• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of geneticsGeneticsCurrent IssueInformation for AuthorsEditorial BoardSubscribeSubmit a Manuscript
Genetics. Nov 1990; 126(3): 535–547.
PMCID: PMC1204210

A Defect in Mismatch Repair in Saccharomyces Cerevisiae Stimulates Ectopic Recombination between Homeologous Genes by an Excision Repair Dependent Process

Abstract

Null mutations in three recombination and DNA repair genes were studied to determine their effects on mitotic recombination between the duplicate AdoMet (S-adenosylmethionine) synthetase genes (SAM1 and SAM2) in Saccharomyces cerevisiae. SAM1 and SAM2, located on chromosomes XII and IV, respectively, encode functionally equivalent although differentially regulated AdoMet synthetases. These similar but not identical (homeologous) genes are 83% homologous at the nucleotide level and this identity is limited solely to the coding regions of the genes. Single frameshift mutations were introduced into the 5' end of SAM1 and the 3' end of SAM2 by restriction site ablation. The sequences surrounding these mutations differ significantly in their degree of homology to the corresponding area of the other gene. Mitotic ectopic recombination between the mutant sam genes occurs at a rate of 8.4 X 10(-9) in a wild-type genetic background. Gene conversion of the marker within the region of greater sequence homology occurs 20-fold more frequently than conversion of the marker within the region of relative sequence diversity. The relative orientation of the two genes prevents the recovery of translocations. Mitotic recombination between the sam genes is completely dependent on the DNA repair and recombination gene RAD52. A mutation in PMS1, a mismatch repair gene, causes a 4.5-fold increase in the rate of ectopic recombination. RAD1, an excision repair gene, is required to observe this increased rate of ectopic conversion. In addition, RAD1 is involved in modulating the pattern of coconversion during recombination between the homeologous sam genes. These results suggest that interactions between mismatch repair, excision repair and recombinational repair functions are involved in determining the ectopic gene conversion frequency between the sam genes.

