Logo of geneticsGeneticsCurrent IssueInformation for AuthorsEditorial BoardSubscribeSubmit a Manuscript
Genetics. May 1990; 125(1): 141–154.
PMCID: PMC1203996

The Effects of Chromosome Rearrangements on the Expression of Heterochromatic Genes in Chromosome 2l of Drosophila Melanogaster

Abstract

The light (lt) gene of Drosophila melanogaster is located at the base of the left arm of chromosome 2, within or very near centromeric heterochromatin (2Lh). Chromosome rearrangements that move the lt(+) gene from its normal proximal position and place the gene in distal euchromatin result in mosaic or variegated expression of the gene. The cytogenetic and genetic properties of 17 lt-variegated rearrangements are described in this report. We show that five of the heterochromatic genes adjacent to lt are subject to inactivation by these rearrangements and that the euchromatic loci in proximal 2L are not detectably affected. The properties of the rearrangements suggest that proximity to heterochromatin is an important regulatory requirement for at least six 2Lh genes. We discuss how the properties of the position effects on heterochromatic genes relate to other proximity-dependent phenomena such as transvection.

Full Text

The Full Text of this article is available as a PDF (3.0M).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Baker WK. V-Type Position Effects of a Gene in Drosophila Virilis Normally Located in Heterochromatin. Genetics. 1953 Jul;38(4):328–344. [PMC free article] [PubMed]
  • BAKER WK, REIN A. The dichotornous action of Y chromosomes on the expression of position-effect variegation. Genetics. 1962 Oct;47:1399–1407. [PMC free article] [PubMed]
  • Bauer H, Demerec M, Kaufmann BP. X-Ray Induced Chromosomal Alterations in Drosophila Melanogaster. Genetics. 1938 Nov;23(6):610–630. [PMC free article] [PubMed]
  • Brittnacher JG, Ganetzky B. On the components of segregation distortion in Drosophila melanogaster. III. Nature of enhancer of SD. Genetics. 1984 Jul;107(3):423–434. [PMC free article] [PubMed]
  • Brittnacher JG, Ganetzky B. On the components of segregation distortion in Drosophila melanogaster. IV. Construction and analysis of free duplications for the Responder locus. Genetics. 1989 Apr;121(4):739–750. [PMC free article] [PubMed]
  • Butner K, Lo CW. Modulation of tk expression in mouse pericentromeric heterochromatin. Mol Cell Biol. 1986 Dec;6(12):4440–4449. [PMC free article] [PubMed]
  • Clark SH, Chovnick A. Studies of normal and position-affected expression of rosy region genes in Drosophila melanogaster. Genetics. 1986 Nov;114(3):819–840. [PMC free article] [PubMed]
  • Comings DE. Arrangement of chromatin in the nucleus. Hum Genet. 1980 Feb;53(2):131–143. [PubMed]
  • Daniels SB, McCarron M, Love C, Clark SH, Chovnick A. The underlying bases of gene expression differences in stable transformants of the rosy locus in Drosophila melanogaster. Genetics. 1986 Jun;113(2):265–285. [PMC free article] [PubMed]
  • Devlin RH, Bingham B, Wakimoto BT. The organization and expression of the light gene, a heterochromatic gene of Drosophila melanogaster. Genetics. 1990 May;125(1):129–140. [PMC free article] [PubMed]
  • Ellison JR, Howard GC. Non-random position of the A-T rich DNA sequences in early embryos of Drosophila virilis. Chromosoma. 1981;83(4):555–561. [PubMed]
  • Ephrussi B, Sutton E. A Reconsideration of the Mechanism of Position Effect. Proc Natl Acad Sci U S A. 1944 Aug 15;30(8):183–197. [PMC free article] [PubMed]
  • Feinberg AP, Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 1983 Jul 1;132(1):6–13. [PubMed]
  • Henikoff S, Dreesen TD. Trans-inactivation of the Drosophila brown gene: evidence for transcriptional repression and somatic pairing dependence. Proc Natl Acad Sci U S A. 1989 Sep;86(17):6704–6708. [PMC free article] [PubMed]
  • Hessler AY. V-Type Position Effects at the Light Locus in Drosophila Melanogaster. Genetics. 1958 May;43(3):395–403. [PMC free article] [PubMed]
  • Hilliker AJ, Holm DG. Genetic analysis of the proximal region of chromosome 2 of Drosophila melanogaster. I. Detachment products of compound autosomes. Genetics. 1975 Dec;81(4):705–721. [PMC free article] [PubMed]
