• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of embojLink to Publisher's site
EMBO J. Oct 15, 1999; 18(20): 5592–5600.
PMCID: PMC1171627

The Aspergillus nidulans sfaD gene encodes a G protein beta subunit that is required for normal growth and repression of sporulation.

Abstract

flbA encodes an Aspergillus nidulans RGS (regulator of G protein signaling) domain protein that antagonizes FadA (G(i)alpha-subunit of heterotrimeric G protein)-mediated growth signaling to allow asexual development. We previously defined and characterized five suppressors of flbA (sfa) loss-of-function mutations and showed that one suppressor (sfaB) resulted from a novel dominant-negative allele of fadA. In this report we show that a second suppressor gene (sfaD) is predicted to encode the beta subunit of a heterotrimeric G protein. Deletion of sfaD suppressed all defects resulting from complete loss-of-flbA function mutations, caused a hyperactive sporulation phenotype and severely reduced vegetative growth. However, the sfaD deletion could not suppress the growth activation caused by dominant-activating fadA alleles, indicating that constitutively active FadA can cause proliferative growth in the absence of Gbetagamma signaling. We propose that SfaD and FadA are both positive growth regulators with partially overlapping functions and that FlbA has an important role in controlling the activities of both proteins. Inactivation of signaling events stimulated by both components of the heterotrimeric G protein is essential for both sexual and asexual sporulation.

Full Text

The Full Text of this article is available as a PDF (337K).

Articles from The EMBO Journal are provided here courtesy of The European Molecular Biology Organization

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

  • MedGen
    MedGen
    Related information in MedGen
  • Nucleotide
    Nucleotide
    Published Nucleotide sequences
  • Pathways + GO
    Pathways + GO
    Pathways, annotations and biological systems (BioSystems) that cite the current article.
  • Protein
    Protein
    Published protein sequences
  • PubMed
    PubMed
    PubMed citations for these articles
  • Substance
    Substance
    PubChem Substance links
  • Taxonomy
    Taxonomy
    Related taxonomy entry
  • Taxonomy Tree
    Taxonomy Tree

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...