Logo of geneticsGeneticsCurrent IssueInformation for AuthorsEditorial BoardSubscribeSubmit a Manuscript
Genetics. 1990 Jun; 125(2): 281–291.
PMCID: PMC1204018

Analysis of the Gal3 Signal Transduction Pathway Activating Gal4 Protein-Dependent Transcription in Saccharomyces Cerevisiae


The Saccharomyces cerevisiae GAL/MEL regulon genes are normally induced within minutes of galactose addition, but gal3 mutants exhibit a 3-5-day induction lag. We have discovered that this long-term adaptation (LTA) phenotype conferred by gal3 is complemented by multiple copies of the GAL1 gene. Based on this result and the striking similarity between the GAL3 and GAL1 protein sequences we attempted to detect galactokinase activity that might be associated with the GAL3 protein. By both in vivo and in vitro tests the GAL3 gene product does not appear to catalyze a galactokinase-like reaction. In complementary experiments, Escherichia coli galactokinase expressed in yeast was shown to complement the gal1 but not the gal3 mutation. Thus, the complementation activity provided by GAL1 is not likely due to galactokinase activity, but rather due to a distinct GAL3-like activity. Overall, the results indicate that GAL1 encodes a bifunctional protein. In related experiments we tested for function of the LTA induction pathway in gal3 cells deficient for other gene functions. It has been known for some time that gal3gal1, gal3gal7, gal3gal10, and gal3 rho--are incapable of induction. We constructed isogenic haploid strains bearing the gal3 mutation in combination with either gal15 or pgi1 mutations: the gal15 and pgi1 blocks are not specific for the galactose pathway in contrast to the gal1, gal7 and gal10 blocks. The gal3gal5 and gal3pgi1 double mutants were not inducible, whereas both the gal5 and pgi1 single mutants were inducible. We conclude that, in addition to the GAL3-like activity of GAL1, functions beyond the galactose-specific GAL1, GAL7 and GAL10 enzymes are required for the LTA induction pathway.

