Logo of geneticsGeneticsCurrent IssueInformation for AuthorsEditorial BoardSubscribeSubmit a Manuscript
Genetics. 1983 Aug; 104(4): 619–647.
PMCID: PMC1202130

Egg-Laying Defective Mutants of the Nematode CAENORHABDITIS ELEGANS


We have isolated 145 fertile mutants of C. elegans that are defective in egg laying and have characterized 59 of them genetically, behaviorally and pharmacologically. These 59 mutants define 40 new genes called egl, for egg-laying abnormal. Most of the other mutants are defective in previously identified genes. The egl mutants differ with respect to the severity of their egg-laying defects and the presence of behavioral or morphological pleiotropies. We have defined four distinct categories of mutants based on their responses to the pharmacological agents serotonin and imipramine, which stimulate egg laying by wild-type hermaphrodites. These drugs test the functioning of the vulva, the vulval and uterine muscles and the hermaphrodite-specific neurons (HSNs), which innervate the vulval muscles. Mutants representing 14 egl genes fail to respond to serotonin and to imipramine and are likely to be defective in the functioning of the vulva or the vulval and uterine muscles. Four mutants (representing four different genes) lay eggs in response to serotonin but not to imipramine and appear to be egg-laying defective because of defects in the HSNs; three of these four were selected specifically for these drug responses. Mutants representing seven egl genes lay eggs in response to serotonin and to imipramine. One egl mutant responds to imipramine but not to serotonin. The remaining egl mutants show variable or intermediate responses to the drugs. Two of the HSN-defective mutants, egl-1 and her-1(n695), lack HSN cell bodies and are likely to be expressing the normally male-specific program of HSN cell death. Whereas egl-1 animals appear to be defective specifically in HSN development, her-1(n695) animals exhibit multiple morphological pleiotropies, displaying partial transformation of the sexual phenotype of many cells and tissues. At least two of the egl mutants appear to be defective in the processing of environmental signals that modulate egg laying and may define new components of the neural circuitry that control egg laying.

