• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of embojLink to Publisher's site
EMBO J. Oct 15, 1999; 18(20): 5548–5558.
PMCID: PMC1171623

Blue light activates the plasma membrane H(+)-ATPase by phosphorylation of the C-terminus in stomatal guard cells.

Abstract

The opening of stomata, which is driven by the accumulation of K(+) salt in guard cells, is induced by blue light (BL). The BL activates the H(+) pump; however, the mechanism by which the perception of BL is transduced into the pump activation remains unknown. We present evidence that the pump is the plasma membrane H(+)-ATPase and that BL activates the H(+)-ATPase via phosphorylation. A pulse of BL (30 s, 100 micromol/m(2)/s) increased ATP hydrolysis by the plasma membrane H(+)-ATPase and H(+) pumping in Vicia guard cell protoplasts with a similar time course. The H(+)-ATPase was phosphorylated reversibly by BL, and the phosphorylation levels paralleled the ATP hydrolytic activity. The phosphorylation occurred exclusively in the C-termini of H(+)-ATPases on both serine and threonine residues in two isoproteins of H(+)-ATPase in guard cells. An endogenous 14-3-3 protein was co-precipitated with H(+)-ATPase, and the recombinant 14-3-3 protein bound to the phosphorylated C-termini of H(+)-ATPases. These findings demonstrate that BL activates the plasma membrane H(+)-ATPase via phosphorylation of the C-terminus by a serine/threonine protein kinase, and that the 14-3-3 protein has a key role in the activation.

Full Text

The Full Text of this article is available as a PDF (398K).

Articles from The EMBO Journal are provided here courtesy of The European Molecular Biology Organization

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...