Full Text

The Full Text of this article is available as a PDF (5.4M).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Aguilera A, Klein HL. Yeast intrachromosomal recombination: long gene conversion tracts are preferentially associated with reciprocal exchange and require the RAD1 and RAD3 gene products. Genetics. 1989 Dec;123(4):683–694. [PMC free article] [PubMed]
  • Ahn BY, Livingston DM. Mitotic gene conversion lengths, coconversion patterns, and the incidence of reciprocal recombination in a Saccharomyces cerevisiae plasmid system. Mol Cell Biol. 1986 Nov;6(11):3685–3693. [PMC free article] [PubMed]
  • Bishop DK, Williamson MS, Fogel S, Kolodner RD. The role of heteroduplex correction in gene conversion in Saccharomyces cerevisiae. Nature. 1987 Jul 23;328(6128):362–364. [PubMed]
  • Boeke JD, LaCroute F, Fink GR. A positive selection for mutants lacking orotidine-5'-phosphate decarboxylase activity in yeast: 5-fluoro-orotic acid resistance. Mol Gen Genet. 1984;197(2):345–346. [PubMed]
  • Borts RH, Haber JE. Length and distribution of meiotic gene conversion tracts and crossovers in Saccharomyces cerevisiae. Genetics. 1989 Sep;123(1):69–80. [PMC free article] [PubMed]
  • Cameron JR, Panasenko SM, Lehman IR, Davis RW. In vitro construction of bacteriophage lambda carrying segments of the Escherichia coli chromosome: selection of hybrids containing the gene for DNA ligase. Proc Natl Acad Sci U S A. 1975 Sep;72(9):3416–3420. [PMC free article] [PubMed]
  • Carpenter AT. Meiotic roles of crossing-over and of gene conversion. Cold Spring Harb Symp Quant Biol. 1984;49:23–29. [PubMed]
  • Ernst JF, Stewart JW, Sherman F. The cyc1-11 mutation in yeast reverts by recombination with a nonallelic gene: composite genes determining the iso-cytochromes c. Proc Natl Acad Sci U S A. 1981 Oct;78(10):6334–6338. [PMC free article] [PubMed]
  • Hoffman CS, Winston F. A ten-minute DNA preparation from yeast efficiently releases autonomous plasmids for transformation of Escherichia coli. Gene. 1987;57(2-3):267–272. [PubMed]
  • Jackson JA, Fink GR. Gene conversion between duplicated genetic elements in yeast. Nature. 1981 Jul 23;292(5821):306–311. [PubMed]
  • Jinks-Robertson S, Petes TD. Chromosomal translocations generated by high-frequency meiotic recombination between repeated yeast genes. Genetics. 1986 Nov;114(3):731–752. [PMC free article] [PubMed]
  • Klein HL. Different types of recombination events are controlled by the RAD1 and RAD52 genes of Saccharomyces cerevisiae. Genetics. 1988 Oct;120(2):367–377. [PMC free article] [PubMed]
  • Klein HL, Petes TD. Intrachromosomal gene conversion in yeast. Nature. 1981 Jan 15;289(5794):144–148. [PubMed]
  • Kramer B, Kramer W, Williamson MS, Fogel S. Heteroduplex DNA correction in Saccharomyces cerevisiae is mismatch specific and requires functional PMS genes. Mol Cell Biol. 1989 Oct;9(10):4432–4440. [PMC free article] [PubMed]
  • Kramer W, Kramer B, Williamson MS, Fogel S. Cloning and nucleotide sequence of DNA mismatch repair gene PMS1 from Saccharomyces cerevisiae: homology of PMS1 to procaryotic MutL and HexB. J Bacteriol. 1989 Oct;171(10):5339–5346. [PMC free article] [PubMed]
  • Kunz BA, Peters MG, Kohalmi SE, Armstrong JD, Glattke M, Badiani K. Disruption of the RAD52 gene alters the spectrum of spontaneous SUP4-o mutations in Saccharomyces cerevisiae. Genetics. 1989 Jul;122(3):535–542. [PMC free article] [PubMed]
  • Lichten M, Haber JE. Position effects in ectopic and allelic mitotic recombination in Saccharomyces cerevisiae. Genetics. 1989 Oct;123(2):261–268. [PMC free article] [PubMed]
  • Luria SE, Delbrück M. Mutations of Bacteria from Virus Sensitivity to Virus Resistance. Genetics. 1943 Nov;28(6):491–511. [PMC free article] [PubMed]
  • Malone RE, Esposito RE. The RAD52 gene is required for homothallic interconversion of mating types and spontaneous mitotic recombination in yeast. Proc Natl Acad Sci U S A. 1980 Jan;77(1):503–507. [PMC free article] [PubMed]
  • Mikus MD, Petes TD. Recombination between genes located on nonhomologous chromosomes in Saccharomyces cerevisiae. Genetics. 1982 Jul-Aug;101(3-4):369–404. [PMC free article] [PubMed]
  • Montelone BA, Hoekstra MF, Malone RE. Spontaneous mitotic recombination in yeast: the hyper-recombinational rem1 mutations are alleles of the RAD3 gene. Genetics. 1988 Jun;119(2):289–301. [PMC free article] [PubMed]
  • Nagylaki T, Petes TD. Intrachromosomal gene conversion and the maintenance of sequence homogeneity among repeated genes. Genetics. 1982 Feb;100(2):315–337. [PMC free article] [PubMed]
  • Petes TD, Hill CW. Recombination between repeated genes in microorganisms. Annu Rev Genet. 1988;22:147–168. [PubMed]
  • Potier S, Winsor B, Lacroute F. Genetic selection for reciprocal translocation at chosen chromosomal sites in Saccharomyces cerevisiae. Mol Cell Biol. 1982 Sep;2(9):1025–1032. [PMC free article] [PubMed]
  • Prakash S, Prakash L, Burke W, Montelone BA. Effects of the RAD52 Gene on Recombination in SACCHAROMYCES CEREVISIAE. Genetics. 1980 Jan;94(1):31–50. [PMC free article] [PubMed]
  • Rayssiguier C, Thaler DS, Radman M. The barrier to recombination between Escherichia coli and Salmonella typhimurium is disrupted in mismatch-repair mutants. Nature. 1989 Nov 23;342(6248):396–401. [PubMed]
  • Reynolds RJ, Friedberg EC. Molecular mechanisms of pyrimidine dimer excision in Saccharomyces cerevisiae: incision of ultraviolet-irradiated deoxyribonucleic acid in vivo. J Bacteriol. 1981 May;146(2):692–704. [PMC free article] [PubMed]
  • Rothstein RJ. One-step gene disruption in yeast. Methods Enzymol. 1983;101:202–211. [PubMed]
  • Rothstein R, Helms C, Rosenberg N. Concerted deletions and inversions are caused by mitotic recombination between delta sequences in Saccharomyces cerevisiae. Mol Cell Biol. 1987 Mar;7(3):1198–1207. [PMC free article] [PubMed]
  • Scherer S, Davis RW. Replacement of chromosome segments with altered DNA sequences constructed in vitro. Proc Natl Acad Sci U S A. 1979 Oct;76(10):4951–4955. [PMC free article] [PubMed]
  • Scherer S, Davis RW. Recombination of dispersed repeated DNA sequences in yeast. Science. 1980 Sep 19;209(4463):1380–1384. [PubMed]
  • Schiestl RH, Prakash S. RAD1, an excision repair gene of Saccharomyces cerevisiae, is also involved in recombination. Mol Cell Biol. 1988 Sep;8(9):3619–3626. [PMC free article] [PubMed]
  • Shen P, Huang HV. Homologous recombination in Escherichia coli: dependence on substrate length and homology. Genetics. 1986 Mar;112(3):441–457. [PMC free article] [PubMed]
  • Sugawara N, Szostak JW. Recombination between sequences in nonhomologous positions. Proc Natl Acad Sci U S A. 1983 Sep;80(18):5675–5679. [PMC free article] [PubMed]
  • Symington LS, Petes TD. Expansions and contractions of the genetic map relative to the physical map of yeast chromosome III. Mol Cell Biol. 1988 Feb;8(2):595–604. [PMC free article] [PubMed]
  • Szostak JW, Wu R. Unequal crossing over in the ribosomal DNA of Saccharomyces cerevisiae. Nature. 1980 Apr 3;284(5755):426–430. [PubMed]
  • Thomas BJ, Rothstein R. The genetic control of direct-repeat recombination in Saccharomyces: the effect of rad52 and rad1 on mitotic recombination at GAL10, a transcriptionally regulated gene. Genetics. 1989 Dec;123(4):725–738. [PMC free article] [PubMed]
  • Thomas D, Rothstein R, Rosenberg N, Surdin-Kerjan Y. SAM2 encodes the second methionine S-adenosyl transferase in Saccharomyces cerevisiae: physiology and regulation of both enzymes. Mol Cell Biol. 1988 Dec;8(12):5132–5139. [PMC free article] [PubMed]
  • Waldman AS, Liskay RM. Dependence of intrachromosomal recombination in mammalian cells on uninterrupted homology. Mol Cell Biol. 1988 Dec;8(12):5350–5357. [PMC free article] [PubMed]
  • Watt VM, Ingles CJ, Urdea MS, Rutter WJ. Homology requirements for recombination in Escherichia coli. Proc Natl Acad Sci U S A. 1985 Jul;82(14):4768–4772. [PMC free article] [PubMed]
  • Weiffenbach B, Haber JE. Homothallic mating type switching generates lethal chromosome breaks in rad52 strains of Saccharomyces cerevisiae. Mol Cell Biol. 1981 Jun;1(6):522–534. [PMC free article] [PubMed]
  • Wilcox DR, Prakash L. Incision and postincision steps of pyrimidine dimer removal in excision-defective mutants of Saccharomyces cerevisiae. J Bacteriol. 1981 Nov;148(2):618–623. [PMC free article] [PubMed]
  • Williamson MS, Game JC, Fogel S. Meiotic gene conversion mutants in Saccharomyces cerevisiae. I. Isolation and characterization of pms1-1 and pms1-2. Genetics. 1985 Aug;110(4):609–646. [PMC free article] [PubMed]
  • Winston F, Chaleff DT, Valent B, Fink GR. Mutations affecting Ty-mediated expression of the HIS4 gene of Saccharomyces cerevisiae. Genetics. 1984 Jun;107(2):179–197. [PMC free article] [PubMed]

Articles from Genetics are provided here courtesy of Genetics Society of America

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...