• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of geneticsGeneticsCurrent IssueInformation for AuthorsEditorial BoardSubscribeSubmit a Manuscript
Genetics. Sep 1989; 123(1): 157–163.
PMCID: PMC1203778

Genetic Localization of Foraging (For): A Major Gene for Larval Behavior in Drosophila Melanogaster

Abstract

Localizing genes for quantitative traits by conventional recombination mapping is a formidable challenge because environmental variation, minor genes, and genetic markers have modifying effects on continuously varying phenotypes. We describe ``lethal tagging,'' a method used in conjunction with deficiency mapping for localizing major genes associated with quantitative traits. Rover/sitter is a naturally occurring larval foraging polymorphism in Drosophila melanogaster which has a polygenic pattern of inheritance comprised of a single major gene (foraging) and minor modifier genes. We have successfully localized the lethal tagged foraging (for, 2-10) gene by deficiency mapping to 24A3-C5 on the polytene chromosome map.

Full Text

The Full Text of this article is available as a PDF (1.4M).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Edwards MD, Stuber CW, Wendel JF. Molecular-marker-facilitated investigations of quantitative-trait loci in maize. I. Numbers, genomic distribution and types of gene action. Genetics. 1987 May;116(1):113–125. [PMC free article] [PubMed]
  • Grell EH. Electrophoretic variants of alpha-glycerophosphate dehydrogenase in Drosophila melanogaster. Science. 1967 Dec 8;158(3806):1319–1320. [PubMed]
  • Kotarski MA, Pickert S, MacIntyre RJ. A cytogenetic analysis of the chromosomal region surrounding the alpha-glycerophosphate dehydrogenase locus of Drosophila melanogaster. Genetics. 1983 Oct;105(2):371–386. [PMC free article] [PubMed]
  • Lander ES, Botstein D. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics. 1989 Jan;121(1):185–199. [PMC free article] [PubMed]
  • Lewis EB. The Relation of Repeats to Position Effect in Drosophila Melanogaster. Genetics. 1945 Mar;30(2):137–166. [PMC free article] [PubMed]
  • Reuter G, Szidonya J. Cytogenetic analysis of variegation suppressors and a dominant temperature-sensitive lethal in region 23-26 of chromosome 2L in Drosophila melanogaster. Chromosoma. 1983;88(4):277–285. [PubMed]
  • Roberts DB, Brock HW, Rudden NC, Evans-Roberts S. A Genetic and Cytogenetic Analysis of the Region Surrounding the Lsp-1 beta-Gene in DROSOPHILA MELANOGASTER. Genetics. 1985 Jan;109(1):145–156. [PMC free article] [PubMed]
  • Schüpbach T, Wieschaus E. Female sterile mutations on the second chromosome of Drosophila melanogaster. I. Maternal effect mutations. Genetics. 1989 Jan;121(1):101–117. [PMC free article] [PubMed]
  • Sokolowski MB. Foraging strategies of Drosophila melanogaster: a chromosomal analysis. Behav Genet. 1980 May;10(3):291–302. [PubMed]
  • Stewart J. Biometrical genetics with one or two loci. I. The choice of a specific genetic model. Heredity (Edinb) 1969 May;24(2):211–224. [PubMed]
  • Thompson JN., Jr Quantitative variation and gene number. Nature. 1975 Dec 25;258(5537):665–668. [PubMed]
  • Weller JI, Soller M, Brody T. Linkage analysis of quantitative traits in an interspecific cross of tomato (lycopersicon esculentum x lycopersicon pimpinellifolium) by means of genetic markers. Genetics. 1988 Feb;118(2):329–339. [PMC free article] [PubMed]

Articles from Genetics are provided here courtesy of Genetics Society of America

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...