletions in the same region. Most of these deletions appear to have occurred between short (2-10 bp) direct repeats. The single base pair polymorphisms and the deletions are clustered in the first half of the interval compared. There is 0.30-1.13% divergence among Y'-Ls within a strain and 1.15-1.75% divergence between strains in the interval. This is similar to known unique sequence variation but contrasts with the 8-18% divergence among the adjacent subtelomeric repeats, X. Subsets of Y's exhibit concerted evolution; however, more than one variant appears to be maintained within strains. The observed sequence variation disrupts the first ORF in many Y's while most of the second ORF including the putative helicase region is unaffected. The structure and distribution of the Y' elements are consistent with having originated as a mobile element. However, they now appear to move via recombination. Recombination can account for the homogenization within subsets of Y's but does not account for the maintenance of different variants.

Full Text

The Full Text of this article is available as a PDF (3.6M).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Backendorf C, Spaink H, Barbeiro AP, van de Putte P. Structure of the uvrB gene of Escherichia coli. Homology with other DNA repair enzymes and characterization of the uvrB5 mutation. Nucleic Acids Res. 1986 Apr 11;14(7):2877–2890. [PMC free article] [PubMed]
  • Chalker DL, Sandmeyer SB. Transfer RNA genes are genomic targets for de Novo transposition of the yeast retrotransposon Ty3. Genetics. 1990 Dec;126(4):837–850. [PMC free article] [PubMed]
  • Devereux J, Haeberli P, Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. [PMC free article] [PubMed]
  • Ernst JF, Stewart JW, Sherman F. The cyc1-11 mutation in yeast reverts by recombination with a nonallelic gene: composite genes determining the iso-cytochromes c. Proc Natl Acad Sci U S A. 1981 Oct;78(10):6334–6338. [PMC free article] [PubMed]
  • Fickett JW. Recognition of protein coding regions in DNA sequences. Nucleic Acids Res. 1982 Sep 11;10(17):5303–5318. [PMC free article] [PubMed]
  • Gorbalenya AE, Koonin EV, Donchenko AP, Blinov VM. Two related superfamilies of putative helicases involved in replication, recombination, repair and expression of DNA and RNA genomes. Nucleic Acids Res. 1989 Jun 26;17(12):4713–4730. [PMC free article] [PubMed]
  • Gottschling DE, Aparicio OM, Billington BL, Zakian VA. Position effect at S. cerevisiae telomeres: reversible repression of Pol II transcription. Cell. 1990 Nov 16;63(4):751–762. [PubMed]
  • Hay B, Jan LY, Jan YN. A protein component of Drosophila polar granules is encoded by vasa and has extensive sequence similarity to ATP-dependent helicases. Cell. 1988 Nov 18;55(4):577–587. [PubMed]
  • Hodgman TC. A new superfamily of replicative proteins. Nature. 1988 May 5;333(6168):22–23. [PubMed]
  • Horowitz H, Haber JE. Subtelomeric regions of yeast chromosomes contain a 36 base-pair tandemly repeated sequence. Nucleic Acids Res. 1984 Sep 25;12(18):7105–7121. [PMC free article] [PubMed]
  • Jacks T, Madhani HD, Masiarz FR, Varmus HE. Signals for ribosomal frameshifting in the Rous sarcoma virus gag-pol region. Cell. 1988 Nov 4;55(3):447–458. [PubMed]
  • Jäger D, Philippsen P. Many yeast chromosomes lack the telomere-specific Y' sequence. Mol Cell Biol. 1989 Dec;9(12):5754–5757. [PMC free article] [PubMed]
  • Koonin EV. Similarities in RNA helicases. Nature. 1991 Jul 25;352(6333):290–290. [PubMed]
  • Langford CJ, Klinz FJ, Donath C, Gallwitz D. Point mutations identify the conserved, intron-contained TACTAAC box as an essential splicing signal sequence in yeast. Cell. 1984 Mar;36(3):645–653. [PubMed]
