• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of geneticsGeneticsCurrent IssueInformation for AuthorsEditorial BoardSubscribeSubmit a Manuscript
Genetics. Sep 1989; 123(1): 157–163.
PMCID: PMC1203778

Genetic Localization of Foraging (For): A Major Gene for Larval Behavior in Drosophila Melanogaster

Abstract

Localizing genes for quantitative traits by conventional recombination mapping is a formidable challenge because environmental variation, minor genes, and genetic markers have modifying effects on continuously varying phenotypes. We describe ``lethal tagging,'' a method used in conjunction with deficiency mapping for localizing major genes associated with quantitative traits. Rover/sitter is a naturally occurring larval foraging polymorphism in Drosophila melanogaster which has a polygenic pattern of inheritance comprised of a single major gene (foraging) and minor modifier genes. We have successfully localized the lethal tagged foraging (for, 2-10) gene by deficiency mapping to 24A3-C5 on the polytene chromosome map.

Full Text

The Full Text of this article is available as a PDF (1.4M).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Edwards MD, Stuber CW, Wendel JF. Molecular-marker-facilitated investigations of quantitative-trait loci in maize. I. Numbers, genomic distribution and types of gene action. Genetics. 1987 May;116(1):113–125. [PMC free article] [PubMed]
  • Grell EH. Electrophoretic variants of alpha-glycerophosphate dehydrogenase in Drosophila melanogaster. Science. 1967 Dec 8;158(3806):1319–1320. [PubMed]
  • Kotarski MA, Pickert S, MacIntyre RJ. A cytogenetic analysis of the chromosomal region surrounding the alpha-glycerophosphate dehydrogenase locus of Drosophila melanogaster. Genetics. 1983 Oct;105(2):371–386. [PMC free article] [PubMed]
  • Lander ES, Botstein D. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics. 1989 Jan;121(1):185–199. [PMC free article] [PubMed]
  • Lewis EB. The Relation of Repeats to Position Effect in Drosophila Melanogaster. Genetics. 1945 Mar;30(2):137–166. [PMC free article] [PubMed]
  • Reuter G, Szidonya J. Cytogenetic analysis of variegation suppressors and a dominant temperature-sensitive lethal in region 23-26 of chromosome 2L in Drosophila melanogaster. Chromosoma. 1983;88(4):277–285. [PubMed]
  • Roberts DB, Brock HW, Rudden NC, Evans-Roberts S. A Genetic and Cytogenetic Analysis of the Region Surrounding the Lsp-1 beta-Gene in DROSOPHILA MELANOGASTER. Genetics. 1985 Jan;109(1):145–156. [PMC free article] [PubMed]
  • Schüpbach T, Wieschaus E. Female sterile mutations on the second chromosome of Drosophila melanogaster. I. Maternal effect mutations. Genetics. 1989 Jan;121(1):101–117. [PMC free article] [PubMed]
  • Sokolowski MB. Foraging strategies of Drosophila melanogaster: a chromosomal analysis. Behav Genet. 1980 May;10(3):291–302. [PubMed]
  • Stewart J. Biometrical genetics with one or two loci. I. The choice of a specific genetic model. Heredity (Edinb) 1969 May;24(2):211–224. [PubMed]
  • Thompson JN., Jr Quantitative variation and gene number. Nature. 1975 Dec 25;258(5537):665–668. [PubMed]
  • Weller JI, Soller M, Brody T. Linkage analysis of quantitative traits in an interspecific cross of tomato (lycopersicon esculentum x lycopersicon pimpinellifolium) by means of genetic markers. Genetics. 1988 Feb;118(2):329–339. [PMC free article] [PubMed]

Articles from Genetics are provided here courtesy of Genetics Society of America

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links