• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of geneticsGeneticsCurrent IssueInformation for AuthorsEditorial BoardSubscribeSubmit a Manuscript
Genetics. Aug 1986; 113(4): 939–965.
PMCID: PMC1202920

Molecular Zoogeography of Freshwater Fishes in the Southeastern United States


Restriction fragment length polymorphisms in mitochondrial DNA (mtDNA) were used to reconstruct evolutionary relationships of conspecific populations in four species of freshwater fish—Amia calva, Lepomis punctatus, L. gulosus, and L. microlophus. A suite of 14-17 endonucleases was employed to assay mtDNAs from 305 specimens collected from 14 river drainages extending from South Carolina to Louisiana. Extensive mtDNA polymorphism was observed within each assayed species. In both phenograms and Wagner parsimony networks, mtDNA clones that were closely related genetically were usually geographically contiguous. Within each species, major mtDNA phylogenetic breaks also distinguished populations from separate geographic regions, demonstrating that dispersal and gene flow have not been sufficient to override geographic influences on population subdivision.—Importantly, there were strong patterns of congruence across species in the geographic placements of the mtDNA phylogenetic breaks. Three major boundary regions were characterized by concentrations of phylogenetic discontinuities, and these zones agree well with previously described zoogeographic boundaries identified by a different kind of data base—distributional limits of species—suggesting that a common set of historical factors may account for both phenomena. Repeated episodes of eustatic sea level change along a relatively static continental morphology are the likely causes of several patterns of drainage isolation and coalescence, and these are discussed in relation to the genetic data.—Overall, results exemplify the positive role that intraspecific genetic analyses may play in historical zoogeographic reconstruction. They also point out the potential inadequacies of any interpretations of population genetic structure that fail to consider the influences of history in shaping that structure.

Full Text

The Full Text of this article is available as a PDF (2.5M).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Avise JC. Mitochondrial DNA and the evolutionary genetics of higher animals. Philos Trans R Soc Lond B Biol Sci. 1986 Jan 29;312(1154):325–342. [PubMed]
  • Avise JC, Giblin-Davidson C, Laerm J, Patton JC, Lansman RA. Mitochondrial DNA clones and matriarchal phylogeny within and among geographic populations of the pocket gopher, Geomys pinetis. Proc Natl Acad Sci U S A. 1979 Dec;76(12):6694–6698. [PMC free article] [PubMed]
  • Avise JC, Lansman RA, Shade RO. The use of restriction endonucleases to measure mitochondrial DNA sequence relatedness in natural populations. I. Population structure and evolution in the genus Peromyscus. Genetics. 1979 May;92(1):279–295. [PMC free article] [PubMed]
  • Avise JC, Neigel JE, Arnold J. Demographic influences on mitochondrial DNA lineage survivorship in animal populations. J Mol Evol. 1984;20(2):99–105. [PubMed]
  • Avise JC, Saunders NC. Hybridization and introgression among species of sunfish (Lepomis): analysis by mitochondrial DNA and allozyme markers. Genetics. 1984 Sep;108(1):237–255. [PMC free article] [PubMed]
  • Nei M, Li WH. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci U S A. 1979 Oct;76(10):5269–5273. [PMC free article] [PubMed]
  • Saunders NC, Kessler LG, Avise JC. Genetic Variation and Geographic Differentiation in Mitochondrial DNA of the Horseshoe Crab, LIMULUS POLYPHEMUS. Genetics. 1986 Mar;112(3):613–627. [PMC free article] [PubMed]
  • Upholt WB, Dawid IB. Mapping of mitochondrial DNA of individual sheep and goats: rapid evolution in the D loop region. Cell. 1977 Jul;11(3):571–583. [PubMed]
  • Yonekawa H, Moriwaki K, Gotoh O, Hayashi JI, Watanabe J, Miyashita N, Petras ML, Tagashira Y. Evolutionary relationships among five subspecies of Mus musculus based on restriction enzyme cleavage patterns of mitochondrial DNA. Genetics. 1981 Aug;98(4):801–816. [PMC free article] [PubMed]

Articles from Genetics are provided here courtesy of Genetics Society of America


Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...


Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...