  • Linder P, Slonimski PP. Sequence of the genes TIF1 and TIF2 from Saccharomyces cerevisiae coding for a translation initiation factor. Nucleic Acids Res. 1988 Nov 11;16(21):10359–10359. [PMC free article] [PubMed]
  • Liu ZP, Tye BK. A yeast protein that binds to vertebrate telomeres and conserved yeast telomeric junctions. Genes Dev. 1991 Jan;5(1):49–59. [PubMed]
  • Louis EJ, Haber JE. The subtelomeric Y' repeat family in Saccharomyces cerevisiae: an experimental system for repeated sequence evolution. Genetics. 1990 Mar;124(3):533–545. [PMC free article] [PubMed]
  • Melton DA, Krieg PA, Rebagliati MR, Maniatis T, Zinn K, Green MR. Efficient in vitro synthesis of biologically active RNA and RNA hybridization probes from plasmids containing a bacteriophage SP6 promoter. Nucleic Acids Res. 1984 Sep 25;12(18):7035–7056. [PMC free article] [PubMed]
  • Needleman SB, Wunsch CD. A general method applicable to the search for similarities in the amino acid sequence of two proteins. J Mol Biol. 1970 Mar;48(3):443–453. [PubMed]
  • Oh EY, Grossman L. Characterization of the helicase activity of the Escherichia coli UvrAB protein complex. J Biol Chem. 1989 Jan 15;264(2):1336–1343. [PubMed]
  • Ohta T. On the evolution of multigene families. Theor Popul Biol. 1983 Apr;23(2):216–240. [PubMed]
  • Perlin DS, Harris SL, Seto-Young D, Haber JE. Defective H(+)-ATPase of hygromycin B-resistant pma1 mutants fromSaccharomyces cerevisiae. J Biol Chem. 1989 Dec 25;264(36):21857–21864. [PubMed]
  • Petes TD. Unequal meiotic recombination within tandem arrays of yeast ribosomal DNA genes. Cell. 1980 Mar;19(3):765–774. [PubMed]
  • Ray BK, Lawson TG, Kramer JC, Cladaras MH, Grifo JA, Abramson RD, Merrick WC, Thach RE. ATP-dependent unwinding of messenger RNA structure by eukaryotic initiation factors. J Biol Chem. 1985 Jun 25;260(12):7651–7658. [PubMed]
  • Rose M, Grisafi P, Botstein D. Structure and function of the yeast URA3 gene: expression in Escherichia coli. Gene. 1984 Jul-Aug;29(1-2):113–124. [PubMed]
  • Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. [PMC free article] [PubMed]
  • Schlesser A, Ulaszewski S, Ghislain M, Goffeau A. A second transport ATPase gene in Saccharomyces cerevisiae. J Biol Chem. 1988 Dec 25;263(36):19480–19487. [PubMed]
  • Selker EU, Yanofsky C, Driftmier K, Metzenberg RL, Alzner-DeWeerd B, RajBhandary UL. Dispersed 5S RNA genes in N. crassa: structure, expression and evolution. Cell. 1981 Jun;24(3):819–828. [PubMed]
  • Shampay J, Szostak JW, Blackburn EH. DNA sequences of telomeres maintained in yeast. Nature. 1984 Jul 12;310(5973):154–157. [PubMed]
  • Sharp PM, Li WH. The codon Adaptation Index--a measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Res. 1987 Feb 11;15(3):1281–1295. [PMC free article] [PubMed]
  • Slightom JL, Blechl AE, Smithies O. Human fetal G gamma- and A gamma-globin genes: complete nucleotide sequences suggest that DNA can be exchanged between these duplicated genes. Cell. 1980 Oct;21(3):627–638. [PubMed]
  • Szostak JW, Blackburn EH. Cloning yeast telomeres on linear plasmid vectors. Cell. 1982 May;29(1):245–255. [PubMed]
  • Valgeirsdóttir K, Traverse KL, Pardue ML. HeT DNA: a family of mosaic repeated sequences specific for heterochromatin in Drosophila melanogaster. Proc Natl Acad Sci U S A. 1990 Oct;87(20):7998–8002. [PMC free article] [PubMed]
  • Walmsley RW, Chan CS, Tye BK, Petes TD. Unusual DNA sequences associated with the ends of yeast chromosomes. Nature. 1984 Jul 12;310(5973):157–160. [PubMed]

Articles from Genetics are provided here courtesy of Genetics Society of America

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...