• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of geneticsGeneticsCurrent IssueInformation for AuthorsEditorial BoardSubscribeSubmit a Manuscript
Genetics. Jan 1991; 127(1): 53–60.
PMCID: PMC1204312

Allelic and Ectopic Interactions in Recombination-Defective Yeast Strains

Abstract

Ectopic recombination in the yeast Saccharomyces cerevisiae has been investigated by examining the effects of mutations known to alter allelic recombination frequencies. A haploid yeast strain disomic for chromosome III was constructed in which allelic recombination can be monitored using leu2 heteroalleles on chromosome III and ectopic recombination can be monitored using ura3 heteroalleles on chromosomes V and II. This strain contains the spo13-1 mutation which permits haploid strains to successfully complete meiosis and which rescues many recombination-defective mutants from the associated meiotic lethality. Mutations in the genes RAD50, SPO11 and HOP1 were introduced individually into this disomic strain using transformation procedures. Mitotic and meiotic comparisons of each mutant strain with the wild-type parental strain has shown that the mutation in question has comparable effects on ectopic and allelic recombination. Similar results have been obtained using diploid strains constructed by mating MATa and MATα haploid derivatives of each of the disomic strains. These data demonstrate that ectopic and allelic recombination are affected by the same gene products and suggest that the two types of recombination are mechanistically similar. In addition, the comparison of disomic and diploid strains indicates that the presence of a chromosome pairing partner during meiosis does not affect the frequency of ectopic recombination events involving nonhomologous chromosomes.