Full Text

The Full Text of this article is available as a PDF (2.7M).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Albert PS, Brown SJ, Riddle DL. Sensory control of dauer larva formation in Caenorhabditis elegans. J Comp Neurol. 1981 May 20;198(3):435–451. [PubMed]
  • Albertson DG, Thomson JN. The pharynx of Caenorhabditis elegans. Philos Trans R Soc Lond B Biol Sci. 1976 Aug 10;275(938):299–325. [PubMed]
  • Bentley D. Single gene cricket mutations: effects on behavior, sensilla, sensory neurons, and identified interneurons. Science. 1975 Feb 28;187(4178):760–764. [PubMed]
  • Benzer S. BEHAVIORAL MUTANTS OF Drosophila ISOLATED BY COUNTERCURRENT DISTRIBUTION. Proc Natl Acad Sci U S A. 1967 Sep;58(3):1112–1119. [PMC free article] [PubMed]
  • Benzer S. From the gene to behavior. JAMA. 1971 Nov 15;218(7):1015–1022. [PubMed]
  • Brenner S. The genetics of behaviour. Br Med Bull. 1973 Sep;29(3):269–271. [PubMed]
  • Brenner S. The genetics of Caenorhabditis elegans. Genetics. 1974 May;77(1):71–94. [PMC free article] [PubMed]
  • Byerly L, Cassada RC, Russell RL. The life cycle of the nematode Caenorhabditis elegans. I. Wild-type growth and reproduction. Dev Biol. 1976 Jul 1;51(1):23–33. [PubMed]
  • Cassada RC, Russell RL. The dauerlarva, a post-embryonic developmental variant of the nematode Caenorhabditis elegans. Dev Biol. 1975 Oct;46(2):326–342. [PubMed]
  • Caviness VS, Jr, Rakic P. Mechanisms of cortical development: a view from mutations in mice. Annu Rev Neurosci. 1978;1:297–326. [PubMed]
  • Chalfie M, Horvitz HR, Sulston JE. Mutations that lead to reiterations in the cell lineages of C. elegans. Cell. 1981 Apr;24(1):59–69. [PubMed]
  • Chalfie M, Sulston J. Developmental genetics of the mechanosensory neurons of Caenorhabditis elegans. Dev Biol. 1981 Mar;82(2):358–370. [PubMed]
  • Culotti JG, Russell RL. Osmotic avoidance defective mutants of the nematode Caenorhabditis elegans. Genetics. 1978 Oct;90(2):243–256. [PMC free article] [PubMed]
  • Dusenbery DB, Sheridan RE, Russell RL. Chemotaxis-defective mutants of the nematode Caenorhabditis elegans. Genetics. 1975 Jun;80(2):297–309. [PMC free article] [PubMed]
  • Epstein HF, Waterston RH, Brenner S. A mutant affecting the heavy chain of myosin in Caenorhabditis elegans. J Mol Biol. 1974 Dec 5;90(2):291–300. [PubMed]
  • Evans PD, O'Shea M. The identification of an octopaminergic neurone and the modulation of a myogenic rhythm in the locust. J Exp Biol. 1978 Apr;73:235–260. [PubMed]
  • Greenwald IS, Horvitz HR. unc-93(e1500): A behavioral mutant of Caenorhabditis elegans that defines a gene with a wild-type null phenotype. Genetics. 1980 Sep;96(1):147–164. [PMC free article] [PubMed]
  • Ulevitch RJ, Cochrane CG, Bangs K, Herman CM, Fletcher JR, Rice CL. The effect of complement depletion on bacterial lipopolysaccharide (LPS)-induced hemodynamic and hematologic changes in the Rhesus monkey. Am J Pathol. 1978 Jul;92(1):227–240. [PMC free article] [PubMed]
  • Hodgkin J. More sex-determination mutants of Caenorhabditis elegans. Genetics. 1980 Nov;96(3):649–664. [PMC free article] [PubMed]
  • Hodgkin J, Horvitz HR, Brenner S. Nondisjunction Mutants of the Nematode CAENORHABDITIS ELEGANS. Genetics. 1979 Jan;91(1):67–94. [PMC free article] [PubMed]
  • Horvitz HR, Sulston JE. Isolation and genetic characterization of cell-lineage mutants of the nematode Caenorhabditis elegans. Genetics. 1980 Oct;96(2):435–454. [PMC free article] [PubMed]
  • Kimble J, Hirsh D. The postembryonic cell lineages of the hermaphrodite and male gonads in Caenorhabditis elegans. Dev Biol. 1979 Jun;70(2):396–417. [PubMed]
  • Lewis JA, Hodgkin JA. Specific neuroanatomical changes in chemosensory mutants of the nematode Caenorhabditis elegans. J Comp Neurol. 1977 Apr 1;172(3):489–510. [PubMed]
  • Lewis JA, Wu CH, Berg H, Levine JH. The genetics of levamisole resistance in the nematode Caenorhabditis elegans. Genetics. 1980 Aug;95(4):905–928. [PMC free article] [PubMed]
  • Hirsh D, Oppenheim D, Klass M. Development of the reproductive system of Caenorhabditis elegans. Dev Biol. 1976 Mar;49(1):200–219. [PubMed]
  • Riddle DL, Swanson MM, Albert PS. Interacting genes in nematode dauer larva formation. Nature. 1981 Apr 23;290(5808):668–671. [PubMed]
  • Sulston JE, Albertson DG, Thomson JN. The Caenorhabditis elegans male: postembryonic development of nongonadal structures. Dev Biol. 1980 Aug;78(2):542–576. [PubMed]
  • Sulston J, Dew M, Brenner S. Dopaminergic neurons in the nematode Caenorhabditis elegans. J Comp Neurol. 1975 Sep 15;163(2):215–226. [PubMed]
  • Sulston JE, Horvitz HR. Post-embryonic cell lineages of the nematode, Caenorhabditis elegans. Dev Biol. 1977 Mar;56(1):110–156. [PubMed]
  • Sulston JE, Horvitz HR. Abnormal cell lineages in mutants of the nematode Caenorhabditis elegans. Dev Biol. 1981 Feb;82(1):41–55. [PubMed]
  • White JG, Southgate E, Thomson JN, Brenner S. The structure of the ventral nerve cord of Caenorhabditis elegans. Philos Trans R Soc Lond B Biol Sci. 1976 Aug 10;275(938):327–348. [PubMed]

Articles from Genetics are provided here courtesy of Genetics Society of America


Save items

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...


  • Cited in Books
    Cited in Books
    PubMed Central articles cited in books
  • Compound
    PubChem Compound links
  • Gene
    Gene links
  • GEO Profiles
    GEO Profiles
    Related GEO records
  • HomoloGene
    HomoloGene links
  • MedGen
    Related information in MedGen
  • Pathways + GO
    Pathways + GO
    Pathways, annotations and biological systems (BioSystems) that cite the current article.
  • PubMed
    PubMed citations for these articles
  • Substance
    PubChem Substance links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...