  • Hilliker AJ, Trusis-Coulter SN. Analysis of the functional significance of linkage group conservation in Drosophila. Genetics. 1987 Oct;117(2):233–244. [PMC free article] [PubMed]
  • Hochstrasser M, Sedat JW. Three-dimensional organization of Drosophila melanogaster interphase nuclei. II. Chromosome spatial organization and gene regulation. J Cell Biol. 1987 Jun;104(6):1471–1483. [PMC free article] [PubMed]
  • James TC, Elgin SC. Identification of a nonhistone chromosomal protein associated with heterochromatin in Drosophila melanogaster and its gene. Mol Cell Biol. 1986 Nov;6(11):3862–3872. [PMC free article] [PubMed]
  • Johnson GD, Nogueira Araujo GM. A simple method of reducing the fading of immunofluorescence during microscopy. J Immunol Methods. 1981;43(3):349–350. [PubMed]
  • Lifschytz E, Hareven D. Heterochromatin markers: arrangement of obligatory heterochromatin, histone genes and multisite gene families in the interphase nucleus of D. melanogaster. Chromosoma. 1982;86(4):443–455. [PubMed]
  • Lifschytz E, Lindsley DL. The role of X-chromosome inactivation during spermatogenesis (Drosophila-allocycly-chromosome evolution-male sterility-dosage compensation). Proc Natl Acad Sci U S A. 1972 Jan;69(1):182–186. [PMC free article] [PubMed]
  • Locke J, Kotarski MA, Tartof KD. Dosage-dependent modifiers of position effect variegation in Drosophila and a mass action model that explains their effect. Genetics. 1988 Sep;120(1):181–198. [PMC free article] [PubMed]
  • Manuelidis L, Borden J. Reproducible compartmentalization of individual chromosome domains in human CNS cells revealed by in situ hybridization and three-dimensional reconstruction. Chromosoma. 1988;96(6):397–410. [PubMed]
  • Reuter G, Wolff I. Isolation of dominant suppressor mutations for position-effect variegation in Drosophila melanogaster. Mol Gen Genet. 1981;182(3):516–519. [PubMed]
  • Roberts PA. Screening for x-ray-induced crossover suppressors in Drosophila melanogaster: prevalence and effectiveness of translocations. Genetics. 1970 Jul;65(3):429–448. [PMC free article] [PubMed]
  • Roberts PA. Differences in synaptic affinity of chromosome arms of Drosophila melanogaster revealed by differential sensitivity to translocation heterozygosity. Genetics. 1972 Jul;71(3):401–415. [PubMed]
  • Schultz J. Variegation in Drosophila and the Inert Chromosome Regions. Proc Natl Acad Sci U S A. 1936 Jan;22(1):27–33. [PMC free article] [PubMed]
  • Schultz J, Dobzhansky T. The Relation of a Dominant Eye Color in Drosophila Melanogaster to the Associated Chromosome Rearrangement. Genetics. 1934 Jul;19(4):344–364. [PMC free article] [PubMed]
  • Shapiro RA, Wakimoto BT, Subers EM, Nathanson NM. Characterization and functional expression in mammalian cells of genomic and cDNA clones encoding a Drosophila muscarinic acetylcholine receptor. Proc Natl Acad Sci U S A. 1989 Nov;86(22):9039–9043. [PMC free article] [PubMed]
  • Sharp CB, Hilliker AJ, Holm DG. Further Characterization of Genetic Elements Associated with the Segregation Distorter Phenomenon in DROSOPHILA MELANOGASTER. Genetics. 1985 Aug;110(4):671–688. [PMC free article] [PubMed]
  • Simon JA, Sutton CA, Lobell RB, Glaser RL, Lis JT. Determinants of heat shock-induced chromosome puffing. Cell. 1985 Apr;40(4):805–817. [PubMed]
  • Spradling AC, Rubin GM. The effect of chromosomal position on the expression of the Drosophila xanthine dehydrogenase gene. Cell. 1983 Aug;34(1):47–57. [PubMed]
  • Stern C, Kodani M. Studies on the Position Effect at the Cubitus Interruptus Locus of Drosophila Melanogaster. Genetics. 1955 May;40(3):343–373. [PMC free article] [PubMed]
  • Tartof KD, Hobbs C, Jones M. A structural basis for variegating position effects. Cell. 1984 Jul;37(3):869–878. [PubMed]
  • Wright TR, Hodgetts RB, Sherald AF. The genetics of dopa decarboxylase in Drosophila melanogaster. I. Isolation and characterization of deficiencies that delete the dopa-decarboxylase-dosage-sensitive region and the alpha-methyl-dopa-hypersensitive locus. Genetics. 1976 Oct;84(2):267–285. [PMC free article] [PubMed]

Articles from Genetics are provided here courtesy of Genetics Society of America

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...