Full Text

The Full Text of this article is available as a PDF (825K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Aguilera A, Klein HL. Genetic control of intrachromosomal recombination in Saccharomyces cerevisiae. I. Isolation and genetic characterization of hyper-recombination mutations. Genetics. 1988 Aug;119(4):779–790. [PMC free article] [PubMed]
  • Alani E, Cao L, Kleckner N. A method for gene disruption that allows repeated use of URA3 selection in the construction of multiply disrupted yeast strains. Genetics. 1987 Aug;116(4):541–545. [PMC free article] [PubMed]
  • Alani E, Padmore R, Kleckner N. Analysis of wild-type and rad50 mutants of yeast suggests an intimate relationship between meiotic chromosome synapsis and recombination. Cell. 1990 May 4;61(3):419–436. [PubMed]
  • Alani E, Subbiah S, Kleckner N. The yeast RAD50 gene encodes a predicted 153-kD protein containing a purine nucleotide-binding domain and two large heptad-repeat regions. Genetics. 1989 May;122(1):47–57. [PMC free article] [PubMed]
  • Atcheson CL, DiDomenico B, Frackman S, Esposito RE, Elder RT. Isolation, DNA sequence, and regulation of a meiosis-specific eukaryotic recombination gene. Proc Natl Acad Sci U S A. 1987 Nov;84(22):8035–8039. [PMC free article] [PubMed]
  • Boeke JD, LaCroute F, Fink GR. A positive selection for mutants lacking orotidine-5'-phosphate decarboxylase activity in yeast: 5-fluoro-orotic acid resistance. Mol Gen Genet. 1984;197(2):345–346. [PubMed]
  • Botstein D, Falco SC, Stewart SE, Brennan M, Scherer S, Stinchcomb DT, Struhl K, Davis RW. Sterile host yeasts (SHY): a eukaryotic system of biological containment for recombinant DNA experiments. Gene. 1979 Dec;8(1):17–24. [PubMed]
  • Carpenter AT. Gene conversion, recombination nodules, and the initiation of meiotic synapsis. Bioessays. 1987 May;6(5):232–236. [PubMed]
  • Chattoo BB, Sherman F, Azubalis DA, Fjellstedt TA, Mehnert D, Ogur M. Selection of lys2 Mutants of the Yeast SACCHAROMYCES CEREVISIAE by the Utilization of alpha-AMINOADIPATE. Genetics. 1979 Sep;93(1):51–65. [PMC free article] [PubMed]
  • Fleig UN, Pridmore RD, Philippsen P. Construction of LYS2 cartridges for use in genetic manipulations of Saccharomyces cerevisiae. Gene. 1986;46(2-3):237–245. [PubMed]
  • Friedberg EC. Deoxyribonucleic acid repair in the yeast Saccharomyces cerevisiae. Microbiol Rev. 1988 Mar;52(1):70–102. [PMC free article] [PubMed]
  • Game JC, Zamb TJ, Braun RJ, Resnick M, Roth RM. The Role of Radiation (rad) Genes in Meiotic Recombination in Yeast. Genetics. 1980 Jan;94(1):51–68. [PMC free article] [PubMed]
  • Gottlieb S, Wagstaff J, Esposito RE. Evidence for two pathways of meiotic intrachromosomal recombination in yeast. Proc Natl Acad Sci U S A. 1989 Sep;86(18):7072–7076. [PMC free article] [PubMed]
  • Hollingsworth NM, Byers B. HOP1: a yeast meiotic pairing gene. Genetics. 1989 Mar;121(3):445–462. [PMC free article] [PubMed]
  • Hollingsworth NM, Goetsch L, Byers B. The HOP1 gene encodes a meiosis-specific component of yeast chromosomes. Cell. 1990 Apr 6;61(1):73–84. [PubMed]
  • Ito H, Fukuda Y, Murata K, Kimura A. Transformation of intact yeast cells treated with alkali cations. J Bacteriol. 1983 Jan;153(1):163–168. [PMC free article] [PubMed]
  • Jackson JA, Fink GR. Meiotic recombination between duplicated genetic elements in Saccharomyces cerevisiae. Genetics. 1985 Feb;109(2):303–332. [PMC free article] [PubMed]
  • Jinks-Robertson S, Petes TD. High-frequency meiotic gene conversion between repeated genes on nonhomologous chromosomes in yeast. Proc Natl Acad Sci U S A. 1985 May;82(10):3350–3354. [PMC free article] [PubMed]
  • Jinks-Robertson S, Petes TD. Chromosomal translocations generated by high-frequency meiotic recombination between repeated yeast genes. Genetics. 1986 Nov;114(3):731–752. [PMC free article] [PubMed]
  • Lichten M, Borts RH, Haber JE. Meiotic gene conversion and crossing over between dispersed homologous sequences occurs frequently in Saccharomyces cerevisiae. Genetics. 1987 Feb;115(2):233–246. [PMC free article] [PubMed]
  • Lichten M, Haber JE. Position effects in ectopic and allelic mitotic recombination in Saccharomyces cerevisiae. Genetics. 1989 Oct;123(2):261–268. [PMC free article] [PubMed]
  • Malone RE, Esposito RE. The RAD52 gene is required for homothallic interconversion of mating types and spontaneous mitotic recombination in yeast. Proc Natl Acad Sci U S A. 1980 Jan;77(1):503–507. [PMC free article] [PubMed]
  • Malone RE, Esposito RE. Recombinationless meiosis in Saccharomyces cerevisiae. Mol Cell Biol. 1981 Oct;1(10):891–901. [PMC free article] [PubMed]
  • Mortimer RK, Contopoulou R, Schild D. Mitotic chromosome loss in a radiation-sensitive strain of the yeast Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1981 Sep;78(9):5778–5782. [PMC free article] [PubMed]
  • Mortimer RK, Schild D, Contopoulou CR, Kans JA. Genetic map of Saccharomyces cerevisiae, edition 10. Yeast. 1989 Sep-Oct;5(5):321–403. [PubMed]
  • Orr-Weaver TL, Szostak JW. Fungal recombination. Microbiol Rev. 1985 Mar;49(1):33–58. [PMC free article] [PubMed]
  • Petes TD, Hill CW. Recombination between repeated genes in microorganisms. Annu Rev Genet. 1988;22:147–168. [PubMed]
  • Prakash S, Prakash L, Burke W, Montelone BA. Effects of the RAD52 Gene on Recombination in SACCHAROMYCES CEREVISIAE. Genetics. 1980 Jan;94(1):31–50. [PMC free article] [PubMed]
  • Rockmill B, Roeder GS. Meiosis in asynaptic yeast. Genetics. 1990 Nov;126(3):563–574. [PMC free article] [PubMed]
  • Southern EM. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol. 1975 Nov 5;98(3):503–517. [PubMed]
  • Wagstaff JE, Klapholz S, Esposito RE. Meiosis in haploid yeast. Proc Natl Acad Sci U S A. 1982 May;79(9):2986–2990. [PMC free article] [PubMed]
  • Wagstaff JE, Klapholz S, Waddell CS, Jensen L, Esposito RE. Meiotic exchange within and between chromosomes requires a common Rec function in Saccharomyces cerevisiae. Mol Cell Biol. 1985 Dec;5(12):3532–3544. [PMC free article] [PubMed]

Articles from Genetics are provided here courtesy of Genetics Society of America

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...