Full Text

The Full Text of this article is available as a PDF (4.0M).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Aguilera A. Deletion of the phosphoglucose isomerase structural gene makes growth and sporulation glucose dependent in Saccharomyces cerevisiae. Mol Gen Genet. 1986 Aug;204(2):310–316. [PubMed]
  • Aguilera A, Zimmermann FK. Isolation and molecular analysis of the phosphoglucose isomerase structural gene of Saccharomyces cerevisiae. Mol Gen Genet. 1986 Jan;202(1):83–89. [PubMed]
  • Bajwa W, Torchia TE, Hopper JE. Yeast regulatory gene GAL3: carbon regulation; UASGal elements in common with GAL1, GAL2, GAL7, GAL10, GAL80, and MEL1; encoded protein strikingly similar to yeast and Escherichia coli galactokinases. Mol Cell Biol. 1988 Aug;8(8):3439–3447. [PMC free article] [PubMed]
  • Birnboim HC, Doly J. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res. 1979 Nov 24;7(6):1513–1523. [PMC free article] [PubMed]
  • Blume KG, Beutler E. Galactokinase from human erythrocytes. Methods Enzymol. 1975;42:47–53. [PubMed]
  • Bostian KA, Lemire JM, Cannon LE, Halvorson HO. In vitro synthesis of repressible yeast acid phosphatase: identification of multiple mRNAs and products. Proc Natl Acad Sci U S A. 1980 Aug;77(8):4504–4508. [PMC free article] [PubMed]
  • Boyer HW, Roulland-Dussoix D. A complementation analysis of the restriction and modification of DNA in Escherichia coli. J Mol Biol. 1969 May 14;41(3):459–472. [PubMed]
  • Broach JR. Galactose regulation in Saccharomyces cerevisiae. The enzymes encoded by the GAL7, 10, 1 cluster are co-ordinately controlled and separately translated. J Mol Biol. 1979 Jun 15;131(1):41–53. [PubMed]
  • Ciriacy M, Breitenbach I. Physiological effects of seven different blocks in glycolysis in Saccharomyces cerevisiae. J Bacteriol. 1979 Jul;139(1):152–160. [PMC free article] [PubMed]
  • Cirillo VP. Galactose transport in Saccharomyces cerevisiae. I. Nonmetabolized sugars as substrates and inducers of the galactose transport system. J Bacteriol. 1968 May;95(5):1727–1731. [PMC free article] [PubMed]
  • Clifton D, Weinstock SB, Fraenkel DG. Glycolysis mutants in Saccharomyces cerevisiae. Genetics. 1978 Jan;88(1):1–11. [PMC free article] [PubMed]
  • Davis RW, Thomas M, Cameron J, St John TP, Scherer S, Padgett RA. Rapid DNA isolations for enzymatic and hybridization analysis. Methods Enzymol. 1980;65(1):404–411. [PubMed]
  • Dieckmann CL, Tzagoloff A. Assembly of the mitochondrial membrane system. CBP6, a yeast nuclear gene necessary for synthesis of cytochrome b. J Biol Chem. 1985 Feb 10;260(3):1513–1520. [PubMed]
  • DOUGLAS HC, CONDIE F. The genetic control of galactose utilization in Saccharomyces. J Bacteriol. 1954 Dec;68(6):662–670. [PMC free article] [PubMed]
  • Douglas HC, Hawthorne DC. Regulation of genes controlling synthesis of the galactose pathway enzymes in yeast. Genetics. 1966 Sep;54(3):911–916. [PMC free article] [PubMed]
  • Hopper JE, Broach JR, Rowe LB. Regulation of the galactose pathway in Saccharomyces cerevisiae: induction of uridyl transferase mRNA and dependency on GAL4 gene function. Proc Natl Acad Sci U S A. 1978 Jun;75(6):2878–2882. [PMC free article] [PubMed]
  • Ito H, Fukuda Y, Murata K, Kimura A. Transformation of intact yeast cells treated with alkali cations. J Bacteriol. 1983 Jan;153(1):163–168. [PMC free article] [PubMed]
  • Johnston M. A model fungal gene regulatory mechanism: the GAL genes of Saccharomyces cerevisiae. Microbiol Rev. 1987 Dec;51(4):458–476. [PMC free article] [PubMed]
  • Kawasaki G, Fraenkel DG. Cloning of yeast glycolysis genes by complementation. Biochem Biophys Res Commun. 1982 Oct 15;108(3):1107–1122. [PubMed]
  • Kew OM, Douglas HC. Genetic co-regulation of galactose and melibiose utilization in Saccharomyces. J Bacteriol. 1976 Jan;125(1):33–41. [PMC free article] [PubMed]
  • Kleid DG, Yansura D, Small B, Dowbenko D, Moore DM, Grubman MJ, McKercher PD, Morgan DO, Robertson BH, Bachrach HL. Cloned viral protein vaccine for foot-and-mouth disease: responses in cattle and swine. Science. 1981 Dec 4;214(4525):1125–1129. [PubMed]
  • Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. [PubMed]
  • Lee CY. Phosphoglucose isomerase from mouse and Drosophila melanogaster. Methods Enzymol. 1982;89(Pt 500):559–562. [PubMed]
  • Maitra PK. Glucose and fructose metabolism in a phosphoglucoisomeraseless mutant of Saccharomyces cerevisiae. J Bacteriol. 1971 Sep;107(3):759–769. [PMC free article] [PubMed]
  • Nogi Y. GAL3 gene product is required for maintenance of the induced state of the GAL cluster genes in Saccharomyces cerevisiae. J Bacteriol. 1986 Jan;165(1):101–106. [PMC free article] [PubMed]
  • Oh D, Hopper JE. Transcription of a yeast phosphoglucomutase isozyme gene is galactose inducible and glucose repressible. Mol Cell Biol. 1990 Apr;10(4):1415–1422. [PMC free article] [PubMed]
  • Post-Beittenmiller MA, Hamilton RW, Hopper JE. Regulation of basal and induced levels of the MEL1 transcript in Saccharomyces cerevisiae. Mol Cell Biol. 1984 Jul;4(7):1238–1245. [PMC free article] [PubMed]
  • Rothstein RJ. One-step gene disruption in yeast. Methods Enzymol. 1983;101:202–211. [PubMed]
  • Russell DW, Jensen R, Zoller MJ, Burke J, Errede B, Smith M, Herskowitz I. Structure of the Saccharomyces cerevisiae HO gene and analysis of its upstream regulatory region. Mol Cell Biol. 1986 Dec;6(12):4281–4294. [PMC free article] [PubMed]
  • Rymond BC, Zitomer RS, Schümperli D, Rosenberg M. The expression in yeast of the Escherichia coli galK gene on CYC1::galK fusion plasmids. Gene. 1983 Nov;25(2-3):249–262. [PubMed]
  • SPIEGELMAN S, SUSSMAN RR, PINSKA E. On the cytoplasmic nature of "long-term adaptation" in yeast. Proc Natl Acad Sci U S A. 1950 Nov;36(11):591–606. [PMC free article] [PubMed]
  • Spindler KR, Rosser DS, Berk AJ. Analysis of adenovirus transforming proteins from early regions 1A and 1B with antisera to inducible fusion antigens produced in Escherichia coli. J Virol. 1984 Jan;49(1):132–141. [PMC free article] [PubMed]
  • St John TP, Davis RW. Isolation of galactose-inducible DNA sequences from Saccharomyces cerevisiae by differential plaque filter hybridization. Cell. 1979 Feb;16(2):443–452. [PubMed]
  • St John TP, Davis RW. The organization and transcription of the galactose gene cluster of Saccharomyces. J Mol Biol. 1981 Oct 25;152(2):285–315. [PubMed]
  • Szkutnicka K, Tschopp JF, Andrews L, Cirillo VP. Sequence and structure of the yeast galactose transporter. J Bacteriol. 1989 Aug;171(8):4486–4493. [PMC free article] [PubMed]
  • Torchia TE, Hamilton RW, Cano CL, Hopper JE. Disruption of regulatory gene GAL80 in Saccharomyces cerevisiae: effects on carbon-controlled regulation of the galactose/melibiose pathway genes. Mol Cell Biol. 1984 Aug;4(8):1521–1527. [PMC free article] [PubMed]
  • Tschopp JF, Emr SD, Field C, Schekman R. GAL2 codes for a membrane-bound subunit of the galactose permease in Saccharomyces cerevisiae. J Bacteriol. 1986 Apr;166(1):313–318. [PMC free article] [PubMed]
  • Tsuyumu S, Adams BG. Population analysis of the deinduction kinetics of galactose long-term adaptation mutants of yeast. Proc Natl Acad Sci U S A. 1973 Mar;70(3):919–923. [PMC free article] [PubMed]
  • Tsuyumu S, Adams BG. Dilution kinetic studies of yeast populations: in vivo aggregation of galactose utilizing enzymes and positive regulator molecules. Genetics. 1974 Jul;77(3):491–505. [PMC free article] [PubMed]
  • Zakian VA, Scott JF. Construction, replication, and chromatin structure of TRP1 RI circle, a multiple-copy synthetic plasmid derived from Saccharomyces cerevisiae chromosomal DNA. Mol Cell Biol. 1982 Mar;2(3):221–232. [PMC free article] [PubMed]

Articles from Genetics are provided here courtesy of Genetics Society of America


Cited by other articles in PMC

See all